// This file is part of ICU4X. For terms of use, please see the file // called LICENSE at the top level of the ICU4X source tree // (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ). use crate::store::*; use alloc::borrow::Borrow; use alloc::vec::Vec; use core::cmp::Ordering; use core::iter::FromIterator; use core::marker::PhantomData; use core::mem; use core::ops::{Index, IndexMut}; /// A simple "flat" map based on a sorted vector /// /// See the [module level documentation][super] for why one should use this. /// /// The API is roughly similar to that of [`std::collections::BTreeMap`]. #[derive(Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)] #[cfg_attr(feature = "yoke", derive(yoke::Yokeable))] pub struct LiteMap> { pub(crate) values: S, pub(crate) _key_type: PhantomData, pub(crate) _value_type: PhantomData, } impl LiteMap { /// Construct a new [`LiteMap`] backed by Vec pub const fn new_vec() -> Self { Self { values: alloc::vec::Vec::new(), _key_type: PhantomData, _value_type: PhantomData, } } } impl LiteMap { /// Construct a new [`LiteMap`] using the given values /// /// The store must be sorted and have no duplicate keys. pub const fn from_sorted_store_unchecked(values: S) -> Self { Self { values, _key_type: PhantomData, _value_type: PhantomData, } } } impl LiteMap> { /// Convert a [`LiteMap`] into a sorted `Vec<(K, V)>`. #[inline] pub fn into_tuple_vec(self) -> Vec<(K, V)> { self.values } } impl LiteMap where S: StoreConstEmpty, { /// Create a new empty [`LiteMap`] pub const fn new() -> Self { Self { values: S::EMPTY, _key_type: PhantomData, _value_type: PhantomData, } } } impl LiteMap where S: Store, { /// The number of elements in the [`LiteMap`] pub fn len(&self) -> usize { self.values.lm_len() } /// Whether the [`LiteMap`] is empty pub fn is_empty(&self) -> bool { self.values.lm_is_empty() } /// Get the key-value pair residing at a particular index /// /// In most cases, prefer [`LiteMap::get()`] over this method. #[inline] pub fn get_indexed(&self, index: usize) -> Option<(&K, &V)> { self.values.lm_get(index) } } impl LiteMap where K: Ord, S: Store, { /// Get the value associated with `key`, if it exists. /// /// ```rust /// use litemap::LiteMap; /// /// let mut map = LiteMap::new_vec(); /// map.insert(1, "one"); /// map.insert(2, "two"); /// assert_eq!(map.get(&1), Some(&"one")); /// assert_eq!(map.get(&3), None); /// ``` pub fn get(&self, key: &Q) -> Option<&V> where K: Borrow, Q: Ord, { match self.find_index(key) { #[allow(clippy::unwrap_used)] // find_index returns a valid index Ok(found) => Some(self.values.lm_get(found).unwrap().1), Err(_) => None, } } /// Binary search the map with `predicate` to find a key, returning the value. pub fn get_by(&self, predicate: impl FnMut(&K) -> Ordering) -> Option<&V> { let index = self.values.lm_binary_search_by(predicate).ok()?; self.values.lm_get(index).map(|(_, v)| v) } /// Returns whether `key` is contained in this map /// /// ```rust /// use litemap::LiteMap; /// /// let mut map = LiteMap::new_vec(); /// map.insert(1, "one"); /// map.insert(2, "two"); /// assert!(map.contains_key(&1)); /// assert!(!map.contains_key(&3)); /// ``` pub fn contains_key(&self, key: &Q) -> bool where K: Borrow, Q: Ord, { self.find_index(key).is_ok() } /// Get the lowest-rank key/value pair from the `LiteMap`, if it exists. /// /// # Examples /// /// ```rust /// use litemap::LiteMap; /// /// let mut map = LiteMap::new_vec(); /// assert!(map.try_append(1, "uno").is_none()); /// assert!(map.try_append(3, "tres").is_none()); /// /// assert_eq!(map.first(), Some((&1, &"uno"))); /// ``` #[inline] pub fn first(&self) -> Option<(&K, &V)> { self.values.lm_get(0).map(|(k, v)| (k, v)) } /// Get the highest-rank key/value pair from the `LiteMap`, if it exists. /// /// # Examples /// /// ```rust /// use litemap::LiteMap; /// /// let mut map = LiteMap::new_vec(); /// assert!(map.try_append(1, "uno").is_none()); /// assert!(map.try_append(3, "tres").is_none()); /// /// assert_eq!(map.last(), Some((&3, &"tres"))); /// ``` #[inline] pub fn last(&self) -> Option<(&K, &V)> { self.values.lm_get(self.len() - 1).map(|(k, v)| (k, v)) } /// Obtain the index for a given key, or if the key is not found, the index /// at which it would be inserted. /// /// (The return value works equivalently to [`slice::binary_search_by()`]) /// /// The indices returned can be used with [`Self::get_indexed()`]. Prefer using /// [`Self::get()`] directly where possible. #[inline] pub fn find_index(&self, key: &Q) -> Result where K: Borrow, Q: Ord, { self.values.lm_binary_search_by(|k| k.borrow().cmp(key)) } } impl LiteMap where S: StoreMut, { /// Construct a new [`LiteMap`] with a given capacity pub fn with_capacity(capacity: usize) -> Self { Self { values: S::lm_with_capacity(capacity), _key_type: PhantomData, _value_type: PhantomData, } } /// Remove all elements from the [`LiteMap`] pub fn clear(&mut self) { self.values.lm_clear() } /// Reserve capacity for `additional` more elements to be inserted into /// the [`LiteMap`] to avoid frequent reallocations. /// /// See [`Vec::reserve()`] for more information. /// /// [`Vec::reserve()`]: alloc::vec::Vec::reserve pub fn reserve(&mut self, additional: usize) { self.values.lm_reserve(additional) } } impl LiteMap where K: Ord, S: StoreMut, { /// Get the value associated with `key`, if it exists, as a mutable reference. /// /// ```rust /// use litemap::LiteMap; /// /// let mut map = LiteMap::new_vec(); /// map.insert(1, "one"); /// map.insert(2, "two"); /// if let Some(mut v) = map.get_mut(&1) { /// *v = "uno"; /// } /// assert_eq!(map.get(&1), Some(&"uno")); /// ``` pub fn get_mut(&mut self, key: &Q) -> Option<&mut V> where K: Borrow, Q: Ord, { match self.find_index(key) { #[allow(clippy::unwrap_used)] // find_index returns a valid index Ok(found) => Some(self.values.lm_get_mut(found).unwrap().1), Err(_) => None, } } /// Appends `value` with `key` to the end of the underlying vector, returning /// `key` and `value` _if it failed_. Useful for extending with an existing /// sorted list. /// ```rust /// use litemap::LiteMap; /// /// let mut map = LiteMap::new_vec(); /// assert!(map.try_append(1, "uno").is_none()); /// assert!(map.try_append(3, "tres").is_none()); /// /// assert!( /// matches!(map.try_append(3, "tres-updated"), Some((3, "tres-updated"))), /// "append duplicate of last key", /// ); /// /// assert!( /// matches!(map.try_append(2, "dos"), Some((2, "dos"))), /// "append out of order" /// ); /// /// assert_eq!(map.get(&1), Some(&"uno")); /// /// // contains the original value for the key: 3 /// assert_eq!(map.get(&3), Some(&"tres")); /// /// // not appended since it wasn't in order /// assert_eq!(map.get(&2), None); /// ``` #[must_use] pub fn try_append(&mut self, key: K, value: V) -> Option<(K, V)> { if let Some(last) = self.values.lm_last() { if last.0 >= &key { return Some((key, value)); } } self.values.lm_push(key, value); None } /// Insert `value` with `key`, returning the existing value if it exists. /// /// ```rust /// use litemap::LiteMap; /// /// let mut map = LiteMap::new_vec(); /// map.insert(1, "one"); /// map.insert(2, "two"); /// assert_eq!(map.get(&1), Some(&"one")); /// assert_eq!(map.get(&3), None); /// ``` pub fn insert(&mut self, key: K, value: V) -> Option { self.insert_save_key(key, value).map(|(_, v)| v) } /// Version of [`Self::insert()`] that returns both the key and the old value. fn insert_save_key(&mut self, key: K, value: V) -> Option<(K, V)> { match self.values.lm_binary_search_by(|k| k.cmp(&key)) { #[allow(clippy::unwrap_used)] // Index came from binary_search Ok(found) => Some(( key, mem::replace(self.values.lm_get_mut(found).unwrap().1, value), )), Err(ins) => { self.values.lm_insert(ins, key, value); None } } } /// Attempts to insert a unique entry into the map. /// /// If `key` is not already in the map, inserts it with the corresponding `value` /// and returns `None`. /// /// If `key` is already in the map, no change is made to the map, and the key and value /// are returned back to the caller. /// /// ``` /// use litemap::LiteMap; /// /// let mut map = LiteMap::new_vec(); /// map.insert(1, "one"); /// map.insert(3, "three"); /// /// // 2 is not yet in the map... /// assert_eq!(map.try_insert(2, "two"), None); /// assert_eq!(map.len(), 3); /// /// // ...but now it is. /// assert_eq!(map.try_insert(2, "TWO"), Some((2, "TWO"))); /// assert_eq!(map.len(), 3); /// ``` pub fn try_insert(&mut self, key: K, value: V) -> Option<(K, V)> { match self.values.lm_binary_search_by(|k| k.cmp(&key)) { Ok(_) => Some((key, value)), Err(ins) => { self.values.lm_insert(ins, key, value); None } } } /// Remove the value at `key`, returning it if it exists. /// /// ```rust /// use litemap::LiteMap; /// /// let mut map = LiteMap::new_vec(); /// map.insert(1, "one"); /// map.insert(2, "two"); /// assert_eq!(map.remove(&1), Some("one")); /// assert_eq!(map.get(&1), None); /// ``` pub fn remove(&mut self, key: &Q) -> Option where K: Borrow, Q: Ord, { match self.values.lm_binary_search_by(|k| k.borrow().cmp(key)) { Ok(found) => Some(self.values.lm_remove(found).1), Err(_) => None, } } } impl<'a, K: 'a, V: 'a, S> LiteMap where K: Ord, S: StoreIterableMut<'a, K, V> + StoreFromIterator, { /// Insert all elements from `other` into this `LiteMap`. /// /// If `other` contains keys that already exist in `self`, the values in `other` replace the /// corresponding ones in `self`, and the rejected items from `self` are returned as a new /// `LiteMap`. Otherwise, `None` is returned. /// /// The implementation of this function is optimized if `self` and `other` have no overlap. /// /// # Examples /// /// ``` /// use litemap::LiteMap; /// /// let mut map1 = LiteMap::new_vec(); /// map1.insert(1, "one"); /// map1.insert(2, "two"); /// /// let mut map2 = LiteMap::new_vec(); /// map2.insert(2, "TWO"); /// map2.insert(4, "FOUR"); /// /// let leftovers = map1.extend_from_litemap(map2); /// /// assert_eq!(map1.len(), 3); /// assert_eq!(map1.get(&1), Some("one").as_ref()); /// assert_eq!(map1.get(&2), Some("TWO").as_ref()); /// assert_eq!(map1.get(&4), Some("FOUR").as_ref()); /// /// let map3 = leftovers.expect("Duplicate keys"); /// assert_eq!(map3.len(), 1); /// assert_eq!(map3.get(&2), Some("two").as_ref()); /// ``` pub fn extend_from_litemap(&mut self, other: Self) -> Option { if self.is_empty() { self.values = other.values; return None; } if other.is_empty() { return None; } if self.last().map(|(k, _)| k) < other.first().map(|(k, _)| k) { // append other to self self.values.lm_extend_end(other.values); None } else if self.first().map(|(k, _)| k) > other.last().map(|(k, _)| k) { // prepend other to self self.values.lm_extend_start(other.values); None } else { // insert every element let leftover_tuples = other .values .lm_into_iter() .filter_map(|(k, v)| self.insert_save_key(k, v)) .collect(); let ret = LiteMap { values: leftover_tuples, _key_type: PhantomData, _value_type: PhantomData, }; if ret.is_empty() { None } else { Some(ret) } } } } impl Default for LiteMap where S: Store + Default, { fn default() -> Self { Self { values: S::default(), _key_type: PhantomData, _value_type: PhantomData, } } } impl Index<&'_ K> for LiteMap where K: Ord, S: Store, { type Output = V; fn index(&self, key: &K) -> &V { #[allow(clippy::panic)] // documented match self.get(key) { Some(v) => v, None => panic!("no entry found for key"), } } } impl IndexMut<&'_ K> for LiteMap where K: Ord, S: StoreMut, { fn index_mut(&mut self, key: &K) -> &mut V { #[allow(clippy::panic)] // documented match self.get_mut(key) { Some(v) => v, None => panic!("no entry found for key"), } } } impl FromIterator<(K, V)> for LiteMap where K: Ord, S: StoreMut, { fn from_iter>(iter: I) -> Self { let iter = iter.into_iter(); let mut map = match iter.size_hint() { (_, Some(upper)) => Self::with_capacity(upper), (lower, None) => Self::with_capacity(lower), }; for (key, value) in iter { if let Some((key, value)) = map.try_append(key, value) { map.insert(key, value); } } map } } impl<'a, K: 'a, V: 'a, S> LiteMap where S: StoreIterable<'a, K, V>, { /// Produce an ordered iterator over key-value pairs pub fn iter(&'a self) -> impl Iterator + DoubleEndedIterator { self.values.lm_iter() } /// Produce an ordered iterator over keys pub fn iter_keys(&'a self) -> impl Iterator + DoubleEndedIterator { self.values.lm_iter().map(|val| val.0) } /// Produce an iterator over values, ordered by their keys pub fn iter_values(&'a self) -> impl Iterator + DoubleEndedIterator { self.values.lm_iter().map(|val| val.1) } } impl<'a, K: 'a, V: 'a, S> LiteMap where S: StoreIterableMut<'a, K, V>, { /// Produce an ordered mutable iterator over key-value pairs pub fn iter_mut( &'a mut self, ) -> impl Iterator + DoubleEndedIterator { self.values.lm_iter_mut() } } impl LiteMap where S: StoreMut, { /// Retains only the elements specified by the predicate. /// /// In other words, remove all elements such that `f((&k, &v))` returns `false`. /// /// # Example /// /// ```rust /// use litemap::LiteMap; /// /// let mut map = LiteMap::new_vec(); /// map.insert(1, "one"); /// map.insert(2, "two"); /// map.insert(3, "three"); /// /// // Retain elements with odd keys /// map.retain(|k, _| k % 2 == 1); /// /// assert_eq!(map.get(&1), Some(&"one")); /// assert_eq!(map.get(&2), None); /// ``` #[inline] pub fn retain(&mut self, predicate: F) where F: FnMut(&K, &V) -> bool, { self.values.lm_retain(predicate) } } #[cfg(test)] mod test { use crate::LiteMap; #[test] fn from_iterator() { let mut expected = LiteMap::with_capacity(4); expected.insert(1, "updated-one"); expected.insert(2, "original-two"); expected.insert(3, "original-three"); expected.insert(4, "updated-four"); let actual = vec![ (1, "original-one"), (2, "original-two"), (4, "original-four"), (4, "updated-four"), (1, "updated-one"), (3, "original-three"), ] .into_iter() .collect::>(); assert_eq!(expected, actual); } fn make_13() -> LiteMap { let mut result = LiteMap::new(); result.insert(1, "one"); result.insert(3, "three"); result } fn make_24() -> LiteMap { let mut result = LiteMap::new(); result.insert(2, "TWO"); result.insert(4, "FOUR"); result } fn make_46() -> LiteMap { let mut result = LiteMap::new(); result.insert(4, "four"); result.insert(6, "six"); result } #[test] fn extend_from_litemap_append() { let mut map = LiteMap::new(); map.extend_from_litemap(make_13()) .ok_or(()) .expect_err("Append to empty map"); map.extend_from_litemap(make_46()) .ok_or(()) .expect_err("Append to lesser map"); assert_eq!(map.len(), 4); } #[test] fn extend_from_litemap_prepend() { let mut map = LiteMap::new(); map.extend_from_litemap(make_46()) .ok_or(()) .expect_err("Prepend to empty map"); map.extend_from_litemap(make_13()) .ok_or(()) .expect_err("Prepend to lesser map"); assert_eq!(map.len(), 4); } #[test] fn extend_from_litemap_insert() { let mut map = LiteMap::new(); map.extend_from_litemap(make_13()) .ok_or(()) .expect_err("Append to empty map"); map.extend_from_litemap(make_24()) .ok_or(()) .expect_err("Insert with no conflict"); map.extend_from_litemap(make_46()) .ok_or(()) .expect("Insert with conflict"); assert_eq!(map.len(), 5); } }