//! An unbounded set of streams use core::fmt::{self, Debug}; use core::iter::FromIterator; use core::pin::Pin; use futures_core::ready; use futures_core::stream::{FusedStream, Stream}; use futures_core::task::{Context, Poll}; use super::assert_stream; use crate::stream::{futures_unordered, FuturesUnordered, StreamExt, StreamFuture}; /// An unbounded set of streams /// /// This "combinator" provides the ability to maintain a set of streams /// and drive them all to completion. /// /// Streams are pushed into this set and their realized values are /// yielded as they become ready. Streams will only be polled when they /// generate notifications. This allows to coordinate a large number of streams. /// /// Note that you can create a ready-made `SelectAll` via the /// `select_all` function in the `stream` module, or you can start with an /// empty set with the `SelectAll::new` constructor. #[must_use = "streams do nothing unless polled"] pub struct SelectAll { inner: FuturesUnordered>, } impl Debug for SelectAll { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "SelectAll {{ ... }}") } } impl SelectAll { /// Constructs a new, empty `SelectAll` /// /// The returned `SelectAll` does not contain any streams and, in this /// state, `SelectAll::poll` will return `Poll::Ready(None)`. pub fn new() -> Self { Self { inner: FuturesUnordered::new() } } /// Returns the number of streams contained in the set. /// /// This represents the total number of in-flight streams. pub fn len(&self) -> usize { self.inner.len() } /// Returns `true` if the set contains no streams pub fn is_empty(&self) -> bool { self.inner.is_empty() } /// Push a stream into the set. /// /// This function submits the given stream to the set for managing. This /// function will not call `poll` on the submitted stream. The caller must /// ensure that `SelectAll::poll` is called in order to receive task /// notifications. pub fn push(&mut self, stream: St) { self.inner.push(stream.into_future()); } /// Returns an iterator that allows inspecting each stream in the set. pub fn iter(&self) -> Iter<'_, St> { Iter(self.inner.iter()) } /// Returns an iterator that allows modifying each stream in the set. pub fn iter_mut(&mut self) -> IterMut<'_, St> { IterMut(self.inner.iter_mut()) } /// Clears the set, removing all streams. pub fn clear(&mut self) { self.inner.clear() } } impl Default for SelectAll { fn default() -> Self { Self::new() } } impl Stream for SelectAll { type Item = St::Item; fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll> { loop { match ready!(self.inner.poll_next_unpin(cx)) { Some((Some(item), remaining)) => { self.push(remaining); return Poll::Ready(Some(item)); } Some((None, _)) => { // `FuturesUnordered` thinks it isn't terminated // because it yielded a Some. // We do not return, but poll `FuturesUnordered` // in the next loop iteration. } None => return Poll::Ready(None), } } } } impl FusedStream for SelectAll { fn is_terminated(&self) -> bool { self.inner.is_terminated() } } /// Convert a list of streams into a `Stream` of results from the streams. /// /// This essentially takes a list of streams (e.g. a vector, an iterator, etc.) /// and bundles them together into a single stream. /// The stream will yield items as they become available on the underlying /// streams internally, in the order they become available. /// /// Note that the returned set can also be used to dynamically push more /// streams into the set as they become available. /// /// This function is only available when the `std` or `alloc` feature of this /// library is activated, and it is activated by default. pub fn select_all(streams: I) -> SelectAll where I: IntoIterator, I::Item: Stream + Unpin, { let mut set = SelectAll::new(); for stream in streams { set.push(stream); } assert_stream::<::Item, _>(set) } impl FromIterator for SelectAll { fn from_iter>(iter: T) -> Self { select_all(iter) } } impl Extend for SelectAll { fn extend>(&mut self, iter: T) { for st in iter { self.push(st) } } } impl IntoIterator for SelectAll { type Item = St; type IntoIter = IntoIter; fn into_iter(self) -> Self::IntoIter { IntoIter(self.inner.into_iter()) } } impl<'a, St: Stream + Unpin> IntoIterator for &'a SelectAll { type Item = &'a St; type IntoIter = Iter<'a, St>; fn into_iter(self) -> Self::IntoIter { self.iter() } } impl<'a, St: Stream + Unpin> IntoIterator for &'a mut SelectAll { type Item = &'a mut St; type IntoIter = IterMut<'a, St>; fn into_iter(self) -> Self::IntoIter { self.iter_mut() } } /// Immutable iterator over all streams in the unordered set. #[derive(Debug)] pub struct Iter<'a, St: Unpin>(futures_unordered::Iter<'a, StreamFuture>); /// Mutable iterator over all streams in the unordered set. #[derive(Debug)] pub struct IterMut<'a, St: Unpin>(futures_unordered::IterMut<'a, StreamFuture>); /// Owned iterator over all streams in the unordered set. #[derive(Debug)] pub struct IntoIter(futures_unordered::IntoIter>); impl<'a, St: Stream + Unpin> Iterator for Iter<'a, St> { type Item = &'a St; fn next(&mut self) -> Option { let st = self.0.next()?; let next = st.get_ref(); // This should always be true because FuturesUnordered removes completed futures. debug_assert!(next.is_some()); next } fn size_hint(&self) -> (usize, Option) { self.0.size_hint() } } impl ExactSizeIterator for Iter<'_, St> {} impl<'a, St: Stream + Unpin> Iterator for IterMut<'a, St> { type Item = &'a mut St; fn next(&mut self) -> Option { let st = self.0.next()?; let next = st.get_mut(); // This should always be true because FuturesUnordered removes completed futures. debug_assert!(next.is_some()); next } fn size_hint(&self) -> (usize, Option) { self.0.size_hint() } } impl ExactSizeIterator for IterMut<'_, St> {} impl Iterator for IntoIter { type Item = St; fn next(&mut self) -> Option { let st = self.0.next()?; let next = st.into_inner(); // This should always be true because FuturesUnordered removes completed futures. debug_assert!(next.is_some()); next } fn size_hint(&self) -> (usize, Option) { self.0.size_hint() } } impl ExactSizeIterator for IntoIter {}