use crate::alloc::alloc::{handle_alloc_error, Layout}; use crate::scopeguard::{guard, ScopeGuard}; use crate::TryReserveError; use core::iter::FusedIterator; use core::marker::PhantomData; use core::mem; use core::mem::ManuallyDrop; use core::mem::MaybeUninit; use core::ptr::NonNull; use core::{hint, ptr}; cfg_if! { // Use the SSE2 implementation if possible: it allows us to scan 16 buckets // at once instead of 8. We don't bother with AVX since it would require // runtime dispatch and wouldn't gain us much anyways: the probability of // finding a match drops off drastically after the first few buckets. // // I attempted an implementation on ARM using NEON instructions, but it // turns out that most NEON instructions have multi-cycle latency, which in // the end outweighs any gains over the generic implementation. if #[cfg(all( target_feature = "sse2", any(target_arch = "x86", target_arch = "x86_64"), not(miri) ))] { mod sse2; use sse2 as imp; } else { #[path = "generic.rs"] mod generic; use generic as imp; } } mod alloc; pub(crate) use self::alloc::{do_alloc, Allocator, Global}; mod bitmask; use self::bitmask::{BitMask, BitMaskIter}; use self::imp::Group; // Branch prediction hint. This is currently only available on nightly but it // consistently improves performance by 10-15%. #[cfg(feature = "nightly")] use core::intrinsics::{likely, unlikely}; // On stable we can use #[cold] to get a equivalent effect: this attributes // suggests that the function is unlikely to be called #[cfg(not(feature = "nightly"))] #[inline] #[cold] fn cold() {} #[cfg(not(feature = "nightly"))] #[inline] fn likely(b: bool) -> bool { if !b { cold(); } b } #[cfg(not(feature = "nightly"))] #[inline] fn unlikely(b: bool) -> bool { if b { cold(); } b } #[inline] unsafe fn offset_from(to: *const T, from: *const T) -> usize { to.offset_from(from) as usize } /// Whether memory allocation errors should return an error or abort. #[derive(Copy, Clone)] enum Fallibility { Fallible, Infallible, } impl Fallibility { /// Error to return on capacity overflow. #[cfg_attr(feature = "inline-more", inline)] fn capacity_overflow(self) -> TryReserveError { match self { Fallibility::Fallible => TryReserveError::CapacityOverflow, Fallibility::Infallible => panic!("Hash table capacity overflow"), } } /// Error to return on allocation error. #[cfg_attr(feature = "inline-more", inline)] fn alloc_err(self, layout: Layout) -> TryReserveError { match self { Fallibility::Fallible => TryReserveError::AllocError { layout }, Fallibility::Infallible => handle_alloc_error(layout), } } } /// Control byte value for an empty bucket. const EMPTY: u8 = 0b1111_1111; /// Control byte value for a deleted bucket. const DELETED: u8 = 0b1000_0000; /// Checks whether a control byte represents a full bucket (top bit is clear). #[inline] fn is_full(ctrl: u8) -> bool { ctrl & 0x80 == 0 } /// Checks whether a control byte represents a special value (top bit is set). #[inline] fn is_special(ctrl: u8) -> bool { ctrl & 0x80 != 0 } /// Checks whether a special control value is EMPTY (just check 1 bit). #[inline] fn special_is_empty(ctrl: u8) -> bool { debug_assert!(is_special(ctrl)); ctrl & 0x01 != 0 } /// Primary hash function, used to select the initial bucket to probe from. #[inline] #[allow(clippy::cast_possible_truncation)] fn h1(hash: u64) -> usize { // On 32-bit platforms we simply ignore the higher hash bits. hash as usize } // Constant for h2 function that grabing the top 7 bits of the hash. const MIN_HASH_LEN: usize = if mem::size_of::() < mem::size_of::() { mem::size_of::() } else { mem::size_of::() }; /// Secondary hash function, saved in the low 7 bits of the control byte. #[inline] #[allow(clippy::cast_possible_truncation)] fn h2(hash: u64) -> u8 { // Grab the top 7 bits of the hash. While the hash is normally a full 64-bit // value, some hash functions (such as FxHash) produce a usize result // instead, which means that the top 32 bits are 0 on 32-bit platforms. // So we use MIN_HASH_LEN constant to handle this. let top7 = hash >> (MIN_HASH_LEN * 8 - 7); (top7 & 0x7f) as u8 // truncation } /// Probe sequence based on triangular numbers, which is guaranteed (since our /// table size is a power of two) to visit every group of elements exactly once. /// /// A triangular probe has us jump by 1 more group every time. So first we /// jump by 1 group (meaning we just continue our linear scan), then 2 groups /// (skipping over 1 group), then 3 groups (skipping over 2 groups), and so on. /// /// Proof that the probe will visit every group in the table: /// struct ProbeSeq { pos: usize, stride: usize, } impl ProbeSeq { #[inline] fn move_next(&mut self, bucket_mask: usize) { // We should have found an empty bucket by now and ended the probe. debug_assert!( self.stride <= bucket_mask, "Went past end of probe sequence" ); self.stride += Group::WIDTH; self.pos += self.stride; self.pos &= bucket_mask; } } /// Returns the number of buckets needed to hold the given number of items, /// taking the maximum load factor into account. /// /// Returns `None` if an overflow occurs. // Workaround for emscripten bug emscripten-core/emscripten-fastcomp#258 #[cfg_attr(target_os = "emscripten", inline(never))] #[cfg_attr(not(target_os = "emscripten"), inline)] fn capacity_to_buckets(cap: usize) -> Option { debug_assert_ne!(cap, 0); // For small tables we require at least 1 empty bucket so that lookups are // guaranteed to terminate if an element doesn't exist in the table. if cap < 8 { // We don't bother with a table size of 2 buckets since that can only // hold a single element. Instead we skip directly to a 4 bucket table // which can hold 3 elements. return Some(if cap < 4 { 4 } else { 8 }); } // Otherwise require 1/8 buckets to be empty (87.5% load) // // Be careful when modifying this, calculate_layout relies on the // overflow check here. let adjusted_cap = cap.checked_mul(8)? / 7; // Any overflows will have been caught by the checked_mul. Also, any // rounding errors from the division above will be cleaned up by // next_power_of_two (which can't overflow because of the previous division). Some(adjusted_cap.next_power_of_two()) } /// Returns the maximum effective capacity for the given bucket mask, taking /// the maximum load factor into account. #[inline] fn bucket_mask_to_capacity(bucket_mask: usize) -> usize { if bucket_mask < 8 { // For tables with 1/2/4/8 buckets, we always reserve one empty slot. // Keep in mind that the bucket mask is one less than the bucket count. bucket_mask } else { // For larger tables we reserve 12.5% of the slots as empty. ((bucket_mask + 1) / 8) * 7 } } /// Helper which allows the max calculation for ctrl_align to be statically computed for each T /// while keeping the rest of `calculate_layout_for` independent of `T` #[derive(Copy, Clone)] struct TableLayout { size: usize, ctrl_align: usize, } impl TableLayout { #[inline] const fn new() -> Self { let layout = Layout::new::(); Self { size: layout.size(), ctrl_align: if layout.align() > Group::WIDTH { layout.align() } else { Group::WIDTH }, } } #[inline] fn calculate_layout_for(self, buckets: usize) -> Option<(Layout, usize)> { debug_assert!(buckets.is_power_of_two()); let TableLayout { size, ctrl_align } = self; // Manual layout calculation since Layout methods are not yet stable. let ctrl_offset = size.checked_mul(buckets)?.checked_add(ctrl_align - 1)? & !(ctrl_align - 1); let len = ctrl_offset.checked_add(buckets + Group::WIDTH)?; // We need an additional check to ensure that the allocation doesn't // exceed `isize::MAX` (https://github.com/rust-lang/rust/pull/95295). if len > isize::MAX as usize - (ctrl_align - 1) { return None; } Some(( unsafe { Layout::from_size_align_unchecked(len, ctrl_align) }, ctrl_offset, )) } } /// A reference to a hash table bucket containing a `T`. /// /// This is usually just a pointer to the element itself. However if the element /// is a ZST, then we instead track the index of the element in the table so /// that `erase` works properly. pub struct Bucket { // Actually it is pointer to next element than element itself // this is needed to maintain pointer arithmetic invariants // keeping direct pointer to element introduces difficulty. // Using `NonNull` for variance and niche layout ptr: NonNull, } // This Send impl is needed for rayon support. This is safe since Bucket is // never exposed in a public API. unsafe impl Send for Bucket {} impl Clone for Bucket { #[inline] fn clone(&self) -> Self { Self { ptr: self.ptr } } } impl Bucket { const IS_ZERO_SIZED_TYPE: bool = mem::size_of::() == 0; #[inline] unsafe fn from_base_index(base: NonNull, index: usize) -> Self { let ptr = if Self::IS_ZERO_SIZED_TYPE { // won't overflow because index must be less than length (index + 1) as *mut T } else { base.as_ptr().sub(index) }; Self { ptr: NonNull::new_unchecked(ptr), } } #[inline] unsafe fn to_base_index(&self, base: NonNull) -> usize { if Self::IS_ZERO_SIZED_TYPE { self.ptr.as_ptr() as usize - 1 } else { offset_from(base.as_ptr(), self.ptr.as_ptr()) } } #[inline] pub fn as_ptr(&self) -> *mut T { if Self::IS_ZERO_SIZED_TYPE { // Just return an arbitrary ZST pointer which is properly aligned mem::align_of::() as *mut T } else { unsafe { self.ptr.as_ptr().sub(1) } } } #[inline] unsafe fn next_n(&self, offset: usize) -> Self { let ptr = if Self::IS_ZERO_SIZED_TYPE { (self.ptr.as_ptr() as usize + offset) as *mut T } else { self.ptr.as_ptr().sub(offset) }; Self { ptr: NonNull::new_unchecked(ptr), } } #[cfg_attr(feature = "inline-more", inline)] pub(crate) unsafe fn drop(&self) { self.as_ptr().drop_in_place(); } #[inline] pub(crate) unsafe fn read(&self) -> T { self.as_ptr().read() } #[inline] pub(crate) unsafe fn write(&self, val: T) { self.as_ptr().write(val); } #[inline] pub unsafe fn as_ref<'a>(&self) -> &'a T { &*self.as_ptr() } #[inline] pub unsafe fn as_mut<'a>(&self) -> &'a mut T { &mut *self.as_ptr() } #[cfg(feature = "raw")] #[inline] pub unsafe fn copy_from_nonoverlapping(&self, other: &Self) { self.as_ptr().copy_from_nonoverlapping(other.as_ptr(), 1); } } /// A raw hash table with an unsafe API. pub struct RawTable { table: RawTableInner, // Tell dropck that we own instances of T. marker: PhantomData, } /// Non-generic part of `RawTable` which allows functions to be instantiated only once regardless /// of how many different key-value types are used. struct RawTableInner { // Mask to get an index from a hash value. The value is one less than the // number of buckets in the table. bucket_mask: usize, // [Padding], T1, T2, ..., Tlast, C1, C2, ... // ^ points here ctrl: NonNull, // Number of elements that can be inserted before we need to grow the table growth_left: usize, // Number of elements in the table, only really used by len() items: usize, alloc: A, } impl RawTable { /// Creates a new empty hash table without allocating any memory. /// /// In effect this returns a table with exactly 1 bucket. However we can /// leave the data pointer dangling since that bucket is never written to /// due to our load factor forcing us to always have at least 1 free bucket. #[inline] pub const fn new() -> Self { Self { table: RawTableInner::new_in(Global), marker: PhantomData, } } /// Attempts to allocate a new hash table with at least enough capacity /// for inserting the given number of elements without reallocating. #[cfg(feature = "raw")] pub fn try_with_capacity(capacity: usize) -> Result { Self::try_with_capacity_in(capacity, Global) } /// Allocates a new hash table with at least enough capacity for inserting /// the given number of elements without reallocating. pub fn with_capacity(capacity: usize) -> Self { Self::with_capacity_in(capacity, Global) } } impl RawTable { const TABLE_LAYOUT: TableLayout = TableLayout::new::(); const DATA_NEEDS_DROP: bool = mem::needs_drop::(); /// Creates a new empty hash table without allocating any memory, using the /// given allocator. /// /// In effect this returns a table with exactly 1 bucket. However we can /// leave the data pointer dangling since that bucket is never written to /// due to our load factor forcing us to always have at least 1 free bucket. #[inline] pub const fn new_in(alloc: A) -> Self { Self { table: RawTableInner::new_in(alloc), marker: PhantomData, } } /// Allocates a new hash table with the given number of buckets. /// /// The control bytes are left uninitialized. #[cfg_attr(feature = "inline-more", inline)] unsafe fn new_uninitialized( alloc: A, buckets: usize, fallibility: Fallibility, ) -> Result { debug_assert!(buckets.is_power_of_two()); Ok(Self { table: RawTableInner::new_uninitialized( alloc, Self::TABLE_LAYOUT, buckets, fallibility, )?, marker: PhantomData, }) } /// Attempts to allocate a new hash table with at least enough capacity /// for inserting the given number of elements without reallocating. fn fallible_with_capacity( alloc: A, capacity: usize, fallibility: Fallibility, ) -> Result { Ok(Self { table: RawTableInner::fallible_with_capacity( alloc, Self::TABLE_LAYOUT, capacity, fallibility, )?, marker: PhantomData, }) } /// Attempts to allocate a new hash table using the given allocator, with at least enough /// capacity for inserting the given number of elements without reallocating. #[cfg(feature = "raw")] pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result { Self::fallible_with_capacity(alloc, capacity, Fallibility::Fallible) } /// Allocates a new hash table using the given allocator, with at least enough capacity for /// inserting the given number of elements without reallocating. pub fn with_capacity_in(capacity: usize, alloc: A) -> Self { // Avoid `Result::unwrap_or_else` because it bloats LLVM IR. match Self::fallible_with_capacity(alloc, capacity, Fallibility::Infallible) { Ok(capacity) => capacity, Err(_) => unsafe { hint::unreachable_unchecked() }, } } /// Returns a reference to the underlying allocator. #[inline] pub fn allocator(&self) -> &A { &self.table.alloc } /// Deallocates the table without dropping any entries. #[cfg_attr(feature = "inline-more", inline)] unsafe fn free_buckets(&mut self) { self.table.free_buckets(Self::TABLE_LAYOUT); } /// Returns pointer to one past last element of data table. #[inline] pub unsafe fn data_end(&self) -> NonNull { NonNull::new_unchecked(self.table.ctrl.as_ptr().cast()) } /// Returns pointer to start of data table. #[inline] #[cfg(feature = "nightly")] pub unsafe fn data_start(&self) -> *mut T { self.data_end().as_ptr().wrapping_sub(self.buckets()) } /// Return the information about memory allocated by the table. /// /// `RawTable` allocates single memory block to store both data and metadata. /// This function returns allocation size and alignment and the beginning of the area. /// These are the arguments which will be passed to `dealloc` when the table is dropped. /// /// This function might be useful for memory profiling. #[inline] #[cfg(feature = "raw")] pub fn allocation_info(&self) -> (NonNull, Layout) { self.table.allocation_info(Self::TABLE_LAYOUT) } /// Returns the index of a bucket from a `Bucket`. #[inline] pub unsafe fn bucket_index(&self, bucket: &Bucket) -> usize { bucket.to_base_index(self.data_end()) } /// Returns a pointer to an element in the table. #[inline] pub unsafe fn bucket(&self, index: usize) -> Bucket { debug_assert_ne!(self.table.bucket_mask, 0); debug_assert!(index < self.buckets()); Bucket::from_base_index(self.data_end(), index) } /// Erases an element from the table without dropping it. #[cfg_attr(feature = "inline-more", inline)] unsafe fn erase_no_drop(&mut self, item: &Bucket) { let index = self.bucket_index(item); self.table.erase(index); } /// Erases an element from the table, dropping it in place. #[cfg_attr(feature = "inline-more", inline)] #[allow(clippy::needless_pass_by_value)] pub unsafe fn erase(&mut self, item: Bucket) { // Erase the element from the table first since drop might panic. self.erase_no_drop(&item); item.drop(); } /// Finds and erases an element from the table, dropping it in place. /// Returns true if an element was found. #[cfg(feature = "raw")] #[cfg_attr(feature = "inline-more", inline)] pub fn erase_entry(&mut self, hash: u64, eq: impl FnMut(&T) -> bool) -> bool { // Avoid `Option::map` because it bloats LLVM IR. if let Some(bucket) = self.find(hash, eq) { unsafe { self.erase(bucket); } true } else { false } } /// Removes an element from the table, returning it. #[cfg_attr(feature = "inline-more", inline)] #[allow(clippy::needless_pass_by_value)] pub unsafe fn remove(&mut self, item: Bucket) -> T { self.erase_no_drop(&item); item.read() } /// Finds and removes an element from the table, returning it. #[cfg_attr(feature = "inline-more", inline)] pub fn remove_entry(&mut self, hash: u64, eq: impl FnMut(&T) -> bool) -> Option { // Avoid `Option::map` because it bloats LLVM IR. match self.find(hash, eq) { Some(bucket) => Some(unsafe { self.remove(bucket) }), None => None, } } /// Marks all table buckets as empty without dropping their contents. #[cfg_attr(feature = "inline-more", inline)] pub fn clear_no_drop(&mut self) { self.table.clear_no_drop(); } /// Removes all elements from the table without freeing the backing memory. #[cfg_attr(feature = "inline-more", inline)] pub fn clear(&mut self) { // Ensure that the table is reset even if one of the drops panic let mut self_ = guard(self, |self_| self_.clear_no_drop()); unsafe { self_.drop_elements(); } } unsafe fn drop_elements(&mut self) { if Self::DATA_NEEDS_DROP && !self.is_empty() { for item in self.iter() { item.drop(); } } } /// Shrinks the table to fit `max(self.len(), min_size)` elements. #[cfg_attr(feature = "inline-more", inline)] pub fn shrink_to(&mut self, min_size: usize, hasher: impl Fn(&T) -> u64) { // Calculate the minimal number of elements that we need to reserve // space for. let min_size = usize::max(self.table.items, min_size); if min_size == 0 { *self = Self::new_in(self.table.alloc.clone()); return; } // Calculate the number of buckets that we need for this number of // elements. If the calculation overflows then the requested bucket // count must be larger than what we have right and nothing needs to be // done. let min_buckets = match capacity_to_buckets(min_size) { Some(buckets) => buckets, None => return, }; // If we have more buckets than we need, shrink the table. if min_buckets < self.buckets() { // Fast path if the table is empty if self.table.items == 0 { *self = Self::with_capacity_in(min_size, self.table.alloc.clone()); } else { // Avoid `Result::unwrap_or_else` because it bloats LLVM IR. if self .resize(min_size, hasher, Fallibility::Infallible) .is_err() { unsafe { hint::unreachable_unchecked() } } } } } /// Ensures that at least `additional` items can be inserted into the table /// without reallocation. #[cfg_attr(feature = "inline-more", inline)] pub fn reserve(&mut self, additional: usize, hasher: impl Fn(&T) -> u64) { if additional > self.table.growth_left { // Avoid `Result::unwrap_or_else` because it bloats LLVM IR. if self .reserve_rehash(additional, hasher, Fallibility::Infallible) .is_err() { unsafe { hint::unreachable_unchecked() } } } } /// Tries to ensure that at least `additional` items can be inserted into /// the table without reallocation. #[cfg_attr(feature = "inline-more", inline)] pub fn try_reserve( &mut self, additional: usize, hasher: impl Fn(&T) -> u64, ) -> Result<(), TryReserveError> { if additional > self.table.growth_left { self.reserve_rehash(additional, hasher, Fallibility::Fallible) } else { Ok(()) } } /// Out-of-line slow path for `reserve` and `try_reserve`. #[cold] #[inline(never)] fn reserve_rehash( &mut self, additional: usize, hasher: impl Fn(&T) -> u64, fallibility: Fallibility, ) -> Result<(), TryReserveError> { unsafe { self.table.reserve_rehash_inner( additional, &|table, index| hasher(table.bucket::(index).as_ref()), fallibility, Self::TABLE_LAYOUT, if Self::DATA_NEEDS_DROP { Some(mem::transmute(ptr::drop_in_place:: as unsafe fn(*mut T))) } else { None }, ) } } /// Allocates a new table of a different size and moves the contents of the /// current table into it. fn resize( &mut self, capacity: usize, hasher: impl Fn(&T) -> u64, fallibility: Fallibility, ) -> Result<(), TryReserveError> { unsafe { self.table.resize_inner( capacity, &|table, index| hasher(table.bucket::(index).as_ref()), fallibility, Self::TABLE_LAYOUT, ) } } /// Inserts a new element into the table, and returns its raw bucket. /// /// This does not check if the given element already exists in the table. #[cfg_attr(feature = "inline-more", inline)] pub fn insert(&mut self, hash: u64, value: T, hasher: impl Fn(&T) -> u64) -> Bucket { unsafe { let mut index = self.table.find_insert_slot(hash); // We can avoid growing the table once we have reached our load // factor if we are replacing a tombstone. This works since the // number of EMPTY slots does not change in this case. let old_ctrl = *self.table.ctrl(index); if unlikely(self.table.growth_left == 0 && special_is_empty(old_ctrl)) { self.reserve(1, hasher); index = self.table.find_insert_slot(hash); } self.table.record_item_insert_at(index, old_ctrl, hash); let bucket = self.bucket(index); bucket.write(value); bucket } } /// Attempts to insert a new element without growing the table and return its raw bucket. /// /// Returns an `Err` containing the given element if inserting it would require growing the /// table. /// /// This does not check if the given element already exists in the table. #[cfg(feature = "raw")] #[cfg_attr(feature = "inline-more", inline)] pub fn try_insert_no_grow(&mut self, hash: u64, value: T) -> Result, T> { unsafe { match self.table.prepare_insert_no_grow(hash) { Ok(index) => { let bucket = self.bucket(index); bucket.write(value); Ok(bucket) } Err(()) => Err(value), } } } /// Inserts a new element into the table, and returns a mutable reference to it. /// /// This does not check if the given element already exists in the table. #[cfg_attr(feature = "inline-more", inline)] pub fn insert_entry(&mut self, hash: u64, value: T, hasher: impl Fn(&T) -> u64) -> &mut T { unsafe { self.insert(hash, value, hasher).as_mut() } } /// Inserts a new element into the table, without growing the table. /// /// There must be enough space in the table to insert the new element. /// /// This does not check if the given element already exists in the table. #[cfg_attr(feature = "inline-more", inline)] #[cfg(any(feature = "raw", feature = "rustc-internal-api"))] pub unsafe fn insert_no_grow(&mut self, hash: u64, value: T) -> Bucket { let (index, old_ctrl) = self.table.prepare_insert_slot(hash); let bucket = self.table.bucket(index); // If we are replacing a DELETED entry then we don't need to update // the load counter. self.table.growth_left -= special_is_empty(old_ctrl) as usize; bucket.write(value); self.table.items += 1; bucket } /// Temporary removes a bucket, applying the given function to the removed /// element and optionally put back the returned value in the same bucket. /// /// Returns `true` if the bucket still contains an element /// /// This does not check if the given bucket is actually occupied. #[cfg_attr(feature = "inline-more", inline)] pub unsafe fn replace_bucket_with(&mut self, bucket: Bucket, f: F) -> bool where F: FnOnce(T) -> Option, { let index = self.bucket_index(&bucket); let old_ctrl = *self.table.ctrl(index); debug_assert!(self.is_bucket_full(index)); let old_growth_left = self.table.growth_left; let item = self.remove(bucket); if let Some(new_item) = f(item) { self.table.growth_left = old_growth_left; self.table.set_ctrl(index, old_ctrl); self.table.items += 1; self.bucket(index).write(new_item); true } else { false } } /// Searches for an element in the table. #[inline] pub fn find(&self, hash: u64, mut eq: impl FnMut(&T) -> bool) -> Option> { let result = self.table.find_inner(hash, &mut |index| unsafe { eq(self.bucket(index).as_ref()) }); // Avoid `Option::map` because it bloats LLVM IR. match result { Some(index) => Some(unsafe { self.bucket(index) }), None => None, } } /// Gets a reference to an element in the table. #[inline] pub fn get(&self, hash: u64, eq: impl FnMut(&T) -> bool) -> Option<&T> { // Avoid `Option::map` because it bloats LLVM IR. match self.find(hash, eq) { Some(bucket) => Some(unsafe { bucket.as_ref() }), None => None, } } /// Gets a mutable reference to an element in the table. #[inline] pub fn get_mut(&mut self, hash: u64, eq: impl FnMut(&T) -> bool) -> Option<&mut T> { // Avoid `Option::map` because it bloats LLVM IR. match self.find(hash, eq) { Some(bucket) => Some(unsafe { bucket.as_mut() }), None => None, } } /// Attempts to get mutable references to `N` entries in the table at once. /// /// Returns an array of length `N` with the results of each query. /// /// At most one mutable reference will be returned to any entry. `None` will be returned if any /// of the hashes are duplicates. `None` will be returned if the hash is not found. /// /// The `eq` argument should be a closure such that `eq(i, k)` returns true if `k` is equal to /// the `i`th key to be looked up. pub fn get_many_mut( &mut self, hashes: [u64; N], eq: impl FnMut(usize, &T) -> bool, ) -> Option<[&'_ mut T; N]> { unsafe { let ptrs = self.get_many_mut_pointers(hashes, eq)?; for (i, &cur) in ptrs.iter().enumerate() { if ptrs[..i].iter().any(|&prev| ptr::eq::(prev, cur)) { return None; } } // All bucket are distinct from all previous buckets so we're clear to return the result // of the lookup. // TODO use `MaybeUninit::array_assume_init` here instead once that's stable. Some(mem::transmute_copy(&ptrs)) } } pub unsafe fn get_many_unchecked_mut( &mut self, hashes: [u64; N], eq: impl FnMut(usize, &T) -> bool, ) -> Option<[&'_ mut T; N]> { let ptrs = self.get_many_mut_pointers(hashes, eq)?; Some(mem::transmute_copy(&ptrs)) } unsafe fn get_many_mut_pointers( &mut self, hashes: [u64; N], mut eq: impl FnMut(usize, &T) -> bool, ) -> Option<[*mut T; N]> { // TODO use `MaybeUninit::uninit_array` here instead once that's stable. let mut outs: MaybeUninit<[*mut T; N]> = MaybeUninit::uninit(); let outs_ptr = outs.as_mut_ptr(); for (i, &hash) in hashes.iter().enumerate() { let cur = self.find(hash, |k| eq(i, k))?; *(*outs_ptr).get_unchecked_mut(i) = cur.as_mut(); } // TODO use `MaybeUninit::array_assume_init` here instead once that's stable. Some(outs.assume_init()) } /// Returns the number of elements the map can hold without reallocating. /// /// This number is a lower bound; the table might be able to hold /// more, but is guaranteed to be able to hold at least this many. #[inline] pub fn capacity(&self) -> usize { self.table.items + self.table.growth_left } /// Returns the number of elements in the table. #[inline] pub fn len(&self) -> usize { self.table.items } /// Returns `true` if the table contains no elements. #[inline] pub fn is_empty(&self) -> bool { self.len() == 0 } /// Returns the number of buckets in the table. #[inline] pub fn buckets(&self) -> usize { self.table.bucket_mask + 1 } /// Checks whether the bucket at `index` is full. /// /// # Safety /// /// The caller must ensure `index` is less than the number of buckets. #[inline] pub unsafe fn is_bucket_full(&self, index: usize) -> bool { self.table.is_bucket_full(index) } /// Returns an iterator over every element in the table. It is up to /// the caller to ensure that the `RawTable` outlives the `RawIter`. /// Because we cannot make the `next` method unsafe on the `RawIter` /// struct, we have to make the `iter` method unsafe. #[inline] pub unsafe fn iter(&self) -> RawIter { let data = Bucket::from_base_index(self.data_end(), 0); RawIter { iter: RawIterRange::new(self.table.ctrl.as_ptr(), data, self.table.buckets()), items: self.table.items, } } /// Returns an iterator over occupied buckets that could match a given hash. /// /// `RawTable` only stores 7 bits of the hash value, so this iterator may /// return items that have a hash value different than the one provided. You /// should always validate the returned values before using them. /// /// It is up to the caller to ensure that the `RawTable` outlives the /// `RawIterHash`. Because we cannot make the `next` method unsafe on the /// `RawIterHash` struct, we have to make the `iter_hash` method unsafe. #[cfg_attr(feature = "inline-more", inline)] #[cfg(feature = "raw")] pub unsafe fn iter_hash(&self, hash: u64) -> RawIterHash<'_, T, A> { RawIterHash::new(self, hash) } /// Returns an iterator which removes all elements from the table without /// freeing the memory. #[cfg_attr(feature = "inline-more", inline)] pub fn drain(&mut self) -> RawDrain<'_, T, A> { unsafe { let iter = self.iter(); self.drain_iter_from(iter) } } /// Returns an iterator which removes all elements from the table without /// freeing the memory. /// /// Iteration starts at the provided iterator's current location. /// /// It is up to the caller to ensure that the iterator is valid for this /// `RawTable` and covers all items that remain in the table. #[cfg_attr(feature = "inline-more", inline)] pub unsafe fn drain_iter_from(&mut self, iter: RawIter) -> RawDrain<'_, T, A> { debug_assert_eq!(iter.len(), self.len()); RawDrain { iter, table: ManuallyDrop::new(mem::replace(self, Self::new_in(self.table.alloc.clone()))), orig_table: NonNull::from(self), marker: PhantomData, } } /// Returns an iterator which consumes all elements from the table. /// /// Iteration starts at the provided iterator's current location. /// /// It is up to the caller to ensure that the iterator is valid for this /// `RawTable` and covers all items that remain in the table. pub unsafe fn into_iter_from(self, iter: RawIter) -> RawIntoIter { debug_assert_eq!(iter.len(), self.len()); let alloc = self.table.alloc.clone(); let allocation = self.into_allocation(); RawIntoIter { iter, allocation, marker: PhantomData, alloc, } } /// Converts the table into a raw allocation. The contents of the table /// should be dropped using a `RawIter` before freeing the allocation. #[cfg_attr(feature = "inline-more", inline)] pub(crate) fn into_allocation(self) -> Option<(NonNull, Layout)> { let alloc = if self.table.is_empty_singleton() { None } else { // Avoid `Option::unwrap_or_else` because it bloats LLVM IR. let (layout, ctrl_offset) = match Self::TABLE_LAYOUT.calculate_layout_for(self.table.buckets()) { Some(lco) => lco, None => unsafe { hint::unreachable_unchecked() }, }; Some(( unsafe { NonNull::new_unchecked(self.table.ctrl.as_ptr().sub(ctrl_offset)) }, layout, )) }; mem::forget(self); alloc } } unsafe impl Send for RawTable where T: Send, A: Send, { } unsafe impl Sync for RawTable where T: Sync, A: Sync, { } impl RawTableInner { #[inline] const fn new_in(alloc: A) -> Self { Self { // Be careful to cast the entire slice to a raw pointer. ctrl: unsafe { NonNull::new_unchecked(Group::static_empty() as *const _ as *mut u8) }, bucket_mask: 0, items: 0, growth_left: 0, alloc, } } } impl RawTableInner { #[cfg_attr(feature = "inline-more", inline)] unsafe fn new_uninitialized( alloc: A, table_layout: TableLayout, buckets: usize, fallibility: Fallibility, ) -> Result { debug_assert!(buckets.is_power_of_two()); // Avoid `Option::ok_or_else` because it bloats LLVM IR. let (layout, ctrl_offset) = match table_layout.calculate_layout_for(buckets) { Some(lco) => lco, None => return Err(fallibility.capacity_overflow()), }; let ptr: NonNull = match do_alloc(&alloc, layout) { Ok(block) => block.cast(), Err(_) => return Err(fallibility.alloc_err(layout)), }; let ctrl = NonNull::new_unchecked(ptr.as_ptr().add(ctrl_offset)); Ok(Self { ctrl, bucket_mask: buckets - 1, items: 0, growth_left: bucket_mask_to_capacity(buckets - 1), alloc, }) } #[inline] fn fallible_with_capacity( alloc: A, table_layout: TableLayout, capacity: usize, fallibility: Fallibility, ) -> Result { if capacity == 0 { Ok(Self::new_in(alloc)) } else { unsafe { let buckets = capacity_to_buckets(capacity).ok_or_else(|| fallibility.capacity_overflow())?; let result = Self::new_uninitialized(alloc, table_layout, buckets, fallibility)?; result.ctrl(0).write_bytes(EMPTY, result.num_ctrl_bytes()); Ok(result) } } } /// Searches for an empty or deleted bucket which is suitable for inserting /// a new element and sets the hash for that slot. /// /// There must be at least 1 empty bucket in the table. #[inline] unsafe fn prepare_insert_slot(&self, hash: u64) -> (usize, u8) { let index = self.find_insert_slot(hash); let old_ctrl = *self.ctrl(index); self.set_ctrl_h2(index, hash); (index, old_ctrl) } /// Searches for an empty or deleted bucket which is suitable for inserting /// a new element. /// /// There must be at least 1 empty bucket in the table. #[inline] fn find_insert_slot(&self, hash: u64) -> usize { let mut probe_seq = self.probe_seq(hash); loop { unsafe { let group = Group::load(self.ctrl(probe_seq.pos)); if let Some(bit) = group.match_empty_or_deleted().lowest_set_bit() { let result = (probe_seq.pos + bit) & self.bucket_mask; // In tables smaller than the group width, trailing control // bytes outside the range of the table are filled with // EMPTY entries. These will unfortunately trigger a // match, but once masked may point to a full bucket that // is already occupied. We detect this situation here and // perform a second scan starting at the beginning of the // table. This second scan is guaranteed to find an empty // slot (due to the load factor) before hitting the trailing // control bytes (containing EMPTY). if unlikely(self.is_bucket_full(result)) { debug_assert!(self.bucket_mask < Group::WIDTH); debug_assert_ne!(probe_seq.pos, 0); return Group::load_aligned(self.ctrl(0)) .match_empty_or_deleted() .lowest_set_bit_nonzero(); } return result; } } probe_seq.move_next(self.bucket_mask); } } /// Searches for an element in the table. This uses dynamic dispatch to reduce the amount of /// code generated, but it is eliminated by LLVM optimizations. #[inline] fn find_inner(&self, hash: u64, eq: &mut dyn FnMut(usize) -> bool) -> Option { let h2_hash = h2(hash); let mut probe_seq = self.probe_seq(hash); loop { let group = unsafe { Group::load(self.ctrl(probe_seq.pos)) }; for bit in group.match_byte(h2_hash) { let index = (probe_seq.pos + bit) & self.bucket_mask; if likely(eq(index)) { return Some(index); } } if likely(group.match_empty().any_bit_set()) { return None; } probe_seq.move_next(self.bucket_mask); } } #[allow(clippy::mut_mut)] #[inline] unsafe fn prepare_rehash_in_place(&mut self) { // Bulk convert all full control bytes to DELETED, and all DELETED // control bytes to EMPTY. This effectively frees up all buckets // containing a DELETED entry. for i in (0..self.buckets()).step_by(Group::WIDTH) { let group = Group::load_aligned(self.ctrl(i)); let group = group.convert_special_to_empty_and_full_to_deleted(); group.store_aligned(self.ctrl(i)); } // Fix up the trailing control bytes. See the comments in set_ctrl // for the handling of tables smaller than the group width. if self.buckets() < Group::WIDTH { self.ctrl(0) .copy_to(self.ctrl(Group::WIDTH), self.buckets()); } else { self.ctrl(0) .copy_to(self.ctrl(self.buckets()), Group::WIDTH); } } #[inline] unsafe fn bucket(&self, index: usize) -> Bucket { debug_assert_ne!(self.bucket_mask, 0); debug_assert!(index < self.buckets()); Bucket::from_base_index(self.data_end(), index) } #[inline] unsafe fn bucket_ptr(&self, index: usize, size_of: usize) -> *mut u8 { debug_assert_ne!(self.bucket_mask, 0); debug_assert!(index < self.buckets()); let base: *mut u8 = self.data_end().as_ptr(); base.sub((index + 1) * size_of) } #[inline] unsafe fn data_end(&self) -> NonNull { NonNull::new_unchecked(self.ctrl.as_ptr().cast()) } /// Returns an iterator-like object for a probe sequence on the table. /// /// This iterator never terminates, but is guaranteed to visit each bucket /// group exactly once. The loop using `probe_seq` must terminate upon /// reaching a group containing an empty bucket. #[inline] fn probe_seq(&self, hash: u64) -> ProbeSeq { ProbeSeq { pos: h1(hash) & self.bucket_mask, stride: 0, } } /// Returns the index of a bucket for which a value must be inserted if there is enough rooom /// in the table, otherwise returns error #[cfg(feature = "raw")] #[inline] unsafe fn prepare_insert_no_grow(&mut self, hash: u64) -> Result { let index = self.find_insert_slot(hash); let old_ctrl = *self.ctrl(index); if unlikely(self.growth_left == 0 && special_is_empty(old_ctrl)) { Err(()) } else { self.record_item_insert_at(index, old_ctrl, hash); Ok(index) } } #[inline] unsafe fn record_item_insert_at(&mut self, index: usize, old_ctrl: u8, hash: u64) { self.growth_left -= usize::from(special_is_empty(old_ctrl)); self.set_ctrl_h2(index, hash); self.items += 1; } #[inline] fn is_in_same_group(&self, i: usize, new_i: usize, hash: u64) -> bool { let probe_seq_pos = self.probe_seq(hash).pos; let probe_index = |pos: usize| (pos.wrapping_sub(probe_seq_pos) & self.bucket_mask) / Group::WIDTH; probe_index(i) == probe_index(new_i) } /// Sets a control byte to the hash, and possibly also the replicated control byte at /// the end of the array. #[inline] unsafe fn set_ctrl_h2(&self, index: usize, hash: u64) { self.set_ctrl(index, h2(hash)); } #[inline] unsafe fn replace_ctrl_h2(&self, index: usize, hash: u64) -> u8 { let prev_ctrl = *self.ctrl(index); self.set_ctrl_h2(index, hash); prev_ctrl } /// Sets a control byte, and possibly also the replicated control byte at /// the end of the array. #[inline] unsafe fn set_ctrl(&self, index: usize, ctrl: u8) { // Replicate the first Group::WIDTH control bytes at the end of // the array without using a branch: // - If index >= Group::WIDTH then index == index2. // - Otherwise index2 == self.bucket_mask + 1 + index. // // The very last replicated control byte is never actually read because // we mask the initial index for unaligned loads, but we write it // anyways because it makes the set_ctrl implementation simpler. // // If there are fewer buckets than Group::WIDTH then this code will // replicate the buckets at the end of the trailing group. For example // with 2 buckets and a group size of 4, the control bytes will look // like this: // // Real | Replicated // --------------------------------------------- // | [A] | [B] | [EMPTY] | [EMPTY] | [A] | [B] | // --------------------------------------------- let index2 = ((index.wrapping_sub(Group::WIDTH)) & self.bucket_mask) + Group::WIDTH; *self.ctrl(index) = ctrl; *self.ctrl(index2) = ctrl; } /// Returns a pointer to a control byte. #[inline] unsafe fn ctrl(&self, index: usize) -> *mut u8 { debug_assert!(index < self.num_ctrl_bytes()); self.ctrl.as_ptr().add(index) } #[inline] fn buckets(&self) -> usize { self.bucket_mask + 1 } /// Checks whether the bucket at `index` is full. /// /// # Safety /// /// The caller must ensure `index` is less than the number of buckets. #[inline] unsafe fn is_bucket_full(&self, index: usize) -> bool { debug_assert!(index < self.buckets()); is_full(*self.ctrl(index)) } #[inline] fn num_ctrl_bytes(&self) -> usize { self.bucket_mask + 1 + Group::WIDTH } #[inline] fn is_empty_singleton(&self) -> bool { self.bucket_mask == 0 } #[allow(clippy::mut_mut)] #[inline] unsafe fn prepare_resize( &self, table_layout: TableLayout, capacity: usize, fallibility: Fallibility, ) -> Result, TryReserveError> { debug_assert!(self.items <= capacity); // Allocate and initialize the new table. let mut new_table = RawTableInner::fallible_with_capacity( self.alloc.clone(), table_layout, capacity, fallibility, )?; new_table.growth_left -= self.items; new_table.items = self.items; // The hash function may panic, in which case we simply free the new // table without dropping any elements that may have been copied into // it. // // This guard is also used to free the old table on success, see // the comment at the bottom of this function. Ok(guard(new_table, move |self_| { if !self_.is_empty_singleton() { self_.free_buckets(table_layout); } })) } /// Reserves or rehashes to make room for `additional` more elements. /// /// This uses dynamic dispatch to reduce the amount of /// code generated, but it is eliminated by LLVM optimizations when inlined. #[allow(clippy::inline_always)] #[inline(always)] unsafe fn reserve_rehash_inner( &mut self, additional: usize, hasher: &dyn Fn(&mut Self, usize) -> u64, fallibility: Fallibility, layout: TableLayout, drop: Option, ) -> Result<(), TryReserveError> { // Avoid `Option::ok_or_else` because it bloats LLVM IR. let new_items = match self.items.checked_add(additional) { Some(new_items) => new_items, None => return Err(fallibility.capacity_overflow()), }; let full_capacity = bucket_mask_to_capacity(self.bucket_mask); if new_items <= full_capacity / 2 { // Rehash in-place without re-allocating if we have plenty of spare // capacity that is locked up due to DELETED entries. self.rehash_in_place(hasher, layout.size, drop); Ok(()) } else { // Otherwise, conservatively resize to at least the next size up // to avoid churning deletes into frequent rehashes. self.resize_inner( usize::max(new_items, full_capacity + 1), hasher, fallibility, layout, ) } } /// Allocates a new table of a different size and moves the contents of the /// current table into it. /// /// This uses dynamic dispatch to reduce the amount of /// code generated, but it is eliminated by LLVM optimizations when inlined. #[allow(clippy::inline_always)] #[inline(always)] unsafe fn resize_inner( &mut self, capacity: usize, hasher: &dyn Fn(&mut Self, usize) -> u64, fallibility: Fallibility, layout: TableLayout, ) -> Result<(), TryReserveError> { let mut new_table = self.prepare_resize(layout, capacity, fallibility)?; // Copy all elements to the new table. for i in 0..self.buckets() { if !self.is_bucket_full(i) { continue; } // This may panic. let hash = hasher(self, i); // We can use a simpler version of insert() here since: // - there are no DELETED entries. // - we know there is enough space in the table. // - all elements are unique. let (index, _) = new_table.prepare_insert_slot(hash); ptr::copy_nonoverlapping( self.bucket_ptr(i, layout.size), new_table.bucket_ptr(index, layout.size), layout.size, ); } // We successfully copied all elements without panicking. Now replace // self with the new table. The old table will have its memory freed but // the items will not be dropped (since they have been moved into the // new table). mem::swap(self, &mut new_table); Ok(()) } /// Rehashes the contents of the table in place (i.e. without changing the /// allocation). /// /// If `hasher` panics then some the table's contents may be lost. /// /// This uses dynamic dispatch to reduce the amount of /// code generated, but it is eliminated by LLVM optimizations when inlined. #[allow(clippy::inline_always)] #[cfg_attr(feature = "inline-more", inline(always))] #[cfg_attr(not(feature = "inline-more"), inline)] unsafe fn rehash_in_place( &mut self, hasher: &dyn Fn(&mut Self, usize) -> u64, size_of: usize, drop: Option, ) { // If the hash function panics then properly clean up any elements // that we haven't rehashed yet. We unfortunately can't preserve the // element since we lost their hash and have no way of recovering it // without risking another panic. self.prepare_rehash_in_place(); let mut guard = guard(self, move |self_| { if let Some(drop) = drop { for i in 0..self_.buckets() { if *self_.ctrl(i) == DELETED { self_.set_ctrl(i, EMPTY); drop(self_.bucket_ptr(i, size_of)); self_.items -= 1; } } } self_.growth_left = bucket_mask_to_capacity(self_.bucket_mask) - self_.items; }); // At this point, DELETED elements are elements that we haven't // rehashed yet. Find them and re-insert them at their ideal // position. 'outer: for i in 0..guard.buckets() { if *guard.ctrl(i) != DELETED { continue; } let i_p = guard.bucket_ptr(i, size_of); 'inner: loop { // Hash the current item let hash = hasher(*guard, i); // Search for a suitable place to put it let new_i = guard.find_insert_slot(hash); // Probing works by scanning through all of the control // bytes in groups, which may not be aligned to the group // size. If both the new and old position fall within the // same unaligned group, then there is no benefit in moving // it and we can just continue to the next item. if likely(guard.is_in_same_group(i, new_i, hash)) { guard.set_ctrl_h2(i, hash); continue 'outer; } let new_i_p = guard.bucket_ptr(new_i, size_of); // We are moving the current item to a new position. Write // our H2 to the control byte of the new position. let prev_ctrl = guard.replace_ctrl_h2(new_i, hash); if prev_ctrl == EMPTY { guard.set_ctrl(i, EMPTY); // If the target slot is empty, simply move the current // element into the new slot and clear the old control // byte. ptr::copy_nonoverlapping(i_p, new_i_p, size_of); continue 'outer; } else { // If the target slot is occupied, swap the two elements // and then continue processing the element that we just // swapped into the old slot. debug_assert_eq!(prev_ctrl, DELETED); ptr::swap_nonoverlapping(i_p, new_i_p, size_of); continue 'inner; } } } guard.growth_left = bucket_mask_to_capacity(guard.bucket_mask) - guard.items; mem::forget(guard); } #[inline] unsafe fn free_buckets(&mut self, table_layout: TableLayout) { let (ptr, layout) = self.allocation_info(table_layout); self.alloc.deallocate(ptr, layout); } #[inline] fn allocation_info(&self, table_layout: TableLayout) -> (NonNull, Layout) { // Avoid `Option::unwrap_or_else` because it bloats LLVM IR. let (layout, ctrl_offset) = match table_layout.calculate_layout_for(self.buckets()) { Some(lco) => lco, None => unsafe { hint::unreachable_unchecked() }, }; ( unsafe { NonNull::new_unchecked(self.ctrl.as_ptr().sub(ctrl_offset)) }, layout, ) } /// Marks all table buckets as empty without dropping their contents. #[inline] fn clear_no_drop(&mut self) { if !self.is_empty_singleton() { unsafe { self.ctrl(0).write_bytes(EMPTY, self.num_ctrl_bytes()); } } self.items = 0; self.growth_left = bucket_mask_to_capacity(self.bucket_mask); } #[inline] unsafe fn erase(&mut self, index: usize) { debug_assert!(self.is_bucket_full(index)); let index_before = index.wrapping_sub(Group::WIDTH) & self.bucket_mask; let empty_before = Group::load(self.ctrl(index_before)).match_empty(); let empty_after = Group::load(self.ctrl(index)).match_empty(); // If we are inside a continuous block of Group::WIDTH full or deleted // cells then a probe window may have seen a full block when trying to // insert. We therefore need to keep that block non-empty so that // lookups will continue searching to the next probe window. // // Note that in this context `leading_zeros` refers to the bytes at the // end of a group, while `trailing_zeros` refers to the bytes at the // beginning of a group. let ctrl = if empty_before.leading_zeros() + empty_after.trailing_zeros() >= Group::WIDTH { DELETED } else { self.growth_left += 1; EMPTY }; self.set_ctrl(index, ctrl); self.items -= 1; } } impl Clone for RawTable { fn clone(&self) -> Self { if self.table.is_empty_singleton() { Self::new_in(self.table.alloc.clone()) } else { unsafe { // Avoid `Result::ok_or_else` because it bloats LLVM IR. let new_table = match Self::new_uninitialized( self.table.alloc.clone(), self.table.buckets(), Fallibility::Infallible, ) { Ok(table) => table, Err(_) => hint::unreachable_unchecked(), }; // If cloning fails then we need to free the allocation for the // new table. However we don't run its drop since its control // bytes are not initialized yet. let mut guard = guard(ManuallyDrop::new(new_table), |new_table| { new_table.free_buckets(); }); guard.clone_from_spec(self); // Disarm the scope guard and return the newly created table. ManuallyDrop::into_inner(ScopeGuard::into_inner(guard)) } } } fn clone_from(&mut self, source: &Self) { if source.table.is_empty_singleton() { *self = Self::new_in(self.table.alloc.clone()); } else { unsafe { // Make sure that if any panics occurs, we clear the table and // leave it in an empty state. let mut self_ = guard(self, |self_| { self_.clear_no_drop(); }); // First, drop all our elements without clearing the control // bytes. If this panics then the scope guard will clear the // table, leaking any elements that were not dropped yet. // // This leak is unavoidable: we can't try dropping more elements // since this could lead to another panic and abort the process. self_.drop_elements(); // If necessary, resize our table to match the source. if self_.buckets() != source.buckets() { // Skip our drop by using ptr::write. if !self_.table.is_empty_singleton() { self_.free_buckets(); } (&mut **self_ as *mut Self).write( // Avoid `Result::unwrap_or_else` because it bloats LLVM IR. match Self::new_uninitialized( self_.table.alloc.clone(), source.buckets(), Fallibility::Infallible, ) { Ok(table) => table, Err(_) => hint::unreachable_unchecked(), }, ); } self_.clone_from_spec(source); // Disarm the scope guard if cloning was successful. ScopeGuard::into_inner(self_); } } } } /// Specialization of `clone_from` for `Copy` types trait RawTableClone { unsafe fn clone_from_spec(&mut self, source: &Self); } impl RawTableClone for RawTable { default_fn! { #[cfg_attr(feature = "inline-more", inline)] unsafe fn clone_from_spec(&mut self, source: &Self) { self.clone_from_impl(source); } } } #[cfg(feature = "nightly")] impl RawTableClone for RawTable { #[cfg_attr(feature = "inline-more", inline)] unsafe fn clone_from_spec(&mut self, source: &Self) { source .table .ctrl(0) .copy_to_nonoverlapping(self.table.ctrl(0), self.table.num_ctrl_bytes()); source .data_start() .copy_to_nonoverlapping(self.data_start(), self.table.buckets()); self.table.items = source.table.items; self.table.growth_left = source.table.growth_left; } } impl RawTable { /// Common code for clone and clone_from. Assumes: /// - `self.buckets() == source.buckets()`. /// - Any existing elements have been dropped. /// - The control bytes are not initialized yet. #[cfg_attr(feature = "inline-more", inline)] unsafe fn clone_from_impl(&mut self, source: &Self) { // Copy the control bytes unchanged. We do this in a single pass source .table .ctrl(0) .copy_to_nonoverlapping(self.table.ctrl(0), self.table.num_ctrl_bytes()); // The cloning of elements may panic, in which case we need // to make sure we drop only the elements that have been // cloned so far. let mut guard = guard((0, &mut *self), |(index, self_)| { if Self::DATA_NEEDS_DROP && !self_.is_empty() { for i in 0..=*index { if self_.is_bucket_full(i) { self_.bucket(i).drop(); } } } }); for from in source.iter() { let index = source.bucket_index(&from); let to = guard.1.bucket(index); to.write(from.as_ref().clone()); // Update the index in case we need to unwind. guard.0 = index; } // Successfully cloned all items, no need to clean up. mem::forget(guard); self.table.items = source.table.items; self.table.growth_left = source.table.growth_left; } /// Variant of `clone_from` to use when a hasher is available. #[cfg(feature = "raw")] pub fn clone_from_with_hasher(&mut self, source: &Self, hasher: impl Fn(&T) -> u64) { // If we have enough capacity in the table, just clear it and insert // elements one by one. We don't do this if we have the same number of // buckets as the source since we can just copy the contents directly // in that case. if self.table.buckets() != source.table.buckets() && bucket_mask_to_capacity(self.table.bucket_mask) >= source.len() { self.clear(); let guard_self = guard(&mut *self, |self_| { // Clear the partially copied table if a panic occurs, otherwise // items and growth_left will be out of sync with the contents // of the table. self_.clear(); }); unsafe { for item in source.iter() { // This may panic. let item = item.as_ref().clone(); let hash = hasher(&item); // We can use a simpler version of insert() here since: // - there are no DELETED entries. // - we know there is enough space in the table. // - all elements are unique. let (index, _) = guard_self.table.prepare_insert_slot(hash); guard_self.bucket(index).write(item); } } // Successfully cloned all items, no need to clean up. mem::forget(guard_self); self.table.items = source.table.items; self.table.growth_left -= source.table.items; } else { self.clone_from(source); } } } impl Default for RawTable { #[inline] fn default() -> Self { Self::new_in(Default::default()) } } #[cfg(feature = "nightly")] unsafe impl<#[may_dangle] T, A: Allocator + Clone> Drop for RawTable { #[cfg_attr(feature = "inline-more", inline)] fn drop(&mut self) { if !self.table.is_empty_singleton() { unsafe { self.drop_elements(); self.free_buckets(); } } } } #[cfg(not(feature = "nightly"))] impl Drop for RawTable { #[cfg_attr(feature = "inline-more", inline)] fn drop(&mut self) { if !self.table.is_empty_singleton() { unsafe { self.drop_elements(); self.free_buckets(); } } } } impl IntoIterator for RawTable { type Item = T; type IntoIter = RawIntoIter; #[cfg_attr(feature = "inline-more", inline)] fn into_iter(self) -> RawIntoIter { unsafe { let iter = self.iter(); self.into_iter_from(iter) } } } /// Iterator over a sub-range of a table. Unlike `RawIter` this iterator does /// not track an item count. pub(crate) struct RawIterRange { // Mask of full buckets in the current group. Bits are cleared from this // mask as each element is processed. current_group: BitMask, // Pointer to the buckets for the current group. data: Bucket, // Pointer to the next group of control bytes, // Must be aligned to the group size. next_ctrl: *const u8, // Pointer one past the last control byte of this range. end: *const u8, } impl RawIterRange { /// Returns a `RawIterRange` covering a subset of a table. /// /// The control byte address must be aligned to the group size. #[cfg_attr(feature = "inline-more", inline)] unsafe fn new(ctrl: *const u8, data: Bucket, len: usize) -> Self { debug_assert_ne!(len, 0); debug_assert_eq!(ctrl as usize % Group::WIDTH, 0); let end = ctrl.add(len); // Load the first group and advance ctrl to point to the next group let current_group = Group::load_aligned(ctrl).match_full(); let next_ctrl = ctrl.add(Group::WIDTH); Self { current_group, data, next_ctrl, end, } } /// Splits a `RawIterRange` into two halves. /// /// Returns `None` if the remaining range is smaller than or equal to the /// group width. #[cfg_attr(feature = "inline-more", inline)] #[cfg(feature = "rayon")] pub(crate) fn split(mut self) -> (Self, Option>) { unsafe { if self.end <= self.next_ctrl { // Nothing to split if the group that we are current processing // is the last one. (self, None) } else { // len is the remaining number of elements after the group that // we are currently processing. It must be a multiple of the // group size (small tables are caught by the check above). let len = offset_from(self.end, self.next_ctrl); debug_assert_eq!(len % Group::WIDTH, 0); // Split the remaining elements into two halves, but round the // midpoint down in case there is an odd number of groups // remaining. This ensures that: // - The tail is at least 1 group long. // - The split is roughly even considering we still have the // current group to process. let mid = (len / 2) & !(Group::WIDTH - 1); let tail = Self::new( self.next_ctrl.add(mid), self.data.next_n(Group::WIDTH).next_n(mid), len - mid, ); debug_assert_eq!( self.data.next_n(Group::WIDTH).next_n(mid).ptr, tail.data.ptr ); debug_assert_eq!(self.end, tail.end); self.end = self.next_ctrl.add(mid); debug_assert_eq!(self.end.add(Group::WIDTH), tail.next_ctrl); (self, Some(tail)) } } } /// # Safety /// If DO_CHECK_PTR_RANGE is false, caller must ensure that we never try to iterate /// after yielding all elements. #[cfg_attr(feature = "inline-more", inline)] unsafe fn next_impl(&mut self) -> Option> { loop { if let Some(index) = self.current_group.lowest_set_bit() { self.current_group = self.current_group.remove_lowest_bit(); return Some(self.data.next_n(index)); } if DO_CHECK_PTR_RANGE && self.next_ctrl >= self.end { return None; } // We might read past self.end up to the next group boundary, // but this is fine because it only occurs on tables smaller // than the group size where the trailing control bytes are all // EMPTY. On larger tables self.end is guaranteed to be aligned // to the group size (since tables are power-of-two sized). self.current_group = Group::load_aligned(self.next_ctrl).match_full(); self.data = self.data.next_n(Group::WIDTH); self.next_ctrl = self.next_ctrl.add(Group::WIDTH); } } } // We make raw iterators unconditionally Send and Sync, and let the PhantomData // in the actual iterator implementations determine the real Send/Sync bounds. unsafe impl Send for RawIterRange {} unsafe impl Sync for RawIterRange {} impl Clone for RawIterRange { #[cfg_attr(feature = "inline-more", inline)] fn clone(&self) -> Self { Self { data: self.data.clone(), next_ctrl: self.next_ctrl, current_group: self.current_group, end: self.end, } } } impl Iterator for RawIterRange { type Item = Bucket; #[cfg_attr(feature = "inline-more", inline)] fn next(&mut self) -> Option> { unsafe { // SAFETY: We set checker flag to true. self.next_impl::() } } #[inline] fn size_hint(&self) -> (usize, Option) { // We don't have an item count, so just guess based on the range size. let remaining_buckets = if self.end > self.next_ctrl { unsafe { offset_from(self.end, self.next_ctrl) } } else { 0 }; // Add a group width to include the group we are currently processing. (0, Some(Group::WIDTH + remaining_buckets)) } } impl FusedIterator for RawIterRange {} /// Iterator which returns a raw pointer to every full bucket in the table. /// /// For maximum flexibility this iterator is not bound by a lifetime, but you /// must observe several rules when using it: /// - You must not free the hash table while iterating (including via growing/shrinking). /// - It is fine to erase a bucket that has been yielded by the iterator. /// - Erasing a bucket that has not yet been yielded by the iterator may still /// result in the iterator yielding that bucket (unless `reflect_remove` is called). /// - It is unspecified whether an element inserted after the iterator was /// created will be yielded by that iterator (unless `reflect_insert` is called). /// - The order in which the iterator yields bucket is unspecified and may /// change in the future. pub struct RawIter { pub(crate) iter: RawIterRange, items: usize, } impl RawIter { const DATA_NEEDS_DROP: bool = mem::needs_drop::(); /// Refresh the iterator so that it reflects a removal from the given bucket. /// /// For the iterator to remain valid, this method must be called once /// for each removed bucket before `next` is called again. /// /// This method should be called _before_ the removal is made. It is not necessary to call this /// method if you are removing an item that this iterator yielded in the past. #[cfg(feature = "raw")] pub fn reflect_remove(&mut self, b: &Bucket) { self.reflect_toggle_full(b, false); } /// Refresh the iterator so that it reflects an insertion into the given bucket. /// /// For the iterator to remain valid, this method must be called once /// for each insert before `next` is called again. /// /// This method does not guarantee that an insertion of a bucket with a greater /// index than the last one yielded will be reflected in the iterator. /// /// This method should be called _after_ the given insert is made. #[cfg(feature = "raw")] pub fn reflect_insert(&mut self, b: &Bucket) { self.reflect_toggle_full(b, true); } /// Refresh the iterator so that it reflects a change to the state of the given bucket. #[cfg(feature = "raw")] fn reflect_toggle_full(&mut self, b: &Bucket, is_insert: bool) { unsafe { if b.as_ptr() > self.iter.data.as_ptr() { // The iterator has already passed the bucket's group. // So the toggle isn't relevant to this iterator. return; } if self.iter.next_ctrl < self.iter.end && b.as_ptr() <= self.iter.data.next_n(Group::WIDTH).as_ptr() { // The iterator has not yet reached the bucket's group. // We don't need to reload anything, but we do need to adjust the item count. if cfg!(debug_assertions) { // Double-check that the user isn't lying to us by checking the bucket state. // To do that, we need to find its control byte. We know that self.iter.data is // at self.iter.next_ctrl - Group::WIDTH, so we work from there: let offset = offset_from(self.iter.data.as_ptr(), b.as_ptr()); let ctrl = self.iter.next_ctrl.sub(Group::WIDTH).add(offset); // This method should be called _before_ a removal, or _after_ an insert, // so in both cases the ctrl byte should indicate that the bucket is full. assert!(is_full(*ctrl)); } if is_insert { self.items += 1; } else { self.items -= 1; } return; } // The iterator is at the bucket group that the toggled bucket is in. // We need to do two things: // // - Determine if the iterator already yielded the toggled bucket. // If it did, we're done. // - Otherwise, update the iterator cached group so that it won't // yield a to-be-removed bucket, or _will_ yield a to-be-added bucket. // We'll also need to update the item count accordingly. if let Some(index) = self.iter.current_group.lowest_set_bit() { let next_bucket = self.iter.data.next_n(index); if b.as_ptr() > next_bucket.as_ptr() { // The toggled bucket is "before" the bucket the iterator would yield next. We // therefore don't need to do anything --- the iterator has already passed the // bucket in question. // // The item count must already be correct, since a removal or insert "prior" to // the iterator's position wouldn't affect the item count. } else { // The removed bucket is an upcoming bucket. We need to make sure it does _not_ // get yielded, and also that it's no longer included in the item count. // // NOTE: We can't just reload the group here, both since that might reflect // inserts we've already passed, and because that might inadvertently unset the // bits for _other_ removals. If we do that, we'd have to also decrement the // item count for those other bits that we unset. But the presumably subsequent // call to reflect for those buckets might _also_ decrement the item count. // Instead, we _just_ flip the bit for the particular bucket the caller asked // us to reflect. let our_bit = offset_from(self.iter.data.as_ptr(), b.as_ptr()); let was_full = self.iter.current_group.flip(our_bit); debug_assert_ne!(was_full, is_insert); if is_insert { self.items += 1; } else { self.items -= 1; } if cfg!(debug_assertions) { if b.as_ptr() == next_bucket.as_ptr() { // The removed bucket should no longer be next debug_assert_ne!(self.iter.current_group.lowest_set_bit(), Some(index)); } else { // We should not have changed what bucket comes next. debug_assert_eq!(self.iter.current_group.lowest_set_bit(), Some(index)); } } } } else { // We must have already iterated past the removed item. } } } unsafe fn drop_elements(&mut self) { if Self::DATA_NEEDS_DROP && self.len() != 0 { for item in self { item.drop(); } } } } impl Clone for RawIter { #[cfg_attr(feature = "inline-more", inline)] fn clone(&self) -> Self { Self { iter: self.iter.clone(), items: self.items, } } } impl Iterator for RawIter { type Item = Bucket; #[cfg_attr(feature = "inline-more", inline)] fn next(&mut self) -> Option> { // Inner iterator iterates over buckets // so it can do unnecessary work if we already yielded all items. if self.items == 0 { return None; } let nxt = unsafe { // SAFETY: We check number of items to yield using `items` field. self.iter.next_impl::() }; if nxt.is_some() { self.items -= 1; } nxt } #[inline] fn size_hint(&self) -> (usize, Option) { (self.items, Some(self.items)) } } impl ExactSizeIterator for RawIter {} impl FusedIterator for RawIter {} /// Iterator which consumes a table and returns elements. pub struct RawIntoIter { iter: RawIter, allocation: Option<(NonNull, Layout)>, marker: PhantomData, alloc: A, } impl RawIntoIter { #[cfg_attr(feature = "inline-more", inline)] pub fn iter(&self) -> RawIter { self.iter.clone() } } unsafe impl Send for RawIntoIter where T: Send, A: Send, { } unsafe impl Sync for RawIntoIter where T: Sync, A: Sync, { } #[cfg(feature = "nightly")] unsafe impl<#[may_dangle] T, A: Allocator + Clone> Drop for RawIntoIter { #[cfg_attr(feature = "inline-more", inline)] fn drop(&mut self) { unsafe { // Drop all remaining elements self.iter.drop_elements(); // Free the table if let Some((ptr, layout)) = self.allocation { self.alloc.deallocate(ptr, layout); } } } } #[cfg(not(feature = "nightly"))] impl Drop for RawIntoIter { #[cfg_attr(feature = "inline-more", inline)] fn drop(&mut self) { unsafe { // Drop all remaining elements self.iter.drop_elements(); // Free the table if let Some((ptr, layout)) = self.allocation { self.alloc.deallocate(ptr, layout); } } } } impl Iterator for RawIntoIter { type Item = T; #[cfg_attr(feature = "inline-more", inline)] fn next(&mut self) -> Option { unsafe { Some(self.iter.next()?.read()) } } #[inline] fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } impl ExactSizeIterator for RawIntoIter {} impl FusedIterator for RawIntoIter {} /// Iterator which consumes elements without freeing the table storage. pub struct RawDrain<'a, T, A: Allocator + Clone = Global> { iter: RawIter, // The table is moved into the iterator for the duration of the drain. This // ensures that an empty table is left if the drain iterator is leaked // without dropping. table: ManuallyDrop>, orig_table: NonNull>, // We don't use a &'a mut RawTable because we want RawDrain to be // covariant over T. marker: PhantomData<&'a RawTable>, } impl RawDrain<'_, T, A> { #[cfg_attr(feature = "inline-more", inline)] pub fn iter(&self) -> RawIter { self.iter.clone() } } unsafe impl Send for RawDrain<'_, T, A> where T: Send, A: Send, { } unsafe impl Sync for RawDrain<'_, T, A> where T: Sync, A: Sync, { } impl Drop for RawDrain<'_, T, A> { #[cfg_attr(feature = "inline-more", inline)] fn drop(&mut self) { unsafe { // Drop all remaining elements. Note that this may panic. self.iter.drop_elements(); // Reset the contents of the table now that all elements have been // dropped. self.table.clear_no_drop(); // Move the now empty table back to its original location. self.orig_table .as_ptr() .copy_from_nonoverlapping(&*self.table, 1); } } } impl Iterator for RawDrain<'_, T, A> { type Item = T; #[cfg_attr(feature = "inline-more", inline)] fn next(&mut self) -> Option { unsafe { let item = self.iter.next()?; Some(item.read()) } } #[inline] fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } impl ExactSizeIterator for RawDrain<'_, T, A> {} impl FusedIterator for RawDrain<'_, T, A> {} /// Iterator over occupied buckets that could match a given hash. /// /// `RawTable` only stores 7 bits of the hash value, so this iterator may return /// items that have a hash value different than the one provided. You should /// always validate the returned values before using them. pub struct RawIterHash<'a, T, A: Allocator + Clone = Global> { inner: RawIterHashInner<'a, A>, _marker: PhantomData, } struct RawIterHashInner<'a, A: Allocator + Clone> { table: &'a RawTableInner, // The top 7 bits of the hash. h2_hash: u8, // The sequence of groups to probe in the search. probe_seq: ProbeSeq, group: Group, // The elements within the group with a matching h2-hash. bitmask: BitMaskIter, } impl<'a, T, A: Allocator + Clone> RawIterHash<'a, T, A> { #[cfg_attr(feature = "inline-more", inline)] #[cfg(feature = "raw")] fn new(table: &'a RawTable, hash: u64) -> Self { RawIterHash { inner: RawIterHashInner::new(&table.table, hash), _marker: PhantomData, } } } impl<'a, A: Allocator + Clone> RawIterHashInner<'a, A> { #[cfg_attr(feature = "inline-more", inline)] #[cfg(feature = "raw")] fn new(table: &'a RawTableInner, hash: u64) -> Self { unsafe { let h2_hash = h2(hash); let probe_seq = table.probe_seq(hash); let group = Group::load(table.ctrl(probe_seq.pos)); let bitmask = group.match_byte(h2_hash).into_iter(); RawIterHashInner { table, h2_hash, probe_seq, group, bitmask, } } } } impl<'a, T, A: Allocator + Clone> Iterator for RawIterHash<'a, T, A> { type Item = Bucket; fn next(&mut self) -> Option> { unsafe { match self.inner.next() { Some(index) => Some(self.inner.table.bucket(index)), None => None, } } } } impl<'a, A: Allocator + Clone> Iterator for RawIterHashInner<'a, A> { type Item = usize; fn next(&mut self) -> Option { unsafe { loop { if let Some(bit) = self.bitmask.next() { let index = (self.probe_seq.pos + bit) & self.table.bucket_mask; return Some(index); } if likely(self.group.match_empty().any_bit_set()) { return None; } self.probe_seq.move_next(self.table.bucket_mask); self.group = Group::load(self.table.ctrl(self.probe_seq.pos)); self.bitmask = self.group.match_byte(self.h2_hash).into_iter(); } } } } #[cfg(test)] mod test_map { use super::*; fn rehash_in_place(table: &mut RawTable, hasher: impl Fn(&T) -> u64) { unsafe { table.table.rehash_in_place( &|table, index| hasher(table.bucket::(index).as_ref()), mem::size_of::(), if mem::needs_drop::() { Some(mem::transmute(ptr::drop_in_place:: as unsafe fn(*mut T))) } else { None }, ); } } #[test] fn rehash() { let mut table = RawTable::new(); let hasher = |i: &u64| *i; for i in 0..100 { table.insert(i, i, hasher); } for i in 0..100 { unsafe { assert_eq!(table.find(i, |x| *x == i).map(|b| b.read()), Some(i)); } assert!(table.find(i + 100, |x| *x == i + 100).is_none()); } rehash_in_place(&mut table, hasher); for i in 0..100 { unsafe { assert_eq!(table.find(i, |x| *x == i).map(|b| b.read()), Some(i)); } assert!(table.find(i + 100, |x| *x == i + 100).is_none()); } } }