use alloc::vec::Vec; use core::fmt::Debug; use core::{mem, str}; use core::convert::TryInto; use crate::read::coff::{CoffCommon, CoffSymbol, CoffSymbolIterator, CoffSymbolTable, SymbolTable}; use crate::read::{ self, Architecture, ComdatKind, Error, Export, FileFlags, Import, NoDynamicRelocationIterator, Object, ObjectComdat, ObjectKind, ReadError, ReadRef, Result, SectionIndex, SymbolIndex, }; use crate::{pe, ByteString, Bytes, CodeView, LittleEndian as LE, Pod, U32}; use super::{ DataDirectories, ExportTable, ImageThunkData, ImportTable, PeSection, PeSectionIterator, PeSegment, PeSegmentIterator, RichHeaderInfo, SectionTable, }; /// A PE32 (32-bit) image file. pub type PeFile32<'data, R = &'data [u8]> = PeFile<'data, pe::ImageNtHeaders32, R>; /// A PE32+ (64-bit) image file. pub type PeFile64<'data, R = &'data [u8]> = PeFile<'data, pe::ImageNtHeaders64, R>; /// A PE object file. #[derive(Debug)] pub struct PeFile<'data, Pe, R = &'data [u8]> where Pe: ImageNtHeaders, R: ReadRef<'data>, { pub(super) dos_header: &'data pe::ImageDosHeader, pub(super) nt_headers: &'data Pe, pub(super) data_directories: DataDirectories<'data>, pub(super) common: CoffCommon<'data, R>, pub(super) data: R, } impl<'data, Pe, R> PeFile<'data, Pe, R> where Pe: ImageNtHeaders, R: ReadRef<'data>, { /// Parse the raw PE file data. pub fn parse(data: R) -> Result { let dos_header = pe::ImageDosHeader::parse(data)?; let mut offset = dos_header.nt_headers_offset().into(); let (nt_headers, data_directories) = Pe::parse(data, &mut offset)?; let sections = nt_headers.sections(data, offset)?; let coff_symbols = nt_headers.symbols(data); let image_base = nt_headers.optional_header().image_base(); Ok(PeFile { dos_header, nt_headers, data_directories, common: CoffCommon { sections, // The PE file format deprecates the COFF symbol table (https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#coff-file-header-object-and-image) // We do not want to prevent parsing the rest of the PE file for a corrupt COFF header, but rather return an empty symbol table symbols: coff_symbols.unwrap_or_default(), image_base, }, data, }) } /// Returns this binary data. pub fn data(&self) -> R { self.data } /// Return the DOS header of this file. pub fn dos_header(&self) -> &'data pe::ImageDosHeader { self.dos_header } /// Return the NT Headers of this file. pub fn nt_headers(&self) -> &'data Pe { self.nt_headers } /// Returns information about the rich header of this file (if any). pub fn rich_header_info(&self) -> Option { RichHeaderInfo::parse(self.data, self.dos_header.nt_headers_offset().into()) } /// Returns the section table of this binary. pub fn section_table(&self) -> SectionTable<'data> { self.common.sections } /// Returns the data directories of this file. pub fn data_directories(&self) -> DataDirectories<'data> { self.data_directories } /// Returns the data directory at the given index. pub fn data_directory(&self, id: usize) -> Option<&'data pe::ImageDataDirectory> { self.data_directories.get(id) } /// Returns the export table of this file. /// /// The export table is located using the data directory. pub fn export_table(&self) -> Result>> { self.data_directories .export_table(self.data, &self.common.sections) } /// Returns the import table of this file. /// /// The import table is located using the data directory. pub fn import_table(&self) -> Result>> { self.data_directories .import_table(self.data, &self.common.sections) } pub(super) fn section_alignment(&self) -> u64 { u64::from(self.nt_headers.optional_header().section_alignment()) } } impl<'data, Pe, R> read::private::Sealed for PeFile<'data, Pe, R> where Pe: ImageNtHeaders, R: ReadRef<'data>, { } impl<'data, 'file, Pe, R> Object<'data, 'file> for PeFile<'data, Pe, R> where 'data: 'file, Pe: ImageNtHeaders, R: 'file + ReadRef<'data>, { type Segment = PeSegment<'data, 'file, Pe, R>; type SegmentIterator = PeSegmentIterator<'data, 'file, Pe, R>; type Section = PeSection<'data, 'file, Pe, R>; type SectionIterator = PeSectionIterator<'data, 'file, Pe, R>; type Comdat = PeComdat<'data, 'file, Pe, R>; type ComdatIterator = PeComdatIterator<'data, 'file, Pe, R>; type Symbol = CoffSymbol<'data, 'file, R>; type SymbolIterator = CoffSymbolIterator<'data, 'file, R>; type SymbolTable = CoffSymbolTable<'data, 'file, R>; type DynamicRelocationIterator = NoDynamicRelocationIterator; fn architecture(&self) -> Architecture { match self.nt_headers.file_header().machine.get(LE) { pe::IMAGE_FILE_MACHINE_ARMNT => Architecture::Arm, pe::IMAGE_FILE_MACHINE_ARM64 => Architecture::Aarch64, pe::IMAGE_FILE_MACHINE_I386 => Architecture::I386, pe::IMAGE_FILE_MACHINE_AMD64 => Architecture::X86_64, _ => Architecture::Unknown, } } #[inline] fn is_little_endian(&self) -> bool { // Only little endian is supported. true } #[inline] fn is_64(&self) -> bool { self.nt_headers.is_type_64() } fn kind(&self) -> ObjectKind { let characteristics = self.nt_headers.file_header().characteristics.get(LE); if characteristics & pe::IMAGE_FILE_DLL != 0 { ObjectKind::Dynamic } else if characteristics & pe::IMAGE_FILE_SYSTEM != 0 { ObjectKind::Unknown } else { ObjectKind::Executable } } fn segments(&'file self) -> PeSegmentIterator<'data, 'file, Pe, R> { PeSegmentIterator { file: self, iter: self.common.sections.iter(), } } fn section_by_name_bytes( &'file self, section_name: &[u8], ) -> Option> { self.common .sections .section_by_name(self.common.symbols.strings(), section_name) .map(|(index, section)| PeSection { file: self, index: SectionIndex(index), section, }) } fn section_by_index( &'file self, index: SectionIndex, ) -> Result> { let section = self.common.sections.section(index.0)?; Ok(PeSection { file: self, index, section, }) } fn sections(&'file self) -> PeSectionIterator<'data, 'file, Pe, R> { PeSectionIterator { file: self, iter: self.common.sections.iter().enumerate(), } } fn comdats(&'file self) -> PeComdatIterator<'data, 'file, Pe, R> { PeComdatIterator { file: self } } fn symbol_by_index(&'file self, index: SymbolIndex) -> Result> { let symbol = self.common.symbols.symbol(index.0)?; Ok(CoffSymbol { file: &self.common, index, symbol, }) } fn symbols(&'file self) -> CoffSymbolIterator<'data, 'file, R> { CoffSymbolIterator { file: &self.common, index: 0, } } fn symbol_table(&'file self) -> Option> { Some(CoffSymbolTable { file: &self.common }) } fn dynamic_symbols(&'file self) -> CoffSymbolIterator<'data, 'file, R> { CoffSymbolIterator { file: &self.common, // Hack: don't return any. index: self.common.symbols.len(), } } fn dynamic_symbol_table(&'file self) -> Option> { None } fn dynamic_relocations(&'file self) -> Option { None } fn imports(&self) -> Result>> { let mut imports = Vec::new(); if let Some(import_table) = self.import_table()? { let mut import_descs = import_table.descriptors()?; while let Some(import_desc) = import_descs.next()? { let library = import_table.name(import_desc.name.get(LE))?; let mut first_thunk = import_desc.original_first_thunk.get(LE); if first_thunk == 0 { first_thunk = import_desc.first_thunk.get(LE); } let mut thunks = import_table.thunks(first_thunk)?; while let Some(thunk) = thunks.next::()? { if !thunk.is_ordinal() { let (_hint, name) = import_table.hint_name(thunk.address())?; imports.push(Import { library: ByteString(library), name: ByteString(name), }); } } } } Ok(imports) } fn exports(&self) -> Result>> { let mut exports = Vec::new(); if let Some(export_table) = self.export_table()? { for (name_pointer, address_index) in export_table.name_iter() { let name = export_table.name_from_pointer(name_pointer)?; let address = export_table.address_by_index(address_index.into())?; if !export_table.is_forward(address) { exports.push(Export { name: ByteString(name), address: self.common.image_base.wrapping_add(address.into()), }) } } } Ok(exports) } fn pdb_info(&self) -> Result> { let data_dir = match self.data_directory(pe::IMAGE_DIRECTORY_ENTRY_DEBUG) { Some(data_dir) => data_dir, None => return Ok(None), }; let debug_data = data_dir.data(self.data, &self.common.sections).map(Bytes)?; let debug_data_size = data_dir.size.get(LE) as usize; let count = debug_data_size / mem::size_of::(); let rem = debug_data_size % mem::size_of::(); if rem != 0 || count < 1 { return Err(Error("Invalid PE debug dir size")); } let debug_dirs = debug_data .read_slice_at::(0, count) .read_error("Invalid PE debug dir size")?; for debug_dir in debug_dirs { if debug_dir.typ.get(LE) != pe::IMAGE_DEBUG_TYPE_CODEVIEW { continue; } let info = self .data .read_slice_at::( debug_dir.pointer_to_raw_data.get(LE) as u64, debug_dir.size_of_data.get(LE) as usize, ) .read_error("Invalid CodeView Info address")?; let mut info = Bytes(info); let sig = info .read_bytes(4) .read_error("Invalid CodeView signature")?; if sig.0 != b"RSDS" { continue; } let guid: [u8; 16] = info .read_bytes(16) .read_error("Invalid CodeView GUID")? .0 .try_into() .unwrap(); let age = info.read::>().read_error("Invalid CodeView Age")?; let path = info .read_string() .read_error("Invalid CodeView file path")?; return Ok(Some(CodeView { path: ByteString(path), guid, age: age.get(LE), })); } Ok(None) } fn has_debug_symbols(&self) -> bool { self.section_by_name(".debug_info").is_some() } fn relative_address_base(&self) -> u64 { self.common.image_base } fn entry(&self) -> u64 { u64::from(self.nt_headers.optional_header().address_of_entry_point()) .wrapping_add(self.common.image_base) } fn flags(&self) -> FileFlags { FileFlags::Coff { characteristics: self.nt_headers.file_header().characteristics.get(LE), } } } /// An iterator over the COMDAT section groups of a `PeFile32`. pub type PeComdatIterator32<'data, 'file, R = &'data [u8]> = PeComdatIterator<'data, 'file, pe::ImageNtHeaders32, R>; /// An iterator over the COMDAT section groups of a `PeFile64`. pub type PeComdatIterator64<'data, 'file, R = &'data [u8]> = PeComdatIterator<'data, 'file, pe::ImageNtHeaders64, R>; /// An iterator over the COMDAT section groups of a `PeFile`. #[derive(Debug)] pub struct PeComdatIterator<'data, 'file, Pe, R = &'data [u8]> where Pe: ImageNtHeaders, R: ReadRef<'data>, { #[allow(unused)] file: &'file PeFile<'data, Pe, R>, } impl<'data, 'file, Pe, R> Iterator for PeComdatIterator<'data, 'file, Pe, R> where Pe: ImageNtHeaders, R: ReadRef<'data>, { type Item = PeComdat<'data, 'file, Pe, R>; #[inline] fn next(&mut self) -> Option { None } } /// A COMDAT section group of a `PeFile32`. pub type PeComdat32<'data, 'file, R = &'data [u8]> = PeComdat<'data, 'file, pe::ImageNtHeaders32, R>; /// A COMDAT section group of a `PeFile64`. pub type PeComdat64<'data, 'file, R = &'data [u8]> = PeComdat<'data, 'file, pe::ImageNtHeaders64, R>; /// A COMDAT section group of a `PeFile`. #[derive(Debug)] pub struct PeComdat<'data, 'file, Pe, R = &'data [u8]> where Pe: ImageNtHeaders, R: ReadRef<'data>, { #[allow(unused)] file: &'file PeFile<'data, Pe, R>, } impl<'data, 'file, Pe, R> read::private::Sealed for PeComdat<'data, 'file, Pe, R> where Pe: ImageNtHeaders, R: ReadRef<'data>, { } impl<'data, 'file, Pe, R> ObjectComdat<'data> for PeComdat<'data, 'file, Pe, R> where Pe: ImageNtHeaders, R: ReadRef<'data>, { type SectionIterator = PeComdatSectionIterator<'data, 'file, Pe, R>; #[inline] fn kind(&self) -> ComdatKind { unreachable!(); } #[inline] fn symbol(&self) -> SymbolIndex { unreachable!(); } #[inline] fn name_bytes(&self) -> Result<&[u8]> { unreachable!(); } #[inline] fn name(&self) -> Result<&str> { unreachable!(); } #[inline] fn sections(&self) -> Self::SectionIterator { unreachable!(); } } /// An iterator over the sections in a COMDAT section group of a `PeFile32`. pub type PeComdatSectionIterator32<'data, 'file, R = &'data [u8]> = PeComdatSectionIterator<'data, 'file, pe::ImageNtHeaders32, R>; /// An iterator over the sections in a COMDAT section group of a `PeFile64`. pub type PeComdatSectionIterator64<'data, 'file, R = &'data [u8]> = PeComdatSectionIterator<'data, 'file, pe::ImageNtHeaders64, R>; /// An iterator over the sections in a COMDAT section group of a `PeFile`. #[derive(Debug)] pub struct PeComdatSectionIterator<'data, 'file, Pe, R = &'data [u8]> where Pe: ImageNtHeaders, R: ReadRef<'data>, { #[allow(unused)] file: &'file PeFile<'data, Pe, R>, } impl<'data, 'file, Pe, R> Iterator for PeComdatSectionIterator<'data, 'file, Pe, R> where Pe: ImageNtHeaders, R: ReadRef<'data>, { type Item = SectionIndex; fn next(&mut self) -> Option { None } } impl pe::ImageDosHeader { /// Read the DOS header. /// /// Also checks that the `e_magic` field in the header is valid. pub fn parse<'data, R: ReadRef<'data>>(data: R) -> read::Result<&'data Self> { // DOS header comes first. let dos_header = data .read_at::(0) .read_error("Invalid DOS header size or alignment")?; if dos_header.e_magic.get(LE) != pe::IMAGE_DOS_SIGNATURE { return Err(Error("Invalid DOS magic")); } Ok(dos_header) } /// Return the file offset of the nt_headers. #[inline] pub fn nt_headers_offset(&self) -> u32 { self.e_lfanew.get(LE) } } /// Find the optional header and read the `optional_header.magic`. /// /// It can be useful to know this magic value before trying to /// fully parse the NT headers. pub fn optional_header_magic<'data, R: ReadRef<'data>>(data: R) -> Result { let dos_header = pe::ImageDosHeader::parse(data)?; // NT headers are at an offset specified in the DOS header. let offset = dos_header.nt_headers_offset().into(); // It doesn't matter which NT header type is used for the purpose // of reading the optional header magic. let nt_headers = data .read_at::(offset) .read_error("Invalid NT headers offset, size, or alignment")?; if nt_headers.signature() != pe::IMAGE_NT_SIGNATURE { return Err(Error("Invalid PE magic")); } Ok(nt_headers.optional_header().magic()) } /// A trait for generic access to `ImageNtHeaders32` and `ImageNtHeaders64`. #[allow(missing_docs)] pub trait ImageNtHeaders: Debug + Pod { type ImageOptionalHeader: ImageOptionalHeader; type ImageThunkData: ImageThunkData; /// Return true if this type is a 64-bit header. /// /// This is a property of the type, not a value in the header data. fn is_type_64(&self) -> bool; /// Return true if the magic field in the optional header is valid. fn is_valid_optional_magic(&self) -> bool; /// Return the signature fn signature(&self) -> u32; /// Return the file header. fn file_header(&self) -> &pe::ImageFileHeader; /// Return the optional header. fn optional_header(&self) -> &Self::ImageOptionalHeader; // Provided methods. /// Read the NT headers, including the data directories. /// /// `data` must be for the entire file. /// /// `offset` must be headers offset, which can be obtained from `ImageDosHeader::nt_headers_offset`. /// It is updated to point after the optional header, which is where the section headers are located. /// /// Also checks that the `signature` and `magic` fields in the headers are valid. fn parse<'data, R: ReadRef<'data>>( data: R, offset: &mut u64, ) -> read::Result<(&'data Self, DataDirectories<'data>)> { // Note that this does not include the data directories in the optional header. let nt_headers = data .read::(offset) .read_error("Invalid PE headers offset or size")?; if nt_headers.signature() != pe::IMAGE_NT_SIGNATURE { return Err(Error("Invalid PE magic")); } if !nt_headers.is_valid_optional_magic() { return Err(Error("Invalid PE optional header magic")); } // Read the rest of the optional header, and then read the data directories from that. let optional_data_size = u64::from(nt_headers.file_header().size_of_optional_header.get(LE)) .checked_sub(mem::size_of::() as u64) .read_error("PE optional header size is too small")?; let optional_data = data .read_bytes(offset, optional_data_size) .read_error("Invalid PE optional header size")?; let data_directories = DataDirectories::parse( optional_data, nt_headers.optional_header().number_of_rva_and_sizes(), )?; Ok((nt_headers, data_directories)) } /// Read the section table. /// /// `data` must be for the entire file. /// `offset` must be after the optional file header. #[inline] fn sections<'data, R: ReadRef<'data>>( &self, data: R, offset: u64, ) -> read::Result> { SectionTable::parse(self.file_header(), data, offset) } /// Read the COFF symbol table and string table. /// /// `data` must be the entire file data. #[inline] fn symbols<'data, R: ReadRef<'data>>(&self, data: R) -> read::Result> { SymbolTable::parse(self.file_header(), data) } } /// A trait for generic access to `ImageOptionalHeader32` and `ImageOptionalHeader64`. #[allow(missing_docs)] pub trait ImageOptionalHeader: Debug + Pod { // Standard fields. fn magic(&self) -> u16; fn major_linker_version(&self) -> u8; fn minor_linker_version(&self) -> u8; fn size_of_code(&self) -> u32; fn size_of_initialized_data(&self) -> u32; fn size_of_uninitialized_data(&self) -> u32; fn address_of_entry_point(&self) -> u32; fn base_of_code(&self) -> u32; fn base_of_data(&self) -> Option; // NT additional fields. fn image_base(&self) -> u64; fn section_alignment(&self) -> u32; fn file_alignment(&self) -> u32; fn major_operating_system_version(&self) -> u16; fn minor_operating_system_version(&self) -> u16; fn major_image_version(&self) -> u16; fn minor_image_version(&self) -> u16; fn major_subsystem_version(&self) -> u16; fn minor_subsystem_version(&self) -> u16; fn win32_version_value(&self) -> u32; fn size_of_image(&self) -> u32; fn size_of_headers(&self) -> u32; fn check_sum(&self) -> u32; fn subsystem(&self) -> u16; fn dll_characteristics(&self) -> u16; fn size_of_stack_reserve(&self) -> u64; fn size_of_stack_commit(&self) -> u64; fn size_of_heap_reserve(&self) -> u64; fn size_of_heap_commit(&self) -> u64; fn loader_flags(&self) -> u32; fn number_of_rva_and_sizes(&self) -> u32; } impl ImageNtHeaders for pe::ImageNtHeaders32 { type ImageOptionalHeader = pe::ImageOptionalHeader32; type ImageThunkData = pe::ImageThunkData32; #[inline] fn is_type_64(&self) -> bool { false } #[inline] fn is_valid_optional_magic(&self) -> bool { self.optional_header.magic.get(LE) == pe::IMAGE_NT_OPTIONAL_HDR32_MAGIC } #[inline] fn signature(&self) -> u32 { self.signature.get(LE) } #[inline] fn file_header(&self) -> &pe::ImageFileHeader { &self.file_header } #[inline] fn optional_header(&self) -> &Self::ImageOptionalHeader { &self.optional_header } } impl ImageOptionalHeader for pe::ImageOptionalHeader32 { #[inline] fn magic(&self) -> u16 { self.magic.get(LE) } #[inline] fn major_linker_version(&self) -> u8 { self.major_linker_version } #[inline] fn minor_linker_version(&self) -> u8 { self.minor_linker_version } #[inline] fn size_of_code(&self) -> u32 { self.size_of_code.get(LE) } #[inline] fn size_of_initialized_data(&self) -> u32 { self.size_of_initialized_data.get(LE) } #[inline] fn size_of_uninitialized_data(&self) -> u32 { self.size_of_uninitialized_data.get(LE) } #[inline] fn address_of_entry_point(&self) -> u32 { self.address_of_entry_point.get(LE) } #[inline] fn base_of_code(&self) -> u32 { self.base_of_code.get(LE) } #[inline] fn base_of_data(&self) -> Option { Some(self.base_of_data.get(LE)) } #[inline] fn image_base(&self) -> u64 { self.image_base.get(LE).into() } #[inline] fn section_alignment(&self) -> u32 { self.section_alignment.get(LE) } #[inline] fn file_alignment(&self) -> u32 { self.file_alignment.get(LE) } #[inline] fn major_operating_system_version(&self) -> u16 { self.major_operating_system_version.get(LE) } #[inline] fn minor_operating_system_version(&self) -> u16 { self.minor_operating_system_version.get(LE) } #[inline] fn major_image_version(&self) -> u16 { self.major_image_version.get(LE) } #[inline] fn minor_image_version(&self) -> u16 { self.minor_image_version.get(LE) } #[inline] fn major_subsystem_version(&self) -> u16 { self.major_subsystem_version.get(LE) } #[inline] fn minor_subsystem_version(&self) -> u16 { self.minor_subsystem_version.get(LE) } #[inline] fn win32_version_value(&self) -> u32 { self.win32_version_value.get(LE) } #[inline] fn size_of_image(&self) -> u32 { self.size_of_image.get(LE) } #[inline] fn size_of_headers(&self) -> u32 { self.size_of_headers.get(LE) } #[inline] fn check_sum(&self) -> u32 { self.check_sum.get(LE) } #[inline] fn subsystem(&self) -> u16 { self.subsystem.get(LE) } #[inline] fn dll_characteristics(&self) -> u16 { self.dll_characteristics.get(LE) } #[inline] fn size_of_stack_reserve(&self) -> u64 { self.size_of_stack_reserve.get(LE).into() } #[inline] fn size_of_stack_commit(&self) -> u64 { self.size_of_stack_commit.get(LE).into() } #[inline] fn size_of_heap_reserve(&self) -> u64 { self.size_of_heap_reserve.get(LE).into() } #[inline] fn size_of_heap_commit(&self) -> u64 { self.size_of_heap_commit.get(LE).into() } #[inline] fn loader_flags(&self) -> u32 { self.loader_flags.get(LE) } #[inline] fn number_of_rva_and_sizes(&self) -> u32 { self.number_of_rva_and_sizes.get(LE) } } impl ImageNtHeaders for pe::ImageNtHeaders64 { type ImageOptionalHeader = pe::ImageOptionalHeader64; type ImageThunkData = pe::ImageThunkData64; #[inline] fn is_type_64(&self) -> bool { true } #[inline] fn is_valid_optional_magic(&self) -> bool { self.optional_header.magic.get(LE) == pe::IMAGE_NT_OPTIONAL_HDR64_MAGIC } #[inline] fn signature(&self) -> u32 { self.signature.get(LE) } #[inline] fn file_header(&self) -> &pe::ImageFileHeader { &self.file_header } #[inline] fn optional_header(&self) -> &Self::ImageOptionalHeader { &self.optional_header } } impl ImageOptionalHeader for pe::ImageOptionalHeader64 { #[inline] fn magic(&self) -> u16 { self.magic.get(LE) } #[inline] fn major_linker_version(&self) -> u8 { self.major_linker_version } #[inline] fn minor_linker_version(&self) -> u8 { self.minor_linker_version } #[inline] fn size_of_code(&self) -> u32 { self.size_of_code.get(LE) } #[inline] fn size_of_initialized_data(&self) -> u32 { self.size_of_initialized_data.get(LE) } #[inline] fn size_of_uninitialized_data(&self) -> u32 { self.size_of_uninitialized_data.get(LE) } #[inline] fn address_of_entry_point(&self) -> u32 { self.address_of_entry_point.get(LE) } #[inline] fn base_of_code(&self) -> u32 { self.base_of_code.get(LE) } #[inline] fn base_of_data(&self) -> Option { None } #[inline] fn image_base(&self) -> u64 { self.image_base.get(LE) } #[inline] fn section_alignment(&self) -> u32 { self.section_alignment.get(LE) } #[inline] fn file_alignment(&self) -> u32 { self.file_alignment.get(LE) } #[inline] fn major_operating_system_version(&self) -> u16 { self.major_operating_system_version.get(LE) } #[inline] fn minor_operating_system_version(&self) -> u16 { self.minor_operating_system_version.get(LE) } #[inline] fn major_image_version(&self) -> u16 { self.major_image_version.get(LE) } #[inline] fn minor_image_version(&self) -> u16 { self.minor_image_version.get(LE) } #[inline] fn major_subsystem_version(&self) -> u16 { self.major_subsystem_version.get(LE) } #[inline] fn minor_subsystem_version(&self) -> u16 { self.minor_subsystem_version.get(LE) } #[inline] fn win32_version_value(&self) -> u32 { self.win32_version_value.get(LE) } #[inline] fn size_of_image(&self) -> u32 { self.size_of_image.get(LE) } #[inline] fn size_of_headers(&self) -> u32 { self.size_of_headers.get(LE) } #[inline] fn check_sum(&self) -> u32 { self.check_sum.get(LE) } #[inline] fn subsystem(&self) -> u16 { self.subsystem.get(LE) } #[inline] fn dll_characteristics(&self) -> u16 { self.dll_characteristics.get(LE) } #[inline] fn size_of_stack_reserve(&self) -> u64 { self.size_of_stack_reserve.get(LE) } #[inline] fn size_of_stack_commit(&self) -> u64 { self.size_of_stack_commit.get(LE) } #[inline] fn size_of_heap_reserve(&self) -> u64 { self.size_of_heap_reserve.get(LE) } #[inline] fn size_of_heap_commit(&self) -> u64 { self.size_of_heap_commit.get(LE) } #[inline] fn loader_flags(&self) -> u32 { self.loader_flags.get(LE) } #[inline] fn number_of_rva_and_sizes(&self) -> u32 { self.number_of_rva_and_sizes.get(LE) } }