//! Tests for the array channel flavor. use std::any::Any; use std::sync::atomic::AtomicUsize; use std::sync::atomic::Ordering; use std::thread; use std::time::Duration; use crossbeam_channel::{bounded, select, Receiver}; use crossbeam_channel::{RecvError, RecvTimeoutError, TryRecvError}; use crossbeam_channel::{SendError, SendTimeoutError, TrySendError}; use crossbeam_utils::thread::scope; use rand::{thread_rng, Rng}; fn ms(ms: u64) -> Duration { Duration::from_millis(ms) } #[test] fn smoke() { let (s, r) = bounded(1); s.send(7).unwrap(); assert_eq!(r.try_recv(), Ok(7)); s.send(8).unwrap(); assert_eq!(r.recv(), Ok(8)); assert_eq!(r.try_recv(), Err(TryRecvError::Empty)); assert_eq!(r.recv_timeout(ms(1000)), Err(RecvTimeoutError::Timeout)); } #[test] fn capacity() { for i in 1..10 { let (s, r) = bounded::<()>(i); assert_eq!(s.capacity(), Some(i)); assert_eq!(r.capacity(), Some(i)); } } #[test] fn len_empty_full() { let (s, r) = bounded(2); assert_eq!(s.len(), 0); assert!(s.is_empty()); assert!(!s.is_full()); assert_eq!(r.len(), 0); assert!(r.is_empty()); assert!(!r.is_full()); s.send(()).unwrap(); assert_eq!(s.len(), 1); assert!(!s.is_empty()); assert!(!s.is_full()); assert_eq!(r.len(), 1); assert!(!r.is_empty()); assert!(!r.is_full()); s.send(()).unwrap(); assert_eq!(s.len(), 2); assert!(!s.is_empty()); assert!(s.is_full()); assert_eq!(r.len(), 2); assert!(!r.is_empty()); assert!(r.is_full()); r.recv().unwrap(); assert_eq!(s.len(), 1); assert!(!s.is_empty()); assert!(!s.is_full()); assert_eq!(r.len(), 1); assert!(!r.is_empty()); assert!(!r.is_full()); } #[test] fn try_recv() { let (s, r) = bounded(100); scope(|scope| { scope.spawn(move |_| { assert_eq!(r.try_recv(), Err(TryRecvError::Empty)); thread::sleep(ms(1500)); assert_eq!(r.try_recv(), Ok(7)); thread::sleep(ms(500)); assert_eq!(r.try_recv(), Err(TryRecvError::Disconnected)); }); scope.spawn(move |_| { thread::sleep(ms(1000)); s.send(7).unwrap(); }); }) .unwrap(); } #[test] fn recv() { let (s, r) = bounded(100); scope(|scope| { scope.spawn(move |_| { assert_eq!(r.recv(), Ok(7)); thread::sleep(ms(1000)); assert_eq!(r.recv(), Ok(8)); thread::sleep(ms(1000)); assert_eq!(r.recv(), Ok(9)); assert_eq!(r.recv(), Err(RecvError)); }); scope.spawn(move |_| { thread::sleep(ms(1500)); s.send(7).unwrap(); s.send(8).unwrap(); s.send(9).unwrap(); }); }) .unwrap(); } #[test] fn recv_timeout() { let (s, r) = bounded::(100); scope(|scope| { scope.spawn(move |_| { assert_eq!(r.recv_timeout(ms(1000)), Err(RecvTimeoutError::Timeout)); assert_eq!(r.recv_timeout(ms(1000)), Ok(7)); assert_eq!( r.recv_timeout(ms(1000)), Err(RecvTimeoutError::Disconnected) ); }); scope.spawn(move |_| { thread::sleep(ms(1500)); s.send(7).unwrap(); }); }) .unwrap(); } #[test] fn try_send() { let (s, r) = bounded(1); scope(|scope| { scope.spawn(move |_| { assert_eq!(s.try_send(1), Ok(())); assert_eq!(s.try_send(2), Err(TrySendError::Full(2))); thread::sleep(ms(1500)); assert_eq!(s.try_send(3), Ok(())); thread::sleep(ms(500)); assert_eq!(s.try_send(4), Err(TrySendError::Disconnected(4))); }); scope.spawn(move |_| { thread::sleep(ms(1000)); assert_eq!(r.try_recv(), Ok(1)); assert_eq!(r.try_recv(), Err(TryRecvError::Empty)); assert_eq!(r.recv(), Ok(3)); }); }) .unwrap(); } #[test] fn send() { let (s, r) = bounded(1); scope(|scope| { scope.spawn(|_| { s.send(7).unwrap(); thread::sleep(ms(1000)); s.send(8).unwrap(); thread::sleep(ms(1000)); s.send(9).unwrap(); thread::sleep(ms(1000)); s.send(10).unwrap(); }); scope.spawn(|_| { thread::sleep(ms(1500)); assert_eq!(r.recv(), Ok(7)); assert_eq!(r.recv(), Ok(8)); assert_eq!(r.recv(), Ok(9)); }); }) .unwrap(); } #[test] fn send_timeout() { let (s, r) = bounded(2); scope(|scope| { scope.spawn(move |_| { assert_eq!(s.send_timeout(1, ms(1000)), Ok(())); assert_eq!(s.send_timeout(2, ms(1000)), Ok(())); assert_eq!( s.send_timeout(3, ms(500)), Err(SendTimeoutError::Timeout(3)) ); thread::sleep(ms(1000)); assert_eq!(s.send_timeout(4, ms(1000)), Ok(())); thread::sleep(ms(1000)); assert_eq!(s.send(5), Err(SendError(5))); }); scope.spawn(move |_| { thread::sleep(ms(1000)); assert_eq!(r.recv(), Ok(1)); thread::sleep(ms(1000)); assert_eq!(r.recv(), Ok(2)); assert_eq!(r.recv(), Ok(4)); }); }) .unwrap(); } #[test] fn send_after_disconnect() { let (s, r) = bounded(100); s.send(1).unwrap(); s.send(2).unwrap(); s.send(3).unwrap(); drop(r); assert_eq!(s.send(4), Err(SendError(4))); assert_eq!(s.try_send(5), Err(TrySendError::Disconnected(5))); assert_eq!( s.send_timeout(6, ms(500)), Err(SendTimeoutError::Disconnected(6)) ); } #[test] fn recv_after_disconnect() { let (s, r) = bounded(100); s.send(1).unwrap(); s.send(2).unwrap(); s.send(3).unwrap(); drop(s); assert_eq!(r.recv(), Ok(1)); assert_eq!(r.recv(), Ok(2)); assert_eq!(r.recv(), Ok(3)); assert_eq!(r.recv(), Err(RecvError)); } #[test] fn len() { #[cfg(miri)] const COUNT: usize = 50; #[cfg(not(miri))] const COUNT: usize = 25_000; #[cfg(miri)] const CAP: usize = 50; #[cfg(not(miri))] const CAP: usize = 1000; let (s, r) = bounded(CAP); assert_eq!(s.len(), 0); assert_eq!(r.len(), 0); for _ in 0..CAP / 10 { for i in 0..50 { s.send(i).unwrap(); assert_eq!(s.len(), i + 1); } for i in 0..50 { r.recv().unwrap(); assert_eq!(r.len(), 50 - i - 1); } } assert_eq!(s.len(), 0); assert_eq!(r.len(), 0); for i in 0..CAP { s.send(i).unwrap(); assert_eq!(s.len(), i + 1); } for _ in 0..CAP { r.recv().unwrap(); } assert_eq!(s.len(), 0); assert_eq!(r.len(), 0); scope(|scope| { scope.spawn(|_| { for i in 0..COUNT { assert_eq!(r.recv(), Ok(i)); let len = r.len(); assert!(len <= CAP); } }); scope.spawn(|_| { for i in 0..COUNT { s.send(i).unwrap(); let len = s.len(); assert!(len <= CAP); } }); }) .unwrap(); assert_eq!(s.len(), 0); assert_eq!(r.len(), 0); } #[test] fn disconnect_wakes_sender() { let (s, r) = bounded(1); scope(|scope| { scope.spawn(move |_| { assert_eq!(s.send(()), Ok(())); assert_eq!(s.send(()), Err(SendError(()))); }); scope.spawn(move |_| { thread::sleep(ms(1000)); drop(r); }); }) .unwrap(); } #[test] fn disconnect_wakes_receiver() { let (s, r) = bounded::<()>(1); scope(|scope| { scope.spawn(move |_| { assert_eq!(r.recv(), Err(RecvError)); }); scope.spawn(move |_| { thread::sleep(ms(1000)); drop(s); }); }) .unwrap(); } #[test] fn spsc() { #[cfg(miri)] const COUNT: usize = 100; #[cfg(not(miri))] const COUNT: usize = 100_000; let (s, r) = bounded(3); scope(|scope| { scope.spawn(move |_| { for i in 0..COUNT { assert_eq!(r.recv(), Ok(i)); } assert_eq!(r.recv(), Err(RecvError)); }); scope.spawn(move |_| { for i in 0..COUNT { s.send(i).unwrap(); } }); }) .unwrap(); } #[test] fn mpmc() { #[cfg(miri)] const COUNT: usize = 100; #[cfg(not(miri))] const COUNT: usize = 25_000; const THREADS: usize = 4; let (s, r) = bounded::(3); let v = (0..COUNT).map(|_| AtomicUsize::new(0)).collect::>(); scope(|scope| { for _ in 0..THREADS { scope.spawn(|_| { for _ in 0..COUNT { let n = r.recv().unwrap(); v[n].fetch_add(1, Ordering::SeqCst); } }); } for _ in 0..THREADS { scope.spawn(|_| { for i in 0..COUNT { s.send(i).unwrap(); } }); } }) .unwrap(); for c in v { assert_eq!(c.load(Ordering::SeqCst), THREADS); } } #[test] fn stress_oneshot() { #[cfg(miri)] const COUNT: usize = 100; #[cfg(not(miri))] const COUNT: usize = 10_000; for _ in 0..COUNT { let (s, r) = bounded(1); scope(|scope| { scope.spawn(|_| r.recv().unwrap()); scope.spawn(|_| s.send(0).unwrap()); }) .unwrap(); } } #[test] fn stress_iter() { #[cfg(miri)] const COUNT: usize = 100; #[cfg(not(miri))] const COUNT: usize = 100_000; let (request_s, request_r) = bounded(1); let (response_s, response_r) = bounded(1); scope(|scope| { scope.spawn(move |_| { let mut count = 0; loop { for x in response_r.try_iter() { count += x; if count == COUNT { return; } } request_s.send(()).unwrap(); } }); for _ in request_r.iter() { if response_s.send(1).is_err() { break; } } }) .unwrap(); } #[test] fn stress_timeout_two_threads() { const COUNT: usize = 100; let (s, r) = bounded(2); scope(|scope| { scope.spawn(|_| { for i in 0..COUNT { if i % 2 == 0 { thread::sleep(ms(50)); } loop { if let Ok(()) = s.send_timeout(i, ms(10)) { break; } } } }); scope.spawn(|_| { for i in 0..COUNT { if i % 2 == 0 { thread::sleep(ms(50)); } loop { if let Ok(x) = r.recv_timeout(ms(10)) { assert_eq!(x, i); break; } } } }); }) .unwrap(); } #[test] fn drops() { #[cfg(miri)] const RUNS: usize = 10; #[cfg(not(miri))] const RUNS: usize = 100; #[cfg(miri)] const STEPS: usize = 100; #[cfg(not(miri))] const STEPS: usize = 10_000; static DROPS: AtomicUsize = AtomicUsize::new(0); #[derive(Debug, PartialEq)] struct DropCounter; impl Drop for DropCounter { fn drop(&mut self) { DROPS.fetch_add(1, Ordering::SeqCst); } } let mut rng = thread_rng(); for _ in 0..RUNS { let steps = rng.gen_range(0..STEPS); let additional = rng.gen_range(0..50); DROPS.store(0, Ordering::SeqCst); let (s, r) = bounded::(50); scope(|scope| { scope.spawn(|_| { for _ in 0..steps { r.recv().unwrap(); #[cfg(miri)] std::thread::yield_now(); // https://github.com/rust-lang/miri/issues/1388 } }); scope.spawn(|_| { for _ in 0..steps { s.send(DropCounter).unwrap(); #[cfg(miri)] std::thread::yield_now(); // https://github.com/rust-lang/miri/issues/1388 } }); }) .unwrap(); for _ in 0..additional { s.send(DropCounter).unwrap(); } assert_eq!(DROPS.load(Ordering::SeqCst), steps); drop(s); drop(r); assert_eq!(DROPS.load(Ordering::SeqCst), steps + additional); } } #[test] fn linearizable() { #[cfg(miri)] const COUNT: usize = 50; #[cfg(not(miri))] const COUNT: usize = 25_000; const THREADS: usize = 4; let (s, r) = bounded(THREADS); scope(|scope| { for _ in 0..THREADS { scope.spawn(|_| { for _ in 0..COUNT { s.send(0).unwrap(); r.try_recv().unwrap(); } }); } }) .unwrap(); } #[test] fn fairness() { #[cfg(miri)] const COUNT: usize = 100; #[cfg(not(miri))] const COUNT: usize = 10_000; let (s1, r1) = bounded::<()>(COUNT); let (s2, r2) = bounded::<()>(COUNT); for _ in 0..COUNT { s1.send(()).unwrap(); s2.send(()).unwrap(); } let mut hits = [0usize; 2]; for _ in 0..COUNT { select! { recv(r1) -> _ => hits[0] += 1, recv(r2) -> _ => hits[1] += 1, } } assert!(hits.iter().all(|x| *x >= COUNT / hits.len() / 2)); } #[test] fn fairness_duplicates() { #[cfg(miri)] const COUNT: usize = 100; #[cfg(not(miri))] const COUNT: usize = 10_000; let (s, r) = bounded::<()>(COUNT); for _ in 0..COUNT { s.send(()).unwrap(); } let mut hits = [0usize; 5]; for _ in 0..COUNT { select! { recv(r) -> _ => hits[0] += 1, recv(r) -> _ => hits[1] += 1, recv(r) -> _ => hits[2] += 1, recv(r) -> _ => hits[3] += 1, recv(r) -> _ => hits[4] += 1, } } assert!(hits.iter().all(|x| *x >= COUNT / hits.len() / 2)); } #[test] fn recv_in_send() { let (s, _r) = bounded(1); s.send(()).unwrap(); #[allow(unreachable_code)] { select! { send(s, panic!()) -> _ => panic!(), default => {} } } let (s, r) = bounded(2); s.send(()).unwrap(); select! { send(s, assert_eq!(r.recv(), Ok(()))) -> _ => {} } } #[test] fn channel_through_channel() { #[cfg(miri)] const COUNT: usize = 100; #[cfg(not(miri))] const COUNT: usize = 1000; type T = Box; let (s, r) = bounded::(1); scope(|scope| { scope.spawn(move |_| { let mut s = s; for _ in 0..COUNT { let (new_s, new_r) = bounded(1); let new_r: T = Box::new(Some(new_r)); s.send(new_r).unwrap(); s = new_s; } }); scope.spawn(move |_| { let mut r = r; for _ in 0..COUNT { r = r .recv() .unwrap() .downcast_mut::>>() .unwrap() .take() .unwrap() } }); }) .unwrap(); } #[test] fn panic_on_drop() { struct Msg1<'a>(&'a mut bool); impl Drop for Msg1<'_> { fn drop(&mut self) { if *self.0 && !std::thread::panicking() { panic!("double drop"); } else { *self.0 = true; } } } struct Msg2<'a>(&'a mut bool); impl Drop for Msg2<'_> { fn drop(&mut self) { if *self.0 { panic!("double drop"); } else { *self.0 = true; panic!("first drop"); } } } // normal let (s, r) = bounded(2); let (mut a, mut b) = (false, false); s.send(Msg1(&mut a)).unwrap(); s.send(Msg1(&mut b)).unwrap(); drop(s); drop(r); assert!(a); assert!(b); // panic on drop let (s, r) = bounded(2); let (mut a, mut b) = (false, false); s.send(Msg2(&mut a)).unwrap(); s.send(Msg2(&mut b)).unwrap(); drop(s); let res = std::panic::catch_unwind(move || { drop(r); }); assert_eq!( *res.unwrap_err().downcast_ref::<&str>().unwrap(), "first drop" ); assert!(a); // Elements after the panicked element will leak. assert!(!b); }