//! [![github]](https://github.com/dtolnay/itoa) [![crates-io]](https://crates.io/crates/itoa) [![docs-rs]](https://docs.rs/itoa) //! //! [github]: https://img.shields.io/badge/github-8da0cb?style=for-the-badge&labelColor=555555&logo=github //! [crates-io]: https://img.shields.io/badge/crates.io-fc8d62?style=for-the-badge&labelColor=555555&logo=rust //! [docs-rs]: https://img.shields.io/badge/docs.rs-66c2a5?style=for-the-badge&labelColor=555555&logo=docs.rs //! //!
//! //! This crate provides a fast conversion of integer primitives to decimal //! strings. The implementation comes straight from [libcore] but avoids the //! performance penalty of going through [`core::fmt::Formatter`]. //! //! See also [`ryu`] for printing floating point primitives. //! //! [libcore]: https://github.com/rust-lang/rust/blob/b8214dc6c6fc20d0a660fb5700dca9ebf51ebe89/src/libcore/fmt/num.rs#L201-L254 //! [`core::fmt::Formatter`]: https://doc.rust-lang.org/std/fmt/struct.Formatter.html //! [`ryu`]: https://github.com/dtolnay/ryu //! //! # Example //! //! ``` //! fn main() { //! let mut buffer = itoa::Buffer::new(); //! let printed = buffer.format(128u64); //! assert_eq!(printed, "128"); //! } //! ``` //! //! # Performance (lower is better) //! //! ![performance](https://raw.githubusercontent.com/dtolnay/itoa/master/performance.png) #![doc(html_root_url = "https://docs.rs/itoa/1.0.4")] #![no_std] #![allow( clippy::cast_lossless, clippy::cast_possible_truncation, clippy::must_use_candidate, clippy::unreadable_literal )] mod udiv128; use core::mem::{self, MaybeUninit}; use core::{ptr, slice, str}; #[cfg(feature = "no-panic")] use no_panic::no_panic; /// A correctly sized stack allocation for the formatted integer to be written /// into. /// /// # Example /// /// ``` /// let mut buffer = itoa::Buffer::new(); /// let printed = buffer.format(1234); /// assert_eq!(printed, "1234"); /// ``` pub struct Buffer { bytes: [MaybeUninit; I128_MAX_LEN], } impl Default for Buffer { #[inline] fn default() -> Buffer { Buffer::new() } } impl Clone for Buffer { #[inline] fn clone(&self) -> Self { Buffer::new() } } impl Buffer { /// This is a cheap operation; you don't need to worry about reusing buffers /// for efficiency. #[inline] #[cfg_attr(feature = "no-panic", no_panic)] pub fn new() -> Buffer { let bytes = [MaybeUninit::::uninit(); I128_MAX_LEN]; Buffer { bytes } } /// Print an integer into this buffer and return a reference to its string /// representation within the buffer. #[cfg_attr(feature = "no-panic", no_panic)] pub fn format(&mut self, i: I) -> &str { i.write(unsafe { &mut *(&mut self.bytes as *mut [MaybeUninit; I128_MAX_LEN] as *mut ::Buffer) }) } } /// An integer that can be written into an [`itoa::Buffer`][Buffer]. /// /// This trait is sealed and cannot be implemented for types outside of itoa. pub trait Integer: private::Sealed {} // Seal to prevent downstream implementations of the Integer trait. mod private { pub trait Sealed: Copy { type Buffer: 'static; fn write(self, buf: &mut Self::Buffer) -> &str; } } const DEC_DIGITS_LUT: &[u8] = b"\ 0001020304050607080910111213141516171819\ 2021222324252627282930313233343536373839\ 4041424344454647484950515253545556575859\ 6061626364656667686970717273747576777879\ 8081828384858687888990919293949596979899"; // Adaptation of the original implementation at // https://github.com/rust-lang/rust/blob/b8214dc6c6fc20d0a660fb5700dca9ebf51ebe89/src/libcore/fmt/num.rs#L188-L266 macro_rules! impl_Integer { ($($max_len:expr => $t:ident),* as $conv_fn:ident) => {$( impl Integer for $t {} impl private::Sealed for $t { type Buffer = [MaybeUninit; $max_len]; #[allow(unused_comparisons)] #[inline] #[cfg_attr(feature = "no-panic", no_panic)] fn write(self, buf: &mut [MaybeUninit; $max_len]) -> &str { let is_nonnegative = self >= 0; let mut n = if is_nonnegative { self as $conv_fn } else { // convert the negative num to positive by summing 1 to it's 2 complement (!(self as $conv_fn)).wrapping_add(1) }; let mut curr = buf.len() as isize; let buf_ptr = buf.as_mut_ptr() as *mut u8; let lut_ptr = DEC_DIGITS_LUT.as_ptr(); unsafe { // need at least 16 bits for the 4-characters-at-a-time to work. if mem::size_of::<$t>() >= 2 { // eagerly decode 4 characters at a time while n >= 10000 { let rem = (n % 10000) as isize; n /= 10000; let d1 = (rem / 100) << 1; let d2 = (rem % 100) << 1; curr -= 4; ptr::copy_nonoverlapping(lut_ptr.offset(d1), buf_ptr.offset(curr), 2); ptr::copy_nonoverlapping(lut_ptr.offset(d2), buf_ptr.offset(curr + 2), 2); } } // if we reach here numbers are <= 9999, so at most 4 chars long let mut n = n as isize; // possibly reduce 64bit math // decode 2 more chars, if > 2 chars if n >= 100 { let d1 = (n % 100) << 1; n /= 100; curr -= 2; ptr::copy_nonoverlapping(lut_ptr.offset(d1), buf_ptr.offset(curr), 2); } // decode last 1 or 2 chars if n < 10 { curr -= 1; *buf_ptr.offset(curr) = (n as u8) + b'0'; } else { let d1 = n << 1; curr -= 2; ptr::copy_nonoverlapping(lut_ptr.offset(d1), buf_ptr.offset(curr), 2); } if !is_nonnegative { curr -= 1; *buf_ptr.offset(curr) = b'-'; } } let len = buf.len() - curr as usize; let bytes = unsafe { slice::from_raw_parts(buf_ptr.offset(curr), len) }; unsafe { str::from_utf8_unchecked(bytes) } } } )*}; } const I8_MAX_LEN: usize = 4; const U8_MAX_LEN: usize = 3; const I16_MAX_LEN: usize = 6; const U16_MAX_LEN: usize = 5; const I32_MAX_LEN: usize = 11; const U32_MAX_LEN: usize = 10; const I64_MAX_LEN: usize = 20; const U64_MAX_LEN: usize = 20; impl_Integer!( I8_MAX_LEN => i8, U8_MAX_LEN => u8, I16_MAX_LEN => i16, U16_MAX_LEN => u16, I32_MAX_LEN => i32, U32_MAX_LEN => u32 as u32); impl_Integer!(I64_MAX_LEN => i64, U64_MAX_LEN => u64 as u64); #[cfg(target_pointer_width = "16")] impl_Integer!(I16_MAX_LEN => isize, U16_MAX_LEN => usize as u16); #[cfg(target_pointer_width = "32")] impl_Integer!(I32_MAX_LEN => isize, U32_MAX_LEN => usize as u32); #[cfg(target_pointer_width = "64")] impl_Integer!(I64_MAX_LEN => isize, U64_MAX_LEN => usize as u64); macro_rules! impl_Integer128 { ($($max_len:expr => $t:ident),*) => {$( impl Integer for $t {} impl private::Sealed for $t { type Buffer = [MaybeUninit; $max_len]; #[allow(unused_comparisons)] #[inline] #[cfg_attr(feature = "no-panic", no_panic)] fn write(self, buf: &mut [MaybeUninit; $max_len]) -> &str { let is_nonnegative = self >= 0; let n = if is_nonnegative { self as u128 } else { // convert the negative num to positive by summing 1 to it's 2 complement (!(self as u128)).wrapping_add(1) }; let mut curr = buf.len() as isize; let buf_ptr = buf.as_mut_ptr() as *mut u8; unsafe { // Divide by 10^19 which is the highest power less than 2^64. let (n, rem) = udiv128::udivmod_1e19(n); let buf1 = buf_ptr.offset(curr - U64_MAX_LEN as isize) as *mut [MaybeUninit; U64_MAX_LEN]; curr -= rem.write(&mut *buf1).len() as isize; if n != 0 { // Memset the base10 leading zeros of rem. let target = buf.len() as isize - 19; ptr::write_bytes(buf_ptr.offset(target), b'0', (curr - target) as usize); curr = target; // Divide by 10^19 again. let (n, rem) = udiv128::udivmod_1e19(n); let buf2 = buf_ptr.offset(curr - U64_MAX_LEN as isize) as *mut [MaybeUninit; U64_MAX_LEN]; curr -= rem.write(&mut *buf2).len() as isize; if n != 0 { // Memset the leading zeros. let target = buf.len() as isize - 38; ptr::write_bytes(buf_ptr.offset(target), b'0', (curr - target) as usize); curr = target; // There is at most one digit left // because u128::max / 10^19 / 10^19 is 3. curr -= 1; *buf_ptr.offset(curr) = (n as u8) + b'0'; } } if !is_nonnegative { curr -= 1; *buf_ptr.offset(curr) = b'-'; } let len = buf.len() - curr as usize; let bytes = slice::from_raw_parts(buf_ptr.offset(curr), len); str::from_utf8_unchecked(bytes) } } } )*}; } const U128_MAX_LEN: usize = 39; const I128_MAX_LEN: usize = 40; impl_Integer128!(I128_MAX_LEN => i128, U128_MAX_LEN => u128);