use alloc::vec::Vec; use crate::elf; use crate::write::elf::writer::*; use crate::write::string::StringId; use crate::write::*; use crate::AddressSize; #[derive(Clone, Copy)] struct ComdatOffsets { offset: usize, str_id: StringId, } #[derive(Clone, Copy)] struct SectionOffsets { index: SectionIndex, offset: usize, str_id: StringId, reloc_offset: usize, reloc_str_id: Option, } #[derive(Default, Clone, Copy)] struct SymbolOffsets { index: SymbolIndex, str_id: Option, } impl<'a> Object<'a> { pub(crate) fn elf_section_info( &self, section: StandardSection, ) -> (&'static [u8], &'static [u8], SectionKind) { match section { StandardSection::Text => (&[], &b".text"[..], SectionKind::Text), StandardSection::Data => (&[], &b".data"[..], SectionKind::Data), StandardSection::ReadOnlyData | StandardSection::ReadOnlyString => { (&[], &b".rodata"[..], SectionKind::ReadOnlyData) } StandardSection::ReadOnlyDataWithRel => (&[], b".data.rel.ro", SectionKind::Data), StandardSection::UninitializedData => { (&[], &b".bss"[..], SectionKind::UninitializedData) } StandardSection::Tls => (&[], &b".tdata"[..], SectionKind::Tls), StandardSection::UninitializedTls => { (&[], &b".tbss"[..], SectionKind::UninitializedTls) } StandardSection::TlsVariables => { // Unsupported section. (&[], &[], SectionKind::TlsVariables) } StandardSection::Common => { // Unsupported section. (&[], &[], SectionKind::Common) } } } pub(crate) fn elf_subsection_name(&self, section: &[u8], value: &[u8]) -> Vec { let mut name = section.to_vec(); name.push(b'.'); name.extend_from_slice(value); name } fn elf_has_relocation_addend(&self) -> Result { Ok(match self.architecture { Architecture::Aarch64 => true, Architecture::Aarch64_Ilp32 => true, Architecture::Arm => false, Architecture::Avr => true, Architecture::Bpf => false, Architecture::I386 => false, Architecture::X86_64 => true, Architecture::X86_64_X32 => true, Architecture::Hexagon => true, Architecture::LoongArch64 => true, Architecture::Mips => false, Architecture::Mips64 => true, Architecture::Msp430 => true, Architecture::PowerPc => true, Architecture::PowerPc64 => true, Architecture::Riscv64 => true, Architecture::Riscv32 => true, Architecture::S390x => true, Architecture::Sbf => false, Architecture::Sparc64 => true, Architecture::Xtensa => true, _ => { return Err(Error(format!( "unimplemented architecture {:?}", self.architecture ))); } }) } pub(crate) fn elf_fixup_relocation(&mut self, mut relocation: &mut Relocation) -> Result { // Return true if we should use a section symbol to avoid preemption. fn want_section_symbol(relocation: &Relocation, symbol: &Symbol) -> bool { if symbol.scope != SymbolScope::Dynamic { // Only dynamic symbols can be preemptible. return false; } match symbol.kind { SymbolKind::Text | SymbolKind::Data => {} _ => return false, } match relocation.kind { // Anything using GOT or PLT is preemptible. // We also require that `Other` relocations must already be correct. RelocationKind::Got | RelocationKind::GotRelative | RelocationKind::GotBaseRelative | RelocationKind::PltRelative | RelocationKind::Elf(_) => return false, // Absolute relocations are preemptible for non-local data. // TODO: not sure if this rule is exactly correct // This rule was added to handle global data references in debuginfo. // Maybe this should be a new relocation kind so that the caller can decide. RelocationKind::Absolute => { if symbol.kind == SymbolKind::Data { return false; } } _ => {} } true } // Use section symbols for relocations where required to avoid preemption. // Otherwise, the linker will fail with: // relocation R_X86_64_PC32 against symbol `SomeSymbolName' can not be used when // making a shared object; recompile with -fPIC let symbol = &self.symbols[relocation.symbol.0]; if want_section_symbol(relocation, symbol) { if let Some(section) = symbol.section.id() { relocation.addend += symbol.value as i64; relocation.symbol = self.section_symbol(section); } } // Determine whether the addend is stored in the relocation or the data. if self.elf_has_relocation_addend()? { Ok(0) } else { let constant = relocation.addend; relocation.addend = 0; Ok(constant) } } pub(crate) fn elf_write(&self, buffer: &mut dyn WritableBuffer) -> Result<()> { // Create reloc section header names so we can reference them. let is_rela = self.elf_has_relocation_addend()?; let reloc_names: Vec<_> = self .sections .iter() .map(|section| { let mut reloc_name = Vec::with_capacity( if is_rela { ".rela".len() } else { ".rel".len() } + section.name.len(), ); if !section.relocations.is_empty() { reloc_name.extend_from_slice(if is_rela { &b".rela"[..] } else { &b".rel"[..] }); reloc_name.extend_from_slice(§ion.name); } reloc_name }) .collect(); // Start calculating offsets of everything. let is_64 = match self.architecture.address_size().unwrap() { AddressSize::U8 | AddressSize::U16 | AddressSize::U32 => false, AddressSize::U64 => true, }; let mut writer = Writer::new(self.endian, is_64, buffer); writer.reserve_file_header(); // Calculate size of section data. let mut comdat_offsets = Vec::with_capacity(self.comdats.len()); for comdat in &self.comdats { if comdat.kind != ComdatKind::Any { return Err(Error(format!( "unsupported COMDAT symbol `{}` kind {:?}", self.symbols[comdat.symbol.0].name().unwrap_or(""), comdat.kind ))); } writer.reserve_section_index(); let offset = writer.reserve_comdat(comdat.sections.len()); let str_id = writer.add_section_name(b".group"); comdat_offsets.push(ComdatOffsets { offset, str_id }); } let mut section_offsets = Vec::with_capacity(self.sections.len()); for (section, reloc_name) in self.sections.iter().zip(reloc_names.iter()) { let index = writer.reserve_section_index(); let offset = writer.reserve(section.data.len(), section.align as usize); let str_id = writer.add_section_name(§ion.name); let mut reloc_str_id = None; if !section.relocations.is_empty() { writer.reserve_section_index(); reloc_str_id = Some(writer.add_section_name(reloc_name)); } section_offsets.push(SectionOffsets { index, offset, str_id, // Relocation data is reserved later. reloc_offset: 0, reloc_str_id, }); } // Calculate index of symbols and add symbol strings to strtab. let mut symbol_offsets = vec![SymbolOffsets::default(); self.symbols.len()]; writer.reserve_null_symbol_index(); // Local symbols must come before global. for (index, symbol) in self.symbols.iter().enumerate() { if symbol.is_local() { let section_index = symbol.section.id().map(|s| section_offsets[s.0].index); symbol_offsets[index].index = writer.reserve_symbol_index(section_index); } } let symtab_num_local = writer.symbol_count(); for (index, symbol) in self.symbols.iter().enumerate() { if !symbol.is_local() { let section_index = symbol.section.id().map(|s| section_offsets[s.0].index); symbol_offsets[index].index = writer.reserve_symbol_index(section_index); } } for (index, symbol) in self.symbols.iter().enumerate() { if symbol.kind != SymbolKind::Section && !symbol.name.is_empty() { symbol_offsets[index].str_id = Some(writer.add_string(&symbol.name)); } } // Calculate size of symbols. writer.reserve_symtab_section_index(); writer.reserve_symtab(); if writer.symtab_shndx_needed() { writer.reserve_symtab_shndx_section_index(); } writer.reserve_symtab_shndx(); writer.reserve_strtab_section_index(); writer.reserve_strtab(); // Calculate size of relocations. for (index, section) in self.sections.iter().enumerate() { let count = section.relocations.len(); if count != 0 { section_offsets[index].reloc_offset = writer.reserve_relocations(count, is_rela); } } // Calculate size of section headers. writer.reserve_shstrtab_section_index(); writer.reserve_shstrtab(); writer.reserve_section_headers(); // Start writing. let e_type = elf::ET_REL; let e_machine = match self.architecture { Architecture::Aarch64 => elf::EM_AARCH64, Architecture::Aarch64_Ilp32 => elf::EM_AARCH64, Architecture::Arm => elf::EM_ARM, Architecture::Avr => elf::EM_AVR, Architecture::Bpf => elf::EM_BPF, Architecture::I386 => elf::EM_386, Architecture::X86_64 => elf::EM_X86_64, Architecture::X86_64_X32 => elf::EM_X86_64, Architecture::Hexagon => elf::EM_HEXAGON, Architecture::LoongArch64 => elf::EM_LOONGARCH, Architecture::Mips => elf::EM_MIPS, Architecture::Mips64 => elf::EM_MIPS, Architecture::Msp430 => elf::EM_MSP430, Architecture::PowerPc => elf::EM_PPC, Architecture::PowerPc64 => elf::EM_PPC64, Architecture::Riscv32 => elf::EM_RISCV, Architecture::Riscv64 => elf::EM_RISCV, Architecture::S390x => elf::EM_S390, Architecture::Sbf => elf::EM_SBF, Architecture::Sparc64 => elf::EM_SPARCV9, Architecture::Xtensa => elf::EM_XTENSA, _ => { return Err(Error(format!( "unimplemented architecture {:?}", self.architecture ))); } }; let (os_abi, abi_version, e_flags) = if let FileFlags::Elf { os_abi, abi_version, e_flags, } = self.flags { (os_abi, abi_version, e_flags) } else { (elf::ELFOSABI_NONE, 0, 0) }; writer.write_file_header(&FileHeader { os_abi, abi_version, e_type, e_machine, e_entry: 0, e_flags, })?; // Write section data. for comdat in &self.comdats { writer.write_comdat_header(); for section in &comdat.sections { writer.write_comdat_entry(section_offsets[section.0].index); } } for (index, section) in self.sections.iter().enumerate() { let len = section.data.len(); if len != 0 { writer.write_align(section.align as usize); debug_assert_eq!(section_offsets[index].offset, writer.len()); writer.write(§ion.data); } } // Write symbols. writer.write_null_symbol(); let mut write_symbol = |index: usize, symbol: &Symbol| -> Result<()> { let st_info = if let SymbolFlags::Elf { st_info, .. } = symbol.flags { st_info } else { let st_type = match symbol.kind { SymbolKind::Null => elf::STT_NOTYPE, SymbolKind::Text => { if symbol.is_undefined() { elf::STT_NOTYPE } else { elf::STT_FUNC } } SymbolKind::Data => { if symbol.is_undefined() { elf::STT_NOTYPE } else if symbol.is_common() { elf::STT_COMMON } else { elf::STT_OBJECT } } SymbolKind::Section => elf::STT_SECTION, SymbolKind::File => elf::STT_FILE, SymbolKind::Tls => elf::STT_TLS, SymbolKind::Label => elf::STT_NOTYPE, SymbolKind::Unknown => { if symbol.is_undefined() { elf::STT_NOTYPE } else { return Err(Error(format!( "unimplemented symbol `{}` kind {:?}", symbol.name().unwrap_or(""), symbol.kind ))); } } }; let st_bind = if symbol.weak { elf::STB_WEAK } else if symbol.is_undefined() { elf::STB_GLOBAL } else if symbol.is_local() { elf::STB_LOCAL } else { elf::STB_GLOBAL }; (st_bind << 4) + st_type }; let st_other = if let SymbolFlags::Elf { st_other, .. } = symbol.flags { st_other } else if symbol.scope == SymbolScope::Linkage { elf::STV_HIDDEN } else { elf::STV_DEFAULT }; let (st_shndx, section) = match symbol.section { SymbolSection::None => { debug_assert_eq!(symbol.kind, SymbolKind::File); (elf::SHN_ABS, None) } SymbolSection::Undefined => (elf::SHN_UNDEF, None), SymbolSection::Absolute => (elf::SHN_ABS, None), SymbolSection::Common => (elf::SHN_COMMON, None), SymbolSection::Section(id) => (0, Some(section_offsets[id.0].index)), }; writer.write_symbol(&Sym { name: symbol_offsets[index].str_id, section, st_info, st_other, st_shndx, st_value: symbol.value, st_size: symbol.size, }); Ok(()) }; for (index, symbol) in self.symbols.iter().enumerate() { if symbol.is_local() { write_symbol(index, symbol)?; } } for (index, symbol) in self.symbols.iter().enumerate() { if !symbol.is_local() { write_symbol(index, symbol)?; } } writer.write_symtab_shndx(); writer.write_strtab(); // Write relocations. for (index, section) in self.sections.iter().enumerate() { if !section.relocations.is_empty() { writer.write_align_relocation(); debug_assert_eq!(section_offsets[index].reloc_offset, writer.len()); for reloc in §ion.relocations { let r_type = match self.architecture { Architecture::Aarch64 => match (reloc.kind, reloc.encoding, reloc.size) { (RelocationKind::Absolute, RelocationEncoding::Generic, 64) => { elf::R_AARCH64_ABS64 } (RelocationKind::Absolute, RelocationEncoding::Generic, 32) => { elf::R_AARCH64_ABS32 } (RelocationKind::Absolute, RelocationEncoding::Generic, 16) => { elf::R_AARCH64_ABS16 } (RelocationKind::Relative, RelocationEncoding::Generic, 64) => { elf::R_AARCH64_PREL64 } (RelocationKind::Relative, RelocationEncoding::Generic, 32) => { elf::R_AARCH64_PREL32 } (RelocationKind::Relative, RelocationEncoding::Generic, 16) => { elf::R_AARCH64_PREL16 } (RelocationKind::Relative, RelocationEncoding::AArch64Call, 26) | (RelocationKind::PltRelative, RelocationEncoding::AArch64Call, 26) => { elf::R_AARCH64_CALL26 } (RelocationKind::Elf(x), _, _) => x, _ => { return Err(Error(format!("unimplemented relocation {:?}", reloc))); } }, Architecture::Aarch64_Ilp32 => { match (reloc.kind, reloc.encoding, reloc.size) { (RelocationKind::Absolute, RelocationEncoding::Generic, 32) => { elf::R_AARCH64_P32_ABS32 } (RelocationKind::Elf(x), _, _) => x, _ => { return Err(Error(format!( "unimplemented relocation {:?}", reloc ))); } } } Architecture::Arm => match (reloc.kind, reloc.encoding, reloc.size) { (RelocationKind::Absolute, _, 32) => elf::R_ARM_ABS32, (RelocationKind::Elf(x), _, _) => x, _ => { return Err(Error(format!("unimplemented relocation {:?}", reloc))); } }, Architecture::Avr => match (reloc.kind, reloc.encoding, reloc.size) { (RelocationKind::Absolute, _, 32) => elf::R_AVR_32, (RelocationKind::Absolute, _, 16) => elf::R_AVR_16, (RelocationKind::Elf(x), _, _) => x, _ => { return Err(Error(format!("unimplemented relocation {:?}", reloc))); } }, Architecture::Bpf => match (reloc.kind, reloc.encoding, reloc.size) { (RelocationKind::Absolute, _, 64) => elf::R_BPF_64_64, (RelocationKind::Absolute, _, 32) => elf::R_BPF_64_32, (RelocationKind::Elf(x), _, _) => x, _ => { return Err(Error(format!("unimplemented relocation {:?}", reloc))); } }, Architecture::I386 => match (reloc.kind, reloc.size) { (RelocationKind::Absolute, 32) => elf::R_386_32, (RelocationKind::Relative, 32) => elf::R_386_PC32, (RelocationKind::Got, 32) => elf::R_386_GOT32, (RelocationKind::PltRelative, 32) => elf::R_386_PLT32, (RelocationKind::GotBaseOffset, 32) => elf::R_386_GOTOFF, (RelocationKind::GotBaseRelative, 32) => elf::R_386_GOTPC, (RelocationKind::Absolute, 16) => elf::R_386_16, (RelocationKind::Relative, 16) => elf::R_386_PC16, (RelocationKind::Absolute, 8) => elf::R_386_8, (RelocationKind::Relative, 8) => elf::R_386_PC8, (RelocationKind::Elf(x), _) => x, _ => { return Err(Error(format!("unimplemented relocation {:?}", reloc))); } }, Architecture::X86_64 | Architecture::X86_64_X32 => { match (reloc.kind, reloc.encoding, reloc.size) { (RelocationKind::Absolute, RelocationEncoding::Generic, 64) => { elf::R_X86_64_64 } (RelocationKind::Relative, _, 32) => elf::R_X86_64_PC32, (RelocationKind::Got, _, 32) => elf::R_X86_64_GOT32, (RelocationKind::PltRelative, _, 32) => elf::R_X86_64_PLT32, (RelocationKind::GotRelative, _, 32) => elf::R_X86_64_GOTPCREL, (RelocationKind::Absolute, RelocationEncoding::Generic, 32) => { elf::R_X86_64_32 } (RelocationKind::Absolute, RelocationEncoding::X86Signed, 32) => { elf::R_X86_64_32S } (RelocationKind::Absolute, _, 16) => elf::R_X86_64_16, (RelocationKind::Relative, _, 16) => elf::R_X86_64_PC16, (RelocationKind::Absolute, _, 8) => elf::R_X86_64_8, (RelocationKind::Relative, _, 8) => elf::R_X86_64_PC8, (RelocationKind::Elf(x), _, _) => x, _ => { return Err(Error(format!( "unimplemented relocation {:?}", reloc ))); } } } Architecture::Hexagon => match (reloc.kind, reloc.encoding, reloc.size) { (RelocationKind::Absolute, _, 32) => elf::R_HEX_32, (RelocationKind::Elf(x), _, _) => x, _ => { return Err(Error(format!("unimplemented relocation {:?}", reloc))); } }, Architecture::LoongArch64 => match (reloc.kind, reloc.encoding, reloc.size) { (RelocationKind::Absolute, _, 32) => elf::R_LARCH_32, (RelocationKind::Absolute, _, 64) => elf::R_LARCH_64, (RelocationKind::Relative, _, 32) => elf::R_LARCH_32_PCREL, (RelocationKind::Relative, RelocationEncoding::LoongArchBranch, 16) | ( RelocationKind::PltRelative, RelocationEncoding::LoongArchBranch, 16, ) => elf::R_LARCH_B16, (RelocationKind::Relative, RelocationEncoding::LoongArchBranch, 21) | ( RelocationKind::PltRelative, RelocationEncoding::LoongArchBranch, 21, ) => elf::R_LARCH_B21, (RelocationKind::Relative, RelocationEncoding::LoongArchBranch, 26) | ( RelocationKind::PltRelative, RelocationEncoding::LoongArchBranch, 26, ) => elf::R_LARCH_B26, (RelocationKind::Elf(x), _, _) => x, _ => { return Err(Error(format!("unimplemented relocation {:?}", reloc))); } }, Architecture::Mips | Architecture::Mips64 => { match (reloc.kind, reloc.encoding, reloc.size) { (RelocationKind::Absolute, _, 16) => elf::R_MIPS_16, (RelocationKind::Absolute, _, 32) => elf::R_MIPS_32, (RelocationKind::Absolute, _, 64) => elf::R_MIPS_64, (RelocationKind::Elf(x), _, _) => x, _ => { return Err(Error(format!( "unimplemented relocation {:?}", reloc ))); } } } Architecture::Msp430 => match (reloc.kind, reloc.encoding, reloc.size) { (RelocationKind::Absolute, _, 32) => elf::R_MSP430_32, (RelocationKind::Absolute, _, 16) => elf::R_MSP430_16_BYTE, (RelocationKind::Elf(x), _, _) => x, _ => { return Err(Error(format!("unimplemented relocation {:?}", reloc))); } }, Architecture::PowerPc => match (reloc.kind, reloc.encoding, reloc.size) { (RelocationKind::Absolute, _, 32) => elf::R_PPC_ADDR32, (RelocationKind::Elf(x), _, _) => x, _ => { return Err(Error(format!("unimplemented relocation {:?}", reloc))); } }, Architecture::PowerPc64 => match (reloc.kind, reloc.encoding, reloc.size) { (RelocationKind::Absolute, _, 32) => elf::R_PPC64_ADDR32, (RelocationKind::Absolute, _, 64) => elf::R_PPC64_ADDR64, (RelocationKind::Elf(x), _, _) => x, _ => { return Err(Error(format!("unimplemented relocation {:?}", reloc))); } }, Architecture::Riscv32 | Architecture::Riscv64 => { match (reloc.kind, reloc.encoding, reloc.size) { (RelocationKind::Absolute, _, 32) => elf::R_RISCV_32, (RelocationKind::Absolute, _, 64) => elf::R_RISCV_64, (RelocationKind::Relative, RelocationEncoding::Generic, 32) => { elf::R_RISCV_32_PCREL } (RelocationKind::Elf(x), _, _) => x, _ => { return Err(Error(format!( "unimplemented relocation {:?}", reloc ))); } } } Architecture::S390x => match (reloc.kind, reloc.encoding, reloc.size) { (RelocationKind::Absolute, RelocationEncoding::Generic, 8) => { elf::R_390_8 } (RelocationKind::Absolute, RelocationEncoding::Generic, 16) => { elf::R_390_16 } (RelocationKind::Absolute, RelocationEncoding::Generic, 32) => { elf::R_390_32 } (RelocationKind::Absolute, RelocationEncoding::Generic, 64) => { elf::R_390_64 } (RelocationKind::Relative, RelocationEncoding::Generic, 16) => { elf::R_390_PC16 } (RelocationKind::Relative, RelocationEncoding::Generic, 32) => { elf::R_390_PC32 } (RelocationKind::Relative, RelocationEncoding::Generic, 64) => { elf::R_390_PC64 } (RelocationKind::Relative, RelocationEncoding::S390xDbl, 16) => { elf::R_390_PC16DBL } (RelocationKind::Relative, RelocationEncoding::S390xDbl, 32) => { elf::R_390_PC32DBL } (RelocationKind::PltRelative, RelocationEncoding::S390xDbl, 16) => { elf::R_390_PLT16DBL } (RelocationKind::PltRelative, RelocationEncoding::S390xDbl, 32) => { elf::R_390_PLT32DBL } (RelocationKind::Got, RelocationEncoding::Generic, 16) => { elf::R_390_GOT16 } (RelocationKind::Got, RelocationEncoding::Generic, 32) => { elf::R_390_GOT32 } (RelocationKind::Got, RelocationEncoding::Generic, 64) => { elf::R_390_GOT64 } (RelocationKind::GotRelative, RelocationEncoding::S390xDbl, 32) => { elf::R_390_GOTENT } (RelocationKind::GotBaseOffset, RelocationEncoding::Generic, 16) => { elf::R_390_GOTOFF16 } (RelocationKind::GotBaseOffset, RelocationEncoding::Generic, 32) => { elf::R_390_GOTOFF32 } (RelocationKind::GotBaseOffset, RelocationEncoding::Generic, 64) => { elf::R_390_GOTOFF64 } (RelocationKind::GotBaseRelative, RelocationEncoding::Generic, 64) => { elf::R_390_GOTPC } (RelocationKind::GotBaseRelative, RelocationEncoding::S390xDbl, 32) => { elf::R_390_GOTPCDBL } (RelocationKind::Elf(x), _, _) => x, _ => { return Err(Error(format!("unimplemented relocation {:?}", reloc))); } }, Architecture::Sbf => match (reloc.kind, reloc.encoding, reloc.size) { (RelocationKind::Absolute, _, 64) => elf::R_SBF_64_64, (RelocationKind::Absolute, _, 32) => elf::R_SBF_64_32, (RelocationKind::Elf(x), _, _) => x, _ => { return Err(Error(format!("unimplemented relocation {:?}", reloc))); } }, Architecture::Sparc64 => match (reloc.kind, reloc.encoding, reloc.size) { // TODO: use R_SPARC_32/R_SPARC_64 if aligned. (RelocationKind::Absolute, _, 32) => elf::R_SPARC_UA32, (RelocationKind::Absolute, _, 64) => elf::R_SPARC_UA64, (RelocationKind::Elf(x), _, _) => x, _ => { return Err(Error(format!("unimplemented relocation {:?}", reloc))); } }, Architecture::Xtensa => match (reloc.kind, reloc.encoding, reloc.size) { (RelocationKind::Absolute, _, 32) => elf::R_XTENSA_32, (RelocationKind::Relative, RelocationEncoding::Generic, 32) => { elf::R_XTENSA_32_PCREL } (RelocationKind::Elf(x), _, _) => x, _ => { return Err(Error(format!("unimplemented relocation {:?}", reloc))); } }, _ => { if let RelocationKind::Elf(x) = reloc.kind { x } else { return Err(Error(format!("unimplemented relocation {:?}", reloc))); } } }; let r_sym = symbol_offsets[reloc.symbol.0].index.0; writer.write_relocation( is_rela, &Rel { r_offset: reloc.offset, r_sym, r_type, r_addend: reloc.addend, }, ); } } } writer.write_shstrtab(); // Write section headers. writer.write_null_section_header(); let symtab_index = writer.symtab_index(); for (comdat, comdat_offset) in self.comdats.iter().zip(comdat_offsets.iter()) { writer.write_comdat_section_header( comdat_offset.str_id, symtab_index, symbol_offsets[comdat.symbol.0].index, comdat_offset.offset, comdat.sections.len(), ); } for (index, section) in self.sections.iter().enumerate() { let sh_type = match section.kind { SectionKind::UninitializedData | SectionKind::UninitializedTls => elf::SHT_NOBITS, SectionKind::Note => elf::SHT_NOTE, SectionKind::Elf(sh_type) => sh_type, _ => elf::SHT_PROGBITS, }; let sh_flags = if let SectionFlags::Elf { sh_flags } = section.flags { sh_flags } else { match section.kind { SectionKind::Text => elf::SHF_ALLOC | elf::SHF_EXECINSTR, SectionKind::Data => elf::SHF_ALLOC | elf::SHF_WRITE, SectionKind::Tls => elf::SHF_ALLOC | elf::SHF_WRITE | elf::SHF_TLS, SectionKind::UninitializedData => elf::SHF_ALLOC | elf::SHF_WRITE, SectionKind::UninitializedTls => elf::SHF_ALLOC | elf::SHF_WRITE | elf::SHF_TLS, SectionKind::ReadOnlyData => elf::SHF_ALLOC, SectionKind::ReadOnlyString => { elf::SHF_ALLOC | elf::SHF_STRINGS | elf::SHF_MERGE } SectionKind::OtherString => elf::SHF_STRINGS | elf::SHF_MERGE, SectionKind::Other | SectionKind::Debug | SectionKind::Metadata | SectionKind::Linker | SectionKind::Note | SectionKind::Elf(_) => 0, SectionKind::Unknown | SectionKind::Common | SectionKind::TlsVariables => { return Err(Error(format!( "unimplemented section `{}` kind {:?}", section.name().unwrap_or(""), section.kind ))); } } .into() }; // TODO: not sure if this is correct, maybe user should determine this let sh_entsize = match section.kind { SectionKind::ReadOnlyString | SectionKind::OtherString => 1, _ => 0, }; writer.write_section_header(&SectionHeader { name: Some(section_offsets[index].str_id), sh_type, sh_flags, sh_addr: 0, sh_offset: section_offsets[index].offset as u64, sh_size: section.size, sh_link: 0, sh_info: 0, sh_addralign: section.align, sh_entsize, }); if !section.relocations.is_empty() { writer.write_relocation_section_header( section_offsets[index].reloc_str_id.unwrap(), section_offsets[index].index, symtab_index, section_offsets[index].reloc_offset, section.relocations.len(), is_rela, ); } } writer.write_symtab_section_header(symtab_num_local); writer.write_symtab_shndx_section_header(); writer.write_strtab_section_header(); writer.write_shstrtab_section_header(); debug_assert_eq!(writer.reserved_len(), writer.len()); Ok(()) } }