// origin: FreeBSD /usr/src/lib/msun/src/s_exp2f.c //- // Copyright (c) 2005 David Schultz <das@FreeBSD.ORG> // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // 1. Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // 2. Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS // OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY // OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF // SUCH DAMAGE. const TBLSIZE: usize = 16; static EXP2FT: [u64; TBLSIZE] = [ 0x3fe6a09e667f3bcd, 0x3fe7a11473eb0187, 0x3fe8ace5422aa0db, 0x3fe9c49182a3f090, 0x3feae89f995ad3ad, 0x3fec199bdd85529c, 0x3fed5818dcfba487, 0x3feea4afa2a490da, 0x3ff0000000000000, 0x3ff0b5586cf9890f, 0x3ff172b83c7d517b, 0x3ff2387a6e756238, 0x3ff306fe0a31b715, 0x3ff3dea64c123422, 0x3ff4bfdad5362a27, 0x3ff5ab07dd485429, ]; // exp2f(x): compute the base 2 exponential of x // // Accuracy: Peak error < 0.501 ulp; location of peak: -0.030110927. // // Method: (equally-spaced tables) // // Reduce x: // x = k + y, for integer k and |y| <= 1/2. // Thus we have exp2f(x) = 2**k * exp2(y). // // Reduce y: // y = i/TBLSIZE + z for integer i near y * TBLSIZE. // Thus we have exp2(y) = exp2(i/TBLSIZE) * exp2(z), // with |z| <= 2**-(TBLSIZE+1). // // We compute exp2(i/TBLSIZE) via table lookup and exp2(z) via a // degree-4 minimax polynomial with maximum error under 1.4 * 2**-33. // Using double precision for everything except the reduction makes // roundoff error insignificant and simplifies the scaling step. // // This method is due to Tang, but I do not use his suggested parameters: // // Tang, P. Table-driven Implementation of the Exponential Function // in IEEE Floating-Point Arithmetic. TOMS 15(2), 144-157 (1989). /// Exponential, base 2 (f32) /// /// Calculate `2^x`, that is, 2 raised to the power `x`. #[inline] #[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] pub fn exp2f(mut x: f32) -> f32 { let redux = f32::from_bits(0x4b400000) / TBLSIZE as f32; let p1 = f32::from_bits(0x3f317218); let p2 = f32::from_bits(0x3e75fdf0); let p3 = f32::from_bits(0x3d6359a4); let p4 = f32::from_bits(0x3c1d964e); // double_t t, r, z; // uint32_t ix, i0, k; let x1p127 = f32::from_bits(0x7f000000); /* Filter out exceptional cases. */ let ui = f32::to_bits(x); let ix = ui & 0x7fffffff; if ix > 0x42fc0000 { /* |x| > 126 */ if ix > 0x7f800000 { /* NaN */ return x; } if ui >= 0x43000000 && ui < 0x80000000 { /* x >= 128 */ x *= x1p127; return x; } if ui >= 0x80000000 { /* x < -126 */ if ui >= 0xc3160000 || (ui & 0x0000ffff != 0) { force_eval!(f32::from_bits(0x80000001) / x); } if ui >= 0xc3160000 { /* x <= -150 */ return 0.0; } } } else if ix <= 0x33000000 { /* |x| <= 0x1p-25 */ return 1.0 + x; } /* Reduce x, computing z, i0, and k. */ let ui = f32::to_bits(x + redux); let mut i0 = ui; i0 += TBLSIZE as u32 / 2; let k = i0 / TBLSIZE as u32; let ukf = f64::from_bits(((0x3ff + k) as u64) << 52); i0 &= TBLSIZE as u32 - 1; let mut uf = f32::from_bits(ui); uf -= redux; let z: f64 = (x - uf) as f64; /* Compute r = exp2(y) = exp2ft[i0] * p(z). */ let r: f64 = f64::from_bits(EXP2FT[i0 as usize]); let t: f64 = r as f64 * z; let r: f64 = r + t * (p1 as f64 + z * p2 as f64) + t * (z * z) * (p3 as f64 + z * p4 as f64); /* Scale by 2**k */ (r * ukf) as f32 }