//! `FixedBitSet` is a simple fixed size set of bits. //! //! //! ### Crate features //! //! - `std` (default feature) //! Disabling this feature disables using std and instead uses crate alloc. //! Requires Rust 1.36 to disable. //! //! ### Rust Version //! //! This version of fixedbitset requires Rust 1.31 or later. //! #![doc(html_root_url="https://docs.rs/fixedbitset/0.2/")] #![cfg_attr(not(feature = "std"), no_std)] #[cfg(not(feature = "std"))] extern crate alloc; #[cfg(not(feature = "std"))] use alloc::{ vec, vec::Vec, }; #[cfg(not(feature = "std"))] use core as std; mod range; use std::ops::{BitAnd, BitAndAssign, BitOr, BitOrAssign, BitXor, BitXorAssign, Index}; use std::cmp::{Ord, Ordering}; use std::iter::{Chain, FromIterator}; pub use range::IndexRange; const BITS: usize = 32; type Block = u32; #[inline] fn div_rem(x: usize, d: usize) -> (usize, usize) { (x / d, x % d) } /// `FixedBitSet` is a simple fixed size set of bits that each can /// be enabled (1 / **true**) or disabled (0 / **false**). /// /// The bit set has a fixed capacity in terms of enabling bits (and the /// capacity can grow using the `grow` method). #[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Default)] pub struct FixedBitSet { data: Vec, /// length in bits length: usize, } impl FixedBitSet { /// Create a new **FixedBitSet** with a specific number of bits, /// all initially clear. pub fn with_capacity(bits: usize) -> Self { let (mut blocks, rem) = div_rem(bits, BITS); blocks += (rem > 0) as usize; FixedBitSet { data: vec![0; blocks], length: bits, } } /// Grow capacity to **bits**, all new bits initialized to zero pub fn grow(&mut self, bits: usize) { let (mut blocks, rem) = div_rem(bits, BITS); blocks += (rem > 0) as usize; if bits > self.length { self.length = bits; self.data.resize(blocks, 0); } } /// Return the length of the `FixedBitSet` in bits. #[inline] pub fn len(&self) -> usize { self.length } /// Return **true** if the bit is enabled in the **FixedBitSet**, /// **false** otherwise. /// /// Note: bits outside the capacity are always disabled. /// /// Note: Also available with index syntax: `bitset[bit]`. #[inline] pub fn contains(&self, bit: usize) -> bool { let (block, i) = div_rem(bit, BITS); match self.data.get(block) { None => false, Some(b) => (b & (1 << i)) != 0, } } /// Clear all bits. #[inline] pub fn clear(&mut self) { for elt in &mut self.data[..] { *elt = 0 } } /// Enable `bit`. /// /// **Panics** if **bit** is out of bounds. #[inline] pub fn insert(&mut self, bit: usize) { assert!(bit < self.length); let (block, i) = div_rem(bit, BITS); unsafe { *self.data.get_unchecked_mut(block) |= 1 << i; } } /// Enable `bit`, and return its previous value. /// /// **Panics** if **bit** is out of bounds. #[inline] pub fn put(&mut self, bit: usize) -> bool { assert!(bit < self.length); let (block, i) = div_rem(bit, BITS); unsafe { let word = self.data.get_unchecked_mut(block); let prev = *word & (1 << i) != 0; *word |= 1 << i; prev } } /// Toggle `bit` (inverting its state). /// /// ***Panics*** if **bit** is out of bounds #[inline] pub fn toggle(&mut self, bit: usize) { assert!(bit < self.length); let (block, i) = div_rem(bit, BITS); unsafe { *self.data.get_unchecked_mut(block) ^= 1 << i; } } /// **Panics** if **bit** is out of bounds. #[inline] pub fn set(&mut self, bit: usize, enabled: bool) { assert!(bit < self.length); let (block, i) = div_rem(bit, BITS); unsafe { let elt = self.data.get_unchecked_mut(block); if enabled { *elt |= 1 << i; } else { *elt &= !(1 << i); } } } /// Copies boolean value from specified bit to the specified bit. /// /// **Panics** if **to** is out of bounds. #[inline] pub fn copy_bit(&mut self, from: usize, to: usize) { assert!(to < self.length); let (to_block, t) = div_rem(to, BITS); let enabled = self.contains(from); unsafe { let to_elt = self.data.get_unchecked_mut(to_block); if enabled { *to_elt |= 1 << t; } else { *to_elt &= !(1 << t); } } } /// Count the number of set bits in the given bit range. /// /// Use `..` to count the whole content of the bitset. /// /// **Panics** if the range extends past the end of the bitset. #[inline] pub fn count_ones(&self, range: T) -> usize { Masks::new(range, self.length) .map(|(block, mask)| unsafe { let value = *self.data.get_unchecked(block); (value & mask).count_ones() as usize }) .sum() } /// Sets every bit in the given range to the given state (`enabled`) /// /// Use `..` to toggle the whole bitset. /// /// **Panics** if the range extends past the end of the bitset. #[inline] pub fn set_range(&mut self, range: T, enabled: bool) { for (block, mask) in Masks::new(range, self.length) { unsafe { if enabled { *self.data.get_unchecked_mut(block) |= mask; } else { *self.data.get_unchecked_mut(block) &= !mask; } } } } /// Enables every bit in the given range. /// /// Use `..` to make the whole bitset ones. /// /// **Panics** if the range extends past the end of the bitset. #[inline] pub fn insert_range(&mut self, range: T) { self.set_range(range, true); } /// View the bitset as a slice of `u32` blocks #[inline] pub fn as_slice(&self) -> &[u32] { &self.data } /// View the bitset as a mutable slice of `u32` blocks. Writing past the bitlength in the last /// will cause `contains` to return potentially incorrect results for bits past the bitlength. #[inline] pub fn as_mut_slice(&mut self) -> &mut [u32] { &mut self.data } /// Iterates over all enabled bits. /// /// Iterator element is the index of the `1` bit, type `usize`. #[inline] pub fn ones(&self) -> Ones { match self.as_slice().split_first() { Some((&block, rem)) => { Ones { current_bit_idx: 0, current_block_idx: 0, current_block: block, remaining_blocks: rem } } None => { Ones { current_bit_idx: 0, current_block_idx: 0, current_block: 0, remaining_blocks: &[] } } } } /// Returns a lazy iterator over the intersection of two `FixedBitSet`s pub fn intersection<'a>(&'a self, other: &'a FixedBitSet) -> Intersection<'a> { Intersection { iter: self.ones(), other: other, } } /// Returns a lazy iterator over the union of two `FixedBitSet`s. pub fn union<'a>(&'a self, other: &'a FixedBitSet) -> Union<'a> { Union { iter: self.ones().chain(other.difference(self)), } } /// Returns a lazy iterator over the difference of two `FixedBitSet`s. The difference of `a` /// and `b` is the elements of `a` which are not in `b`. pub fn difference<'a>(&'a self, other: &'a FixedBitSet) -> Difference<'a> { Difference { iter: self.ones(), other: other, } } /// Returns a lazy iterator over the symmetric difference of two `FixedBitSet`s. /// The symmetric difference of `a` and `b` is the elements of one, but not both, sets. pub fn symmetric_difference<'a>(&'a self, other: &'a FixedBitSet) -> SymmetricDifference<'a> { SymmetricDifference { iter: self.difference(other).chain(other.difference(self)), } } /// In-place union of two `FixedBitSet`s. pub fn union_with(&mut self, other: &FixedBitSet) { if other.len() >= self.len() { self.grow(other.len()); } for (x, y) in self.data.iter_mut().zip(other.data.iter()) { *x |= *y; } } /// In-place intersection of two `FixedBitSet`s. pub fn intersect_with(&mut self, other: &FixedBitSet) { for (x, y) in self.data.iter_mut().zip(other.data.iter()) { *x &= *y; } let mn = std::cmp::min(self.data.len(), other.data.len()); for wd in &mut self.data[mn..] { *wd = 0; } } /// In-place symmetric difference of two `FixedBitSet`s. pub fn symmetric_difference_with(&mut self, other: &FixedBitSet) { if other.len() >= self.len() { self.grow(other.len()); } for (x, y) in self.data.iter_mut().zip(other.data.iter()) { *x ^= *y; } } /// Returns `true` if `self` has no elements in common with `other`. This /// is equivalent to checking for an empty intersection. pub fn is_disjoint(&self, other: &FixedBitSet) -> bool { self.data.iter().zip(other.data.iter()).all(|(x, y)| x & y == 0) } /// Returns `true` if the set is a subset of another, i.e. `other` contains /// at least all the values in `self`. pub fn is_subset(&self, other: &FixedBitSet) -> bool { self.data.iter().zip(other.data.iter()).all(|(x, y)| x & !y == 0) && self.data.iter().skip(other.data.len()).all(|x| *x == 0) } /// Returns `true` if the set is a superset of another, i.e. `self` contains /// at least all the values in `other`. pub fn is_superset(&self, other: &FixedBitSet) -> bool { other.is_subset(self) } } /// An iterator producing elements in the difference of two sets. /// /// This struct is created by the [`FixedBitSet::difference`] method. pub struct Difference<'a> { iter: Ones<'a>, other: &'a FixedBitSet, } impl<'a> Iterator for Difference<'a> { type Item = usize; #[inline] fn next(&mut self) -> Option { while let Some(nxt) = self.iter.next() { if !self.other.contains(nxt) { return Some(nxt); } } None } } /// An iterator producing elements in the symmetric difference of two sets. /// /// This struct is created by the [`FixedBitSet::symmetric_difference`] method. pub struct SymmetricDifference<'a> { iter: Chain, Difference<'a>>, } impl<'a> Iterator for SymmetricDifference<'a> { type Item = usize; #[inline] fn next(&mut self) -> Option { self.iter.next() } } /// An iterator producing elements in the intersection of two sets. /// /// This struct is created by the [`FixedBitSet::intersection`] method. pub struct Intersection<'a> { iter: Ones<'a>, other: &'a FixedBitSet, } impl<'a> Iterator for Intersection<'a> { type Item = usize; // the bit position of the '1' #[inline] fn next(&mut self) -> Option { while let Some(nxt) = self.iter.next() { if self.other.contains(nxt) { return Some(nxt); } } None } } /// An iterator producing elements in the union of two sets. /// /// This struct is created by the [`FixedBitSet::union`] method. pub struct Union<'a> { iter: Chain, Difference<'a>>, } impl<'a> Iterator for Union<'a> { type Item = usize; #[inline] fn next(&mut self) -> Option { self.iter.next() } } struct Masks { first_block: usize, first_mask: Block, last_block: usize, last_mask: Block, } impl Masks { #[inline] fn new(range: T, length: usize) -> Masks { let start = range.start().unwrap_or(0); let end = range.end().unwrap_or(length); assert!(start <= end && end <= length); let (first_block, first_rem) = div_rem(start, BITS); let (last_block, last_rem) = div_rem(end, BITS); Masks { first_block: first_block as usize, first_mask: Block::max_value() << first_rem, last_block: last_block as usize, last_mask: (Block::max_value() >> 1) >> (BITS - last_rem - 1), // this is equivalent to `MAX >> (BITS - x)` with correct semantics when x == 0. } } } impl Iterator for Masks { type Item = (usize, Block); #[inline] fn next(&mut self) -> Option { match self.first_block.cmp(&self.last_block) { Ordering::Less => { let res = (self.first_block, self.first_mask); self.first_block += 1; self.first_mask = !0; Some(res) } Ordering::Equal => { let mask = self.first_mask & self.last_mask; let res = if mask == 0 { None } else { Some((self.first_block, mask)) }; self.first_block += 1; res } Ordering::Greater => None, } } } /// An iterator producing the indices of the set bit in a set. /// /// This struct is created by the [`FixedBitSet::ones`] method. pub struct Ones<'a> { current_bit_idx: usize, current_block_idx: usize, remaining_blocks: &'a [Block], current_block: Block } impl<'a> Iterator for Ones<'a> { type Item = usize; // the bit position of the '1' #[inline] fn next(&mut self) -> Option { let mut block = self.current_block; let mut idx = self.current_bit_idx; loop { loop { if (block & 1) == 1 { self.current_block = block >> 1; self.current_bit_idx = idx + 1; return Some(idx); } // reordering the two lines below makes a huge (2x) difference in performance! block = block >> 1; idx += 1; if block == 0 { break; } } // go to next block match self.remaining_blocks.split_first() { Some((&next_block, rest)) => { self.remaining_blocks = rest; self.current_block_idx += 1; idx = self.current_block_idx * BITS; block = next_block; } None => { // last block => done return None; } } } } } impl Clone for FixedBitSet { #[inline] fn clone(&self) -> Self { FixedBitSet { data: self.data.clone(), length: self.length, } } } /// Return **true** if the bit is enabled in the bitset, /// or **false** otherwise. /// /// Note: bits outside the capacity are always disabled, and thus /// indexing a FixedBitSet will not panic. impl Index for FixedBitSet { type Output = bool; #[inline] fn index(&self, bit: usize) -> &bool { if self.contains(bit) { &true } else { &false } } } /// Sets the bit at index **i** to **true** for each item **i** in the input **src**. impl Extend for FixedBitSet { fn extend>(&mut self, src: I) { let iter = src.into_iter(); for i in iter { if i >= self.len() { self.grow(i + 1); } self.put(i); } } } /// Return a FixedBitSet containing bits set to **true** for every bit index in /// the iterator, other bits are set to **false**. impl FromIterator for FixedBitSet { fn from_iter>(src: I) -> Self { let mut fbs = FixedBitSet::with_capacity(0); fbs.extend(src); fbs } } impl <'a> BitAnd for &'a FixedBitSet { type Output = FixedBitSet; fn bitand(self, other: &FixedBitSet) -> FixedBitSet { let (short, long) = { if self.len() <= other.len() { (&self.data, &other.data) } else { (&other.data, &self.data) } }; let mut data = short.clone(); for (data, block) in data.iter_mut().zip(long.iter()) { *data &= *block; } let len = std::cmp::min(self.len(), other.len()); FixedBitSet{data: data, length: len} } } impl <'a> BitAndAssign for FixedBitSet { fn bitand_assign(&mut self, other: Self) { self.intersect_with(&other); } } impl <'a> BitOr for &'a FixedBitSet { type Output = FixedBitSet; fn bitor(self, other: &FixedBitSet) -> FixedBitSet { let (short, long) = { if self.len() <= other.len() { (&self.data, &other.data) } else { (&other.data, &self.data) } }; let mut data = long.clone(); for (data, block) in data.iter_mut().zip(short.iter()) { *data |= *block; } let len = std::cmp::max(self.len(), other.len()); FixedBitSet{data: data, length: len} } } impl <'a> BitOrAssign for FixedBitSet { fn bitor_assign(&mut self, other: Self) { self.union_with(&other); } } impl <'a> BitXor for &'a FixedBitSet { type Output = FixedBitSet; fn bitxor(self, other: &FixedBitSet) -> FixedBitSet { let (short, long) = { if self.len() <= other.len() { (&self.data, &other.data) } else { (&other.data, &self.data) } }; let mut data = long.clone(); for (data, block) in data.iter_mut().zip(short.iter()) { *data ^= *block; } let len = std::cmp::max(self.len(), other.len()); FixedBitSet{data: data, length: len} } } impl <'a> BitXorAssign for FixedBitSet { fn bitxor_assign(&mut self, other: Self) { self.symmetric_difference_with(&other); } } #[test] fn it_works() { const N: usize = 50; let mut fb = FixedBitSet::with_capacity(N); for i in 0..(N + 10) { assert_eq!(fb.contains(i), false); } fb.insert(10); fb.set(11, false); fb.set(12, false); fb.set(12, true); fb.set(N-1, true); assert!(fb.contains(10)); assert!(!fb.contains(11)); assert!(fb.contains(12)); assert!(fb.contains(N-1)); for i in 0..N { let contain = i == 10 || i == 12 || i == N - 1; assert_eq!(contain, fb[i]); } fb.clear(); } #[test] fn grow() { let mut fb = FixedBitSet::with_capacity(48); for i in 0..fb.len() { fb.set(i, true); } let old_len = fb.len(); fb.grow(72); for j in 0..fb.len() { assert_eq!(fb.contains(j), j < old_len); } fb.set(64, true); assert!(fb.contains(64)); } #[test] fn test_toggle() { let mut fb = FixedBitSet::with_capacity(16); fb.toggle(1); fb.put(2); fb.toggle(2); fb.put(3); assert!(fb.contains(1)); assert!(!fb.contains(2)); assert!(fb.contains(3)); } #[test] fn copy_bit() { let mut fb = FixedBitSet::with_capacity(48); for i in 0..fb.len() { fb.set(i, true); } fb.set(42, false); fb.copy_bit(42, 2); assert!(!fb.contains(42)); assert!(!fb.contains(2)); assert!(fb.contains(1)); fb.copy_bit(1, 42); assert!(fb.contains(42)); fb.copy_bit(1024, 42); assert!(!fb[42]); } #[test] fn count_ones() { let mut fb = FixedBitSet::with_capacity(100); fb.set(11, true); fb.set(12, true); fb.set(7, true); fb.set(35, true); fb.set(40, true); fb.set(77, true); fb.set(95, true); fb.set(50, true); fb.set(99, true); assert_eq!(fb.count_ones(..7), 0); assert_eq!(fb.count_ones(..8), 1); assert_eq!(fb.count_ones(..11), 1); assert_eq!(fb.count_ones(..12), 2); assert_eq!(fb.count_ones(..13), 3); assert_eq!(fb.count_ones(..35), 3); assert_eq!(fb.count_ones(..36), 4); assert_eq!(fb.count_ones(..40), 4); assert_eq!(fb.count_ones(..41), 5); assert_eq!(fb.count_ones(50..), 4); assert_eq!(fb.count_ones(70..95), 1); assert_eq!(fb.count_ones(70..96), 2); assert_eq!(fb.count_ones(70..99), 2); assert_eq!(fb.count_ones(..), 9); assert_eq!(fb.count_ones(0..100), 9); assert_eq!(fb.count_ones(0..0), 0); assert_eq!(fb.count_ones(100..100), 0); assert_eq!(fb.count_ones(7..), 9); assert_eq!(fb.count_ones(8..), 8); } #[test] fn ones() { let mut fb = FixedBitSet::with_capacity(100); fb.set(11, true); fb.set(12, true); fb.set(7, true); fb.set(35, true); fb.set(40, true); fb.set(77, true); fb.set(95, true); fb.set(50, true); fb.set(99, true); let ones: Vec<_> = fb.ones().collect(); assert_eq!(vec![7, 11, 12, 35, 40, 50, 77, 95, 99], ones); } #[test] fn iter_ones_range() { fn test_range(from: usize, to: usize, capa: usize) { assert!(to <= capa); let mut fb = FixedBitSet::with_capacity(capa); for i in from..to { fb.insert(i); } let ones: Vec<_> = fb.ones().collect(); let expected: Vec<_> = (from..to).collect(); assert_eq!(expected, ones); } for i in 0..100 { test_range(i, 100, 100); test_range(0, i, 100); } } #[should_panic] #[test] fn count_ones_oob() { let fb = FixedBitSet::with_capacity(100); fb.count_ones(90..101); } #[should_panic] #[test] fn count_ones_negative_range() { let fb = FixedBitSet::with_capacity(100); fb.count_ones(90..80); } #[test] fn count_ones_panic() { for i in 1..128 { let fb = FixedBitSet::with_capacity(i); for j in 0..fb.len() + 1 { for k in j..fb.len() + 1 { assert_eq!(fb.count_ones(j..k), 0); } } } } #[test] fn default() { let fb = FixedBitSet::default(); assert_eq!(fb.len(), 0); } #[test] fn insert_range() { let mut fb = FixedBitSet::with_capacity(97); fb.insert_range(..3); fb.insert_range(9..32); fb.insert_range(37..81); fb.insert_range(90..); for i in 0..97 { assert_eq!(fb.contains(i), i<3 || 9<=i&&i<32 || 37<=i&&i<81 || 90<=i); } assert!(!fb.contains(97)); assert!(!fb.contains(127)); assert!(!fb.contains(128)); } #[test] fn set_range() { let mut fb = FixedBitSet::with_capacity(48); fb.insert_range(..); fb.set_range(..32, false); fb.set_range(37.., false); fb.set_range(5..9, true); fb.set_range(40..40, true); for i in 0..48 { assert_eq!(fb.contains(i), 5<=i&&i<9 || 32<=i&&i<37); } assert!(!fb.contains(48)); assert!(!fb.contains(64)); } #[test] fn bitand_equal_lengths() { let len = 109; let a_end = 59; let b_start = 23; let mut a = FixedBitSet::with_capacity(len); let mut b = FixedBitSet::with_capacity(len); a.set_range(..a_end, true); b.set_range(b_start.., true); let ab = &a & &b; for i in 0..b_start { assert!(!ab.contains(i)); } for i in b_start..a_end { assert!(ab.contains(i)); } for i in a_end..len { assert!(!ab.contains(i)); } assert_eq!(a.len(), ab.len()); } #[test] fn bitand_first_smaller() { let a_len = 113; let b_len = 137; let len = std::cmp::min(a_len, b_len); let a_end = 97; let b_start = 89; let mut a = FixedBitSet::with_capacity(a_len); let mut b = FixedBitSet::with_capacity(b_len); a.set_range(..a_end, true); b.set_range(b_start.., true); let ab = &a & &b; for i in 0..b_start { assert!(!ab.contains(i)); } for i in b_start..a_end { assert!(ab.contains(i)); } for i in a_end..len { assert!(!ab.contains(i)); } assert_eq!(a.len(), ab.len()); } #[test] fn bitand_first_larger() { let a_len = 173; let b_len = 137; let len = std::cmp::min(a_len, b_len); let a_end = 107; let b_start = 43; let mut a = FixedBitSet::with_capacity(a_len); let mut b = FixedBitSet::with_capacity(b_len); a.set_range(..a_end, true); b.set_range(b_start.., true); let ab = &a & &b; for i in 0..b_start { assert!(!ab.contains(i)); } for i in b_start..a_end { assert!(ab.contains(i)); } for i in a_end..len { assert!(!ab.contains(i)); } assert_eq!(b.len(), ab.len()); } #[test] fn intersection() { let len = 109; let a_end = 59; let b_start = 23; let mut a = FixedBitSet::with_capacity(len); let mut b = FixedBitSet::with_capacity(len); a.set_range(..a_end, true); b.set_range(b_start.., true); let ab = a.intersection(&b).collect::(); for i in 0..b_start { assert!(!ab.contains(i)); } for i in b_start..a_end { assert!(ab.contains(i)); } for i in a_end..len { assert!(!ab.contains(i)); } } #[test] fn union() { let a_len = 173; let b_len = 137; let a_start = 139; let b_end = 107; let mut a = FixedBitSet::with_capacity(a_len); let mut b = FixedBitSet::with_capacity(b_len); a.set_range(a_start.., true); b.set_range(..b_end, true); let ab = a.union(&b).collect::(); for i in a_start..a_len { assert!(ab.contains(i)); } for i in 0..b_end { assert!(ab.contains(i)); } for i in b_end..a_start { assert!(!ab.contains(i)); } } #[test] fn difference() { let a_len = 83; let b_len = 151; let a_start = 0; let a_end = 79; let b_start = 53; let mut a = FixedBitSet::with_capacity(a_len); let mut b = FixedBitSet::with_capacity(b_len); a.set_range(a_start..a_end, true); b.set_range(b_start..b_len, true); let a_diff_b = a.difference(&b).collect::(); for i in a_start..b_start { assert!(a_diff_b.contains(i)); } for i in b_start..b_len { assert!(!a_diff_b.contains(i)); } } #[test] fn symmetric_difference() { let a_len = 83; let b_len = 151; let a_start = 47; let a_end = 79; let b_start = 53; let mut a = FixedBitSet::with_capacity(a_len); let mut b = FixedBitSet::with_capacity(b_len); a.set_range(a_start..a_end, true); b.set_range(b_start..b_len, true); let a_sym_diff_b = a.symmetric_difference(&b).collect::(); for i in 0..a_start { assert!(!a_sym_diff_b.contains(i)); } for i in a_start..b_start { assert!(a_sym_diff_b.contains(i)); } for i in b_start..a_end { assert!(!a_sym_diff_b.contains(i)); } for i in a_end..b_len { assert!(a_sym_diff_b.contains(i)); } } #[test] fn bitor_equal_lengths() { let len = 109; let a_start = 17; let a_end = 23; let b_start = 19; let b_end = 59; let mut a = FixedBitSet::with_capacity(len); let mut b = FixedBitSet::with_capacity(len); a.set_range(a_start..a_end, true); b.set_range(b_start..b_end, true); let ab = &a | &b; for i in 0..a_start { assert!(!ab.contains(i)); } for i in a_start..b_end { assert!(ab.contains(i)); } for i in b_end..len { assert!(!ab.contains(i)); } assert_eq!(ab.len(), len); } #[test] fn bitor_first_smaller() { let a_len = 113; let b_len = 137; let a_end = 89; let b_start = 97; let mut a = FixedBitSet::with_capacity(a_len); let mut b = FixedBitSet::with_capacity(b_len); a.set_range(..a_end, true); b.set_range(b_start.., true); let ab = &a | &b; for i in 0..a_end { assert!(ab.contains(i)); } for i in a_end..b_start { assert!(!ab.contains(i)); } for i in b_start..b_len { assert!(ab.contains(i)); } assert_eq!(b_len, ab.len()); } #[test] fn bitor_first_larger() { let a_len = 173; let b_len = 137; let a_start = 139; let b_end = 107; let mut a = FixedBitSet::with_capacity(a_len); let mut b = FixedBitSet::with_capacity(b_len); a.set_range(a_start.., true); b.set_range(..b_end, true); let ab = &a | &b; for i in a_start..a_len { assert!(ab.contains(i)); } for i in 0..b_end { assert!(ab.contains(i)); } for i in b_end..a_start { assert!(!ab.contains(i)); } assert_eq!(a_len, ab.len()); } #[test] fn bitxor_equal_lengths() { let len = 109; let a_end = 59; let b_start = 23; let mut a = FixedBitSet::with_capacity(len); let mut b = FixedBitSet::with_capacity(len); a.set_range(..a_end, true); b.set_range(b_start.., true); let ab = &a ^ &b; for i in 0..b_start { assert!(ab.contains(i)); } for i in b_start..a_end { assert!(!ab.contains(i)); } for i in a_end..len { assert!(ab.contains(i)); } assert_eq!(a.len(), ab.len()); } #[test] fn bitxor_first_smaller() { let a_len = 113; let b_len = 137; let len = std::cmp::max(a_len, b_len); let a_end = 97; let b_start = 89; let mut a = FixedBitSet::with_capacity(a_len); let mut b = FixedBitSet::with_capacity(b_len); a.set_range(..a_end, true); b.set_range(b_start.., true); let ab = &a ^ &b; for i in 0..b_start { assert!(ab.contains(i)); } for i in b_start..a_end { assert!(!ab.contains(i)); } for i in a_end..len { assert!(ab.contains(i)); } assert_eq!(b.len(), ab.len()); } #[test] fn bitxor_first_larger() { let a_len = 173; let b_len = 137; let len = std::cmp::max(a_len, b_len); let a_end = 107; let b_start = 43; let mut a = FixedBitSet::with_capacity(a_len); let mut b = FixedBitSet::with_capacity(b_len); a.set_range(..a_end, true); b.set_range(b_start.., true); let ab = &a ^ &b; for i in 0..b_start { assert!(ab.contains(i)); } for i in b_start..a_end { assert!(!ab.contains(i)); } for i in a_end..b_len { assert!(ab.contains(i)); } for i in b_len..len { assert!(!ab.contains(i)); } assert_eq!(a.len(), ab.len()); } #[test] fn bitand_assign_shorter() { let a_ones: Vec = vec![2, 3, 7, 19, 31, 32, 37, 41, 43, 47, 71, 73, 101]; let b_ones: Vec = vec![2, 7, 8, 11, 23, 31, 32]; let a_and_b: Vec = vec![2, 7, 31, 32]; let mut a = a_ones.iter().cloned().collect::(); let b = b_ones.iter().cloned().collect::(); a &= b; let res = a.ones().collect::>(); assert!(res == a_and_b); } #[test] fn bitand_assign_longer() { let a_ones: Vec = vec![2, 7, 8, 11, 23, 31, 32]; let b_ones: Vec = vec![2, 3, 7, 19, 31, 32, 37, 41, 43, 47, 71, 73, 101]; let a_and_b: Vec = vec![2, 7, 31, 32]; let mut a = a_ones.iter().cloned().collect::(); let b = b_ones.iter().cloned().collect::(); a &= b; let res = a.ones().collect::>(); assert!(res == a_and_b); } #[test] fn bitor_assign_shorter() { let a_ones: Vec = vec![2, 3, 7, 19, 31, 32, 37, 41, 43, 47, 71, 73, 101]; let b_ones: Vec = vec![2, 7, 8, 11, 23, 31, 32]; let a_or_b: Vec = vec![2, 3, 7, 8, 11, 19, 23, 31, 32, 37, 41, 43, 47, 71, 73, 101]; let mut a = a_ones.iter().cloned().collect::(); let b = b_ones.iter().cloned().collect::(); a |= b; let res = a.ones().collect::>(); assert!(res == a_or_b); } #[test] fn bitor_assign_longer() { let a_ones: Vec = vec![2, 7, 8, 11, 23, 31, 32]; let b_ones: Vec = vec![2, 3, 7, 19, 31, 32, 37, 41, 43, 47, 71, 73, 101]; let a_or_b: Vec = vec![2, 3, 7, 8, 11, 19, 23, 31, 32, 37, 41, 43, 47, 71, 73, 101]; let mut a = a_ones.iter().cloned().collect::(); let b = b_ones.iter().cloned().collect::(); a |= b; let res = a.ones().collect::>(); assert!(res == a_or_b); } #[test] fn bitxor_assign_shorter() { let a_ones: Vec = vec![2, 3, 7, 19, 31, 32, 37, 41, 43, 47, 71, 73, 101]; let b_ones: Vec = vec![2, 7, 8, 11, 23, 31, 32]; let a_xor_b: Vec = vec![3, 8, 11, 19, 23, 37, 41, 43, 47, 71, 73, 101]; let mut a = a_ones.iter().cloned().collect::(); let b = b_ones.iter().cloned().collect::(); a ^= b; let res = a.ones().collect::>(); assert!(res == a_xor_b); } #[test] fn bitxor_assign_longer() { let a_ones: Vec = vec![2, 7, 8, 11, 23, 31, 32]; let b_ones: Vec = vec![2, 3, 7, 19, 31, 32, 37, 41, 43, 47, 71, 73, 101]; let a_xor_b: Vec = vec![3, 8, 11, 19, 23, 37, 41, 43, 47, 71, 73, 101]; let mut a = a_ones.iter().cloned().collect::(); let b = b_ones.iter().cloned().collect::(); a ^= b; let res = a.ones().collect::>(); assert!(res == a_xor_b); } #[test] fn subset_superset_shorter() { let a_ones: Vec = vec![7, 31, 32, 63]; let b_ones: Vec = vec![2, 7, 19, 31, 32, 37, 41, 43, 47, 63, 73, 101]; let mut a = a_ones.iter().cloned().collect::(); let b = b_ones.iter().cloned().collect::(); assert!(a.is_subset(&b) && b.is_superset(&a)); a.insert(14); assert!(!a.is_subset(&b) && !b.is_superset(&a)); } #[test] fn subset_superset_longer() { let a_len = 153; let b_len = 75; let a_ones: Vec = vec![7, 31, 32, 63]; let b_ones: Vec = vec![2, 7, 19, 31, 32, 37, 41, 43, 47, 63, 73]; let mut a = FixedBitSet::with_capacity(a_len); let mut b = FixedBitSet::with_capacity(b_len); a.extend(a_ones.iter().cloned()); b.extend(b_ones.iter().cloned()); assert!(a.is_subset(&b) && b.is_superset(&a)); a.insert(100); assert!(!a.is_subset(&b) && !b.is_superset(&a)); } #[test] fn is_disjoint_first_shorter() { let a_len = 75; let b_len = 153; let a_ones: Vec = vec![2, 19, 32, 37, 41, 43, 47, 73]; let b_ones: Vec = vec![7, 23, 31, 63, 124]; let mut a = FixedBitSet::with_capacity(a_len); let mut b = FixedBitSet::with_capacity(b_len); a.extend(a_ones.iter().cloned()); b.extend(b_ones.iter().cloned()); assert!(a.is_disjoint(&b)); a.insert(63); assert!(!a.is_disjoint(&b)); } #[test] fn is_disjoint_first_longer() { let a_ones: Vec = vec![2, 19, 32, 37, 41, 43, 47, 73, 101]; let b_ones: Vec = vec![7, 23, 31, 63]; let a = a_ones.iter().cloned().collect::(); let mut b = b_ones.iter().cloned().collect::(); assert!(a.is_disjoint(&b)); b.insert(2); assert!(!a.is_disjoint(&b)); } #[test] fn extend_on_empty() { let items: Vec = vec![2, 3, 5, 7, 11, 13, 17, 19, 23, 27, 29, 31, 37, 167]; let mut fbs = FixedBitSet::with_capacity(0); fbs.extend(items.iter().cloned()); let ones = fbs.ones().collect::>(); assert!(ones == items); } #[test] fn extend() { let items: Vec = vec![2, 3, 5, 7, 11, 13, 17, 19, 23, 27, 29, 31, 37, 167]; let mut fbs = FixedBitSet::with_capacity(168); let new: Vec = vec![7, 37, 67, 137]; for i in &new { fbs.put(*i); } fbs.extend(items.iter().cloned()); let ones = fbs.ones().collect::>(); let expected = { let mut tmp = items.clone(); tmp.extend(new); tmp.sort(); tmp.dedup(); tmp }; assert!(ones == expected); } #[test] fn from_iterator() { let items: Vec = vec![0, 2, 4, 6, 8]; let fb = items.iter().cloned().collect::(); for i in items { assert!(fb.contains(i)); } for i in vec![1, 3, 5, 7] { assert!(!fb.contains(i)); } assert_eq!(fb.len(), 9); } #[test] fn from_iterator_ones() { let len = 257; let mut fb = FixedBitSet::with_capacity(len); for i in (0..len).filter(|i| i % 7 == 0) { fb.put(i); } fb.put(len - 1); let dup = fb.ones().collect::(); assert_eq!(fb.len(), dup.len()); assert_eq!(fb.ones().collect::>(), dup.ones().collect::>()); }