use crate::common::{Format, SectionId}; use crate::constants; use crate::endianity::Endianity; use crate::leb128; use crate::write::{Address, Error, Result}; /// A trait for writing the data to a DWARF section. /// /// All write operations append to the section unless otherwise specified. #[allow(clippy::len_without_is_empty)] pub trait Writer { /// The endianity of bytes that are written. type Endian: Endianity; /// Return the endianity of bytes that are written. fn endian(&self) -> Self::Endian; /// Return the current section length. /// /// This may be used as an offset for future `write_at` calls. fn len(&self) -> usize; /// Write a slice. fn write(&mut self, bytes: &[u8]) -> Result<()>; /// Write a slice at a given offset. /// /// The write must not extend past the current section length. fn write_at(&mut self, offset: usize, bytes: &[u8]) -> Result<()>; /// Write an address. /// /// If the writer supports relocations, then it must provide its own implementation /// of this method. // TODO: use write_reference instead? fn write_address(&mut self, address: Address, size: u8) -> Result<()> { match address { Address::Constant(val) => self.write_udata(val, size), Address::Symbol { .. } => Err(Error::InvalidAddress), } } /// Write an address with a `.eh_frame` pointer encoding. /// /// The given size is only used for `DW_EH_PE_absptr` formats. /// /// If the writer supports relocations, then it must provide its own implementation /// of this method. fn write_eh_pointer( &mut self, address: Address, eh_pe: constants::DwEhPe, size: u8, ) -> Result<()> { match address { Address::Constant(val) => { // Indirect doesn't matter here. let val = match eh_pe.application() { constants::DW_EH_PE_absptr => val, constants::DW_EH_PE_pcrel => { // TODO: better handling of sign let offset = self.len() as u64; val.wrapping_sub(offset) } _ => { return Err(Error::UnsupportedPointerEncoding(eh_pe)); } }; self.write_eh_pointer_data(val, eh_pe.format(), size) } Address::Symbol { .. } => Err(Error::InvalidAddress), } } /// Write a value with a `.eh_frame` pointer format. /// /// The given size is only used for `DW_EH_PE_absptr` formats. /// /// This must not be used directly for values that may require relocation. fn write_eh_pointer_data( &mut self, val: u64, format: constants::DwEhPe, size: u8, ) -> Result<()> { match format { constants::DW_EH_PE_absptr => self.write_udata(val, size), constants::DW_EH_PE_uleb128 => self.write_uleb128(val), constants::DW_EH_PE_udata2 => self.write_udata(val, 2), constants::DW_EH_PE_udata4 => self.write_udata(val, 4), constants::DW_EH_PE_udata8 => self.write_udata(val, 8), constants::DW_EH_PE_sleb128 => self.write_sleb128(val as i64), constants::DW_EH_PE_sdata2 => self.write_sdata(val as i64, 2), constants::DW_EH_PE_sdata4 => self.write_sdata(val as i64, 4), constants::DW_EH_PE_sdata8 => self.write_sdata(val as i64, 8), _ => Err(Error::UnsupportedPointerEncoding(format)), } } /// Write an offset that is relative to the start of the given section. /// /// If the writer supports relocations, then it must provide its own implementation /// of this method. fn write_offset(&mut self, val: usize, _section: SectionId, size: u8) -> Result<()> { self.write_udata(val as u64, size) } /// Write an offset that is relative to the start of the given section. /// /// If the writer supports relocations, then it must provide its own implementation /// of this method. fn write_offset_at( &mut self, offset: usize, val: usize, _section: SectionId, size: u8, ) -> Result<()> { self.write_udata_at(offset, val as u64, size) } /// Write a reference to a symbol. /// /// If the writer supports symbols, then it must provide its own implementation /// of this method. fn write_reference(&mut self, _symbol: usize, _size: u8) -> Result<()> { Err(Error::InvalidReference) } /// Write a u8. fn write_u8(&mut self, val: u8) -> Result<()> { let bytes = [val]; self.write(&bytes) } /// Write a u16. fn write_u16(&mut self, val: u16) -> Result<()> { let mut bytes = [0; 2]; self.endian().write_u16(&mut bytes, val); self.write(&bytes) } /// Write a u32. fn write_u32(&mut self, val: u32) -> Result<()> { let mut bytes = [0; 4]; self.endian().write_u32(&mut bytes, val); self.write(&bytes) } /// Write a u64. fn write_u64(&mut self, val: u64) -> Result<()> { let mut bytes = [0; 8]; self.endian().write_u64(&mut bytes, val); self.write(&bytes) } /// Write a u8 at the given offset. fn write_u8_at(&mut self, offset: usize, val: u8) -> Result<()> { let bytes = [val]; self.write_at(offset, &bytes) } /// Write a u16 at the given offset. fn write_u16_at(&mut self, offset: usize, val: u16) -> Result<()> { let mut bytes = [0; 2]; self.endian().write_u16(&mut bytes, val); self.write_at(offset, &bytes) } /// Write a u32 at the given offset. fn write_u32_at(&mut self, offset: usize, val: u32) -> Result<()> { let mut bytes = [0; 4]; self.endian().write_u32(&mut bytes, val); self.write_at(offset, &bytes) } /// Write a u64 at the given offset. fn write_u64_at(&mut self, offset: usize, val: u64) -> Result<()> { let mut bytes = [0; 8]; self.endian().write_u64(&mut bytes, val); self.write_at(offset, &bytes) } /// Write unsigned data of the given size. /// /// Returns an error if the value is too large for the size. /// This must not be used directly for values that may require relocation. fn write_udata(&mut self, val: u64, size: u8) -> Result<()> { match size { 1 => { let write_val = val as u8; if val != u64::from(write_val) { return Err(Error::ValueTooLarge); } self.write_u8(write_val) } 2 => { let write_val = val as u16; if val != u64::from(write_val) { return Err(Error::ValueTooLarge); } self.write_u16(write_val) } 4 => { let write_val = val as u32; if val != u64::from(write_val) { return Err(Error::ValueTooLarge); } self.write_u32(write_val) } 8 => self.write_u64(val), otherwise => Err(Error::UnsupportedWordSize(otherwise)), } } /// Write signed data of the given size. /// /// Returns an error if the value is too large for the size. /// This must not be used directly for values that may require relocation. fn write_sdata(&mut self, val: i64, size: u8) -> Result<()> { match size { 1 => { let write_val = val as i8; if val != i64::from(write_val) { return Err(Error::ValueTooLarge); } self.write_u8(write_val as u8) } 2 => { let write_val = val as i16; if val != i64::from(write_val) { return Err(Error::ValueTooLarge); } self.write_u16(write_val as u16) } 4 => { let write_val = val as i32; if val != i64::from(write_val) { return Err(Error::ValueTooLarge); } self.write_u32(write_val as u32) } 8 => self.write_u64(val as u64), otherwise => Err(Error::UnsupportedWordSize(otherwise)), } } /// Write a word of the given size at the given offset. /// /// Returns an error if the value is too large for the size. /// This must not be used directly for values that may require relocation. fn write_udata_at(&mut self, offset: usize, val: u64, size: u8) -> Result<()> { match size { 1 => { let write_val = val as u8; if val != u64::from(write_val) { return Err(Error::ValueTooLarge); } self.write_u8_at(offset, write_val) } 2 => { let write_val = val as u16; if val != u64::from(write_val) { return Err(Error::ValueTooLarge); } self.write_u16_at(offset, write_val) } 4 => { let write_val = val as u32; if val != u64::from(write_val) { return Err(Error::ValueTooLarge); } self.write_u32_at(offset, write_val) } 8 => self.write_u64_at(offset, val), otherwise => Err(Error::UnsupportedWordSize(otherwise)), } } /// Write an unsigned LEB128 encoded integer. fn write_uleb128(&mut self, val: u64) -> Result<()> { let mut bytes = [0u8; 10]; // bytes is long enough so this will never fail. let len = leb128::write::unsigned(&mut { &mut bytes[..] }, val).unwrap(); self.write(&bytes[..len]) } /// Read an unsigned LEB128 encoded integer. fn write_sleb128(&mut self, val: i64) -> Result<()> { let mut bytes = [0u8; 10]; // bytes is long enough so this will never fail. let len = leb128::write::signed(&mut { &mut bytes[..] }, val).unwrap(); self.write(&bytes[..len]) } /// Write an initial length according to the given DWARF format. /// /// This will only write a length of zero, since the length isn't /// known yet, and a subsequent call to `write_initial_length_at` /// will write the actual length. fn write_initial_length(&mut self, format: Format) -> Result { if format == Format::Dwarf64 { self.write_u32(0xffff_ffff)?; } let offset = InitialLengthOffset(self.len()); self.write_udata(0, format.word_size())?; Ok(offset) } /// Write an initial length at the given offset according to the given DWARF format. /// /// `write_initial_length` must have previously returned the offset. fn write_initial_length_at( &mut self, offset: InitialLengthOffset, length: u64, format: Format, ) -> Result<()> { self.write_udata_at(offset.0, length, format.word_size()) } } /// The offset at which an initial length should be written. #[derive(Debug, Clone, Copy)] pub struct InitialLengthOffset(usize); #[cfg(test)] mod tests { use super::*; use crate::write; use crate::{BigEndian, LittleEndian}; use std::{i64, u64}; #[test] fn test_writer() { let mut w = write::EndianVec::new(LittleEndian); w.write_address(Address::Constant(0x1122_3344), 4).unwrap(); assert_eq!(w.slice(), &[0x44, 0x33, 0x22, 0x11]); assert_eq!( w.write_address( Address::Symbol { symbol: 0, addend: 0 }, 4 ), Err(Error::InvalidAddress) ); let mut w = write::EndianVec::new(LittleEndian); w.write_offset(0x1122_3344, SectionId::DebugInfo, 4) .unwrap(); assert_eq!(w.slice(), &[0x44, 0x33, 0x22, 0x11]); w.write_offset_at(1, 0x5566, SectionId::DebugInfo, 2) .unwrap(); assert_eq!(w.slice(), &[0x44, 0x66, 0x55, 0x11]); let mut w = write::EndianVec::new(LittleEndian); w.write_u8(0x11).unwrap(); w.write_u16(0x2233).unwrap(); w.write_u32(0x4455_6677).unwrap(); w.write_u64(0x8081_8283_8485_8687).unwrap(); #[rustfmt::skip] assert_eq!(w.slice(), &[ 0x11, 0x33, 0x22, 0x77, 0x66, 0x55, 0x44, 0x87, 0x86, 0x85, 0x84, 0x83, 0x82, 0x81, 0x80, ]); w.write_u8_at(14, 0x11).unwrap(); w.write_u16_at(12, 0x2233).unwrap(); w.write_u32_at(8, 0x4455_6677).unwrap(); w.write_u64_at(0, 0x8081_8283_8485_8687).unwrap(); #[rustfmt::skip] assert_eq!(w.slice(), &[ 0x87, 0x86, 0x85, 0x84, 0x83, 0x82, 0x81, 0x80, 0x77, 0x66, 0x55, 0x44, 0x33, 0x22, 0x11, ]); let mut w = write::EndianVec::new(BigEndian); w.write_u8(0x11).unwrap(); w.write_u16(0x2233).unwrap(); w.write_u32(0x4455_6677).unwrap(); w.write_u64(0x8081_8283_8485_8687).unwrap(); #[rustfmt::skip] assert_eq!(w.slice(), &[ 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, ]); w.write_u8_at(14, 0x11).unwrap(); w.write_u16_at(12, 0x2233).unwrap(); w.write_u32_at(8, 0x4455_6677).unwrap(); w.write_u64_at(0, 0x8081_8283_8485_8687).unwrap(); #[rustfmt::skip] assert_eq!(w.slice(), &[ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x44, 0x55, 0x66, 0x77, 0x22, 0x33, 0x11, ]); let mut w = write::EndianVec::new(LittleEndian); w.write_udata(0x11, 1).unwrap(); w.write_udata(0x2233, 2).unwrap(); w.write_udata(0x4455_6677, 4).unwrap(); w.write_udata(0x8081_8283_8485_8687, 8).unwrap(); #[rustfmt::skip] assert_eq!(w.slice(), &[ 0x11, 0x33, 0x22, 0x77, 0x66, 0x55, 0x44, 0x87, 0x86, 0x85, 0x84, 0x83, 0x82, 0x81, 0x80, ]); assert_eq!(w.write_udata(0x100, 1), Err(Error::ValueTooLarge)); assert_eq!(w.write_udata(0x1_0000, 2), Err(Error::ValueTooLarge)); assert_eq!(w.write_udata(0x1_0000_0000, 4), Err(Error::ValueTooLarge)); assert_eq!(w.write_udata(0x00, 3), Err(Error::UnsupportedWordSize(3))); w.write_udata_at(14, 0x11, 1).unwrap(); w.write_udata_at(12, 0x2233, 2).unwrap(); w.write_udata_at(8, 0x4455_6677, 4).unwrap(); w.write_udata_at(0, 0x8081_8283_8485_8687, 8).unwrap(); #[rustfmt::skip] assert_eq!(w.slice(), &[ 0x87, 0x86, 0x85, 0x84, 0x83, 0x82, 0x81, 0x80, 0x77, 0x66, 0x55, 0x44, 0x33, 0x22, 0x11, ]); assert_eq!(w.write_udata_at(0, 0x100, 1), Err(Error::ValueTooLarge)); assert_eq!(w.write_udata_at(0, 0x1_0000, 2), Err(Error::ValueTooLarge)); assert_eq!( w.write_udata_at(0, 0x1_0000_0000, 4), Err(Error::ValueTooLarge) ); assert_eq!( w.write_udata_at(0, 0x00, 3), Err(Error::UnsupportedWordSize(3)) ); let mut w = write::EndianVec::new(LittleEndian); w.write_uleb128(0).unwrap(); assert_eq!(w.slice(), &[0]); let mut w = write::EndianVec::new(LittleEndian); w.write_uleb128(u64::MAX).unwrap(); assert_eq!( w.slice(), &[0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 1] ); let mut w = write::EndianVec::new(LittleEndian); w.write_sleb128(0).unwrap(); assert_eq!(w.slice(), &[0]); let mut w = write::EndianVec::new(LittleEndian); w.write_sleb128(i64::MAX).unwrap(); assert_eq!( w.slice(), &[0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0] ); let mut w = write::EndianVec::new(LittleEndian); w.write_sleb128(i64::MIN).unwrap(); assert_eq!( w.slice(), &[0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x7f] ); let mut w = write::EndianVec::new(LittleEndian); let offset = w.write_initial_length(Format::Dwarf32).unwrap(); assert_eq!(w.slice(), &[0, 0, 0, 0]); w.write_initial_length_at(offset, 0x1122_3344, Format::Dwarf32) .unwrap(); assert_eq!(w.slice(), &[0x44, 0x33, 0x22, 0x11]); assert_eq!( w.write_initial_length_at(offset, 0x1_0000_0000, Format::Dwarf32), Err(Error::ValueTooLarge) ); let mut w = write::EndianVec::new(LittleEndian); let offset = w.write_initial_length(Format::Dwarf64).unwrap(); assert_eq!(w.slice(), &[0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0]); w.write_initial_length_at(offset, 0x1122_3344_5566_7788, Format::Dwarf64) .unwrap(); assert_eq!( w.slice(), &[0xff, 0xff, 0xff, 0xff, 0x88, 0x77, 0x66, 0x55, 0x44, 0x33, 0x22, 0x11] ); } }