//! An implementation of Clinger's Bellerophon algorithm. //! //! This is a moderate path algorithm that uses an extended-precision //! float, represented in 80 bits, by calculating the bits of slop //! and determining if those bits could prevent unambiguous rounding. //! //! This algorithm requires less static storage than the Lemire algorithm, //! and has decent performance, and is therefore used when non-decimal, //! non-power-of-two strings need to be parsed. Clinger's algorithm //! is described in depth in "How to Read Floating Point Numbers Accurately.", //! available online [here](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.45.4152&rep=rep1&type=pdf). //! //! This implementation is loosely based off the Golang implementation, //! found [here](https://github.com/golang/go/blob/b10849fbb97a2244c086991b4623ae9f32c212d0/src/strconv/extfloat.go). //! This code is therefore subject to a 3-clause BSD license. #![cfg(feature = "compact")] #![doc(hidden)] use crate::extended_float::ExtendedFloat; use crate::mask::{lower_n_halfway, lower_n_mask}; use crate::num::Float; use crate::number::Number; use crate::rounding::{round, round_nearest_tie_even}; use crate::table::BASE10_POWERS; // ALGORITHM // --------- /// Core implementation of the Bellerophon algorithm. /// /// Create an extended-precision float, scale it to the proper radix power, /// calculate the bits of slop, and return the representation. The value /// will always be guaranteed to be within 1 bit, rounded-down, of the real /// value. If a negative exponent is returned, this represents we were /// unable to unambiguously round the significant digits. /// /// This has been modified to return a biased, rather than unbiased exponent. pub fn bellerophon(num: &Number) -> ExtendedFloat { let fp_zero = ExtendedFloat { mant: 0, exp: 0, }; let fp_inf = ExtendedFloat { mant: 0, exp: F::INFINITE_POWER, }; // Early short-circuit, in case of literal 0 or infinity. // This allows us to avoid narrow casts causing numeric overflow, // and is a quick check for any radix. if num.mantissa == 0 || num.exponent <= -0x1000 { return fp_zero; } else if num.exponent >= 0x1000 { return fp_inf; } // Calculate our indexes for our extended-precision multiplication. // This narrowing cast is safe, since exponent must be in a valid range. let exponent = num.exponent as i32 + BASE10_POWERS.bias; let small_index = exponent % BASE10_POWERS.step; let large_index = exponent / BASE10_POWERS.step; if exponent < 0 { // Guaranteed underflow (assign 0). return fp_zero; } if large_index as usize >= BASE10_POWERS.large.len() { // Overflow (assign infinity) return fp_inf; } // Within the valid exponent range, multiply by the large and small // exponents and return the resulting value. // Track errors to as a factor of unit in last-precision. let mut errors: u32 = 0; if num.many_digits { errors += error_halfscale(); } // Multiply by the small power. // Check if we can directly multiply by an integer, if not, // use extended-precision multiplication. let mut fp = ExtendedFloat { mant: num.mantissa, exp: 0, }; match fp.mant.overflowing_mul(BASE10_POWERS.get_small_int(small_index as usize)) { // Overflow, multiplication unsuccessful, go slow path. (_, true) => { normalize(&mut fp); fp = mul(&fp, &BASE10_POWERS.get_small(small_index as usize)); errors += error_halfscale(); }, // No overflow, multiplication successful. (mant, false) => { fp.mant = mant; normalize(&mut fp); }, } // Multiply by the large power. fp = mul(&fp, &BASE10_POWERS.get_large(large_index as usize)); if errors > 0 { errors += 1; } errors += error_halfscale(); // Normalize the floating point (and the errors). let shift = normalize(&mut fp); errors <<= shift; fp.exp += F::EXPONENT_BIAS; // Check for literal overflow, even with halfway cases. if -fp.exp + 1 > 65 { return fp_zero; } // Too many errors accumulated, return an error. if !error_is_accurate::(errors, &fp) { // Bias the exponent so we know it's invalid. fp.exp += F::INVALID_FP; return fp; } // Check if we have a literal 0 or overflow here. // If we have an exponent of -63, we can still have a valid shift, // giving a case where we have too many errors and need to round-up. if -fp.exp + 1 == 65 { // Have more than 64 bits below the minimum exponent, must be 0. return fp_zero; } round::(&mut fp, |f, s| { round_nearest_tie_even(f, s, |is_odd, is_halfway, is_above| { is_above || (is_odd && is_halfway) }); }); fp } // ERRORS // ------ // Calculate if the errors in calculating the extended-precision float. // // Specifically, we want to know if we are close to a halfway representation, // or halfway between `b` and `b+1`, or `b+h`. The halfway representation // has the form: // SEEEEEEEHMMMMMMMMMMMMMMMMMMMMMMM100... // where: // S = Sign Bit // E = Exponent Bits // H = Hidden Bit // M = Mantissa Bits // // The halfway representation has a bit set 1-after the mantissa digits, // and no bits set immediately afterward, making it impossible to // round between `b` and `b+1` with this representation. /// Get the full error scale. #[inline(always)] const fn error_scale() -> u32 { 8 } /// Get the half error scale. #[inline(always)] const fn error_halfscale() -> u32 { error_scale() / 2 } /// Determine if the number of errors is tolerable for float precision. fn error_is_accurate(errors: u32, fp: &ExtendedFloat) -> bool { // Check we can't have a literal 0 denormal float. debug_assert!(fp.exp >= -64); // Determine if extended-precision float is a good approximation. // If the error has affected too many units, the float will be // inaccurate, or if the representation is too close to halfway // that any operations could affect this halfway representation. // See the documentation for dtoa for more information. // This is always a valid u32, since `fp.exp >= -64` // will always be positive and the significand size is {23, 52}. let mantissa_shift = 64 - F::MANTISSA_SIZE - 1; // The unbiased exponent checks is `unbiased_exp <= F::MANTISSA_SIZE // - F::EXPONENT_BIAS -64 + 1`, or `biased_exp <= F::MANTISSA_SIZE - 63`, // or `biased_exp <= mantissa_shift`. let extrabits = match fp.exp <= -mantissa_shift { // Denormal, since shifting to the hidden bit still has a negative exponent. // The unbiased check calculation for bits is `1 - F::EXPONENT_BIAS - unbiased_exp`, // or `1 - biased_exp`. true => 1 - fp.exp, false => 64 - F::MANTISSA_SIZE - 1, }; // Our logic is as follows: we want to determine if the actual // mantissa and the errors during calculation differ significantly // from the rounding point. The rounding point for round-nearest // is the halfway point, IE, this when the truncated bits start // with b1000..., while the rounding point for the round-toward // is when the truncated bits are equal to 0. // To do so, we can check whether the rounding point +/- the error // are >/< the actual lower n bits. // // For whether we need to use signed or unsigned types for this // analysis, see this example, using u8 rather than u64 to simplify // things. // // # Comparisons // cmp1 = (halfway - errors) < extra // cmp1 = extra < (halfway + errors) // // # Large Extrabits, Low Errors // // extrabits = 8 // halfway = 0b10000000 // extra = 0b10000010 // errors = 0b00000100 // halfway - errors = 0b01111100 // halfway + errors = 0b10000100 // // Unsigned: // halfway - errors = 124 // halfway + errors = 132 // extra = 130 // cmp1 = true // cmp2 = true // Signed: // halfway - errors = 124 // halfway + errors = -124 // extra = -126 // cmp1 = false // cmp2 = true // // # Conclusion // // Since errors will always be small, and since we want to detect // if the representation is accurate, we need to use an **unsigned** // type for comparisons. let maskbits = extrabits as u64; let errors = errors as u64; // Round-to-nearest, need to use the halfway point. if extrabits > 64 { // Underflow, we have a shift larger than the mantissa. // Representation is valid **only** if the value is close enough // overflow to the next bit within errors. If it overflows, // the representation is **not** valid. !fp.mant.overflowing_add(errors).1 } else { let mask = lower_n_mask(maskbits); let extra = fp.mant & mask; // Round-to-nearest, need to check if we're close to halfway. // IE, b10100 | 100000, where `|` signifies the truncation point. let halfway = lower_n_halfway(maskbits); let cmp1 = halfway.wrapping_sub(errors) < extra; let cmp2 = extra < halfway.wrapping_add(errors); // If both comparisons are true, we have significant rounding error, // and the value cannot be exactly represented. Otherwise, the // representation is valid. !(cmp1 && cmp2) } } // MATH // ---- /// Normalize float-point number. /// /// Shift the mantissa so the number of leading zeros is 0, or the value /// itself is 0. /// /// Get the number of bytes shifted. pub fn normalize(fp: &mut ExtendedFloat) -> i32 { // Note: // Using the ctlz intrinsic via leading_zeros is way faster (~10x) // than shifting 1-bit at a time, via while loop, and also way // faster (~2x) than an unrolled loop that checks at 32, 16, 4, // 2, and 1 bit. // // Using a modulus of pow2 (which will get optimized to a bitwise // and with 0x3F or faster) is slightly slower than an if/then, // however, removing the if/then will likely optimize more branched // code as it removes conditional logic. // Calculate the number of leading zeros, and then zero-out // any overflowing bits, to avoid shl overflow when self.mant == 0. if fp.mant != 0 { let shift = fp.mant.leading_zeros() as i32; fp.mant <<= shift; fp.exp -= shift; shift } else { 0 } } /// Multiply two normalized extended-precision floats, as if by `a*b`. /// /// The precision is maximal when the numbers are normalized, however, /// decent precision will occur as long as both values have high bits /// set. The result is not normalized. /// /// Algorithm: /// 1. Non-signed multiplication of mantissas (requires 2x as many bits as input). /// 2. Normalization of the result (not done here). /// 3. Addition of exponents. pub fn mul(x: &ExtendedFloat, y: &ExtendedFloat) -> ExtendedFloat { // Logic check, values must be decently normalized prior to multiplication. debug_assert!(x.mant >> 32 != 0); debug_assert!(y.mant >> 32 != 0); // Extract high-and-low masks. // Mask is u32::MAX for older Rustc versions. const LOMASK: u64 = 0xffff_ffff; let x1 = x.mant >> 32; let x0 = x.mant & LOMASK; let y1 = y.mant >> 32; let y0 = y.mant & LOMASK; // Get our products let x1_y0 = x1 * y0; let x0_y1 = x0 * y1; let x0_y0 = x0 * y0; let x1_y1 = x1 * y1; let mut tmp = (x1_y0 & LOMASK) + (x0_y1 & LOMASK) + (x0_y0 >> 32); // round up tmp += 1 << (32 - 1); ExtendedFloat { mant: x1_y1 + (x1_y0 >> 32) + (x0_y1 >> 32) + (tmp >> 32), exp: x.exp + y.exp + 64, } } // POWERS // ------ /// Precalculated powers of base N for the Bellerophon algorithm. pub struct BellerophonPowers { // Pre-calculated small powers. pub small: &'static [u64], // Pre-calculated large powers. pub large: &'static [u64], /// Pre-calculated small powers as 64-bit integers pub small_int: &'static [u64], // Step between large powers and number of small powers. pub step: i32, // Exponent bias for the large powers. pub bias: i32, /// ceil(log2(radix)) scaled as a multiplier. pub log2: i64, /// Bitshift for the log2 multiplier. pub log2_shift: i32, } /// Allow indexing of values without bounds checking impl BellerophonPowers { #[inline] pub fn get_small(&self, index: usize) -> ExtendedFloat { let mant = self.small[index]; let exp = (1 - 64) + ((self.log2 * index as i64) >> self.log2_shift); ExtendedFloat { mant, exp: exp as i32, } } #[inline] pub fn get_large(&self, index: usize) -> ExtendedFloat { let mant = self.large[index]; let biased_e = index as i64 * self.step as i64 - self.bias as i64; let exp = (1 - 64) + ((self.log2 * biased_e) >> self.log2_shift); ExtendedFloat { mant, exp: exp as i32, } } #[inline] pub fn get_small_int(&self, index: usize) -> u64 { self.small_int[index] } }