//! Low level AES IGE and key wrapping functionality //! //! AES ECB, CBC, XTS, CTR, CFB, GCM and other conventional symmetric encryption //! modes are found in [`symm`]. This is the implementation of AES IGE and key wrapping //! //! Advanced Encryption Standard (AES) provides symmetric key cipher that //! the same key is used to encrypt and decrypt data. This implementation //! uses 128, 192, or 256 bit keys. This module provides functions to //! create a new key with [`new_encrypt`] and perform an encryption/decryption //! using that key with [`aes_ige`]. //! //! [`new_encrypt`]: struct.AesKey.html#method.new_encrypt //! [`aes_ige`]: fn.aes_ige.html //! //! The [`symm`] module should be used in preference to this module in most cases. //! The IGE block cipher is a non-traditional cipher mode. More traditional AES //! encryption methods are found in the [`Crypter`] and [`Cipher`] structs. //! //! [`symm`]: ../symm/index.html //! [`Crypter`]: ../symm/struct.Crypter.html //! [`Cipher`]: ../symm/struct.Cipher.html //! //! # Examples #![cfg_attr( all(not(boringssl), not(osslconf = "OPENSSL_NO_DEPRECATED_3_0")), doc = r#"\ ## AES IGE ```rust use openssl::aes::{AesKey, aes_ige}; use openssl::symm::Mode; let key = b"\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F"; let plaintext = b"\x12\x34\x56\x78\x90\x12\x34\x56\x12\x34\x56\x78\x90\x12\x34\x56"; let mut iv = *b"\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F\ \x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1A\x1B\x1C\x1D\x1E\x1F"; let key = AesKey::new_encrypt(key).unwrap(); let mut output = [0u8; 16]; aes_ige(plaintext, &mut output, &key, &mut iv, Mode::Encrypt); assert_eq!(output, *b"\xa6\xad\x97\x4d\x5c\xea\x1d\x36\xd2\xf3\x67\x98\x09\x07\xed\x32"); ```"# )] //! //! ## Key wrapping //! ```rust //! use openssl::aes::{AesKey, unwrap_key, wrap_key}; //! //! let kek = b"\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F"; //! let key_to_wrap = b"\x00\x11\x22\x33\x44\x55\x66\x77\x88\x99\xAA\xBB\xCC\xDD\xEE\xFF"; //! //! let enc_key = AesKey::new_encrypt(kek).unwrap(); //! let mut ciphertext = [0u8; 24]; //! wrap_key(&enc_key, None, &mut ciphertext, &key_to_wrap[..]).unwrap(); //! let dec_key = AesKey::new_decrypt(kek).unwrap(); //! let mut orig_key = [0u8; 16]; //! unwrap_key(&dec_key, None, &mut orig_key, &ciphertext[..]).unwrap(); //! //! assert_eq!(&orig_key[..], &key_to_wrap[..]); //! ``` //! use cfg_if::cfg_if; use libc::{c_int, c_uint}; use std::mem::MaybeUninit; use std::ptr; #[cfg(not(boringssl))] use crate::symm::Mode; use openssl_macros::corresponds; /// Provides Error handling for parsing keys. #[derive(Debug)] pub struct KeyError(()); /// The key used to encrypt or decrypt cipher blocks. pub struct AesKey(ffi::AES_KEY); cfg_if! { if #[cfg(boringssl)] { type AesBitType = c_uint; type AesSizeType = usize; } else { type AesBitType = c_int; type AesSizeType = c_uint; } } impl AesKey { /// Prepares a key for encryption. /// /// # Failure /// /// Returns an error if the key is not 128, 192, or 256 bits. #[corresponds(AES_set_encrypt_key)] pub fn new_encrypt(key: &[u8]) -> Result { unsafe { assert!(key.len() <= c_int::max_value() as usize / 8); let mut aes_key = MaybeUninit::uninit(); let r = ffi::AES_set_encrypt_key( key.as_ptr() as *const _, key.len() as AesBitType * 8, aes_key.as_mut_ptr(), ); if r == 0 { Ok(AesKey(aes_key.assume_init())) } else { Err(KeyError(())) } } } /// Prepares a key for decryption. /// /// # Failure /// /// Returns an error if the key is not 128, 192, or 256 bits. #[corresponds(AES_set_decrypt_key)] pub fn new_decrypt(key: &[u8]) -> Result { unsafe { assert!(key.len() <= c_int::max_value() as usize / 8); let mut aes_key = MaybeUninit::uninit(); let r = ffi::AES_set_decrypt_key( key.as_ptr() as *const _, key.len() as AesBitType * 8, aes_key.as_mut_ptr(), ); if r == 0 { Ok(AesKey(aes_key.assume_init())) } else { Err(KeyError(())) } } } } /// Performs AES IGE encryption or decryption /// /// AES IGE (Infinite Garble Extension) is a form of AES block cipher utilized in /// OpenSSL. Infinite Garble refers to propagating forward errors. IGE, like other /// block ciphers implemented for AES requires an initialization vector. The IGE mode /// allows a stream of blocks to be encrypted or decrypted without having the entire /// plaintext available. For more information, visit [AES IGE Encryption]. /// /// This block cipher uses 16 byte blocks. The rust implementation will panic /// if the input or output does not meet this 16-byte boundary. Attention must /// be made in this low level implementation to pad the value to the 128-bit boundary. /// /// [AES IGE Encryption]: http://www.links.org/files/openssl-ige.pdf /// /// # Panics /// /// Panics if `in_` is not the same length as `out`, if that length is not a multiple of 16, or if /// `iv` is not at least 32 bytes. #[cfg(not(boringssl))] #[cfg(not(osslconf = "OPENSSL_NO_DEPRECATED_3_0"))] #[corresponds(AES_ige_encrypt)] pub fn aes_ige(in_: &[u8], out: &mut [u8], key: &AesKey, iv: &mut [u8], mode: Mode) { unsafe { assert!(in_.len() == out.len()); assert!(in_.len() % ffi::AES_BLOCK_SIZE as usize == 0); assert!(iv.len() >= ffi::AES_BLOCK_SIZE as usize * 2); let mode = match mode { Mode::Encrypt => ffi::AES_ENCRYPT, Mode::Decrypt => ffi::AES_DECRYPT, }; ffi::AES_ige_encrypt( in_.as_ptr() as *const _, out.as_mut_ptr() as *mut _, in_.len(), &key.0, iv.as_mut_ptr() as *mut _, mode, ); } } /// Wrap a key, according to [RFC 3394](https://tools.ietf.org/html/rfc3394) /// /// * `key`: The key-encrypting-key to use. Must be a encrypting key /// * `iv`: The IV to use. You must use the same IV for both wrapping and unwrapping /// * `out`: The output buffer to store the ciphertext /// * `in_`: The input buffer, storing the key to be wrapped /// /// Returns the number of bytes written into `out` /// /// # Panics /// /// Panics if either `out` or `in_` do not have sizes that are a multiple of 8, or if /// `out` is not 8 bytes longer than `in_` #[corresponds(AES_wrap_key)] pub fn wrap_key( key: &AesKey, iv: Option<[u8; 8]>, out: &mut [u8], in_: &[u8], ) -> Result { unsafe { assert!(out.len() >= in_.len() + 8); // Ciphertext is 64 bits longer (see 2.2.1) let written = ffi::AES_wrap_key( &key.0 as *const _ as *mut _, // this is safe, the implementation only uses the key as a const pointer. iv.as_ref() .map_or(ptr::null(), |iv| iv.as_ptr() as *const _), out.as_ptr() as *mut _, in_.as_ptr() as *const _, in_.len() as AesSizeType, ); if written <= 0 { Err(KeyError(())) } else { Ok(written as usize) } } } /// Unwrap a key, according to [RFC 3394](https://tools.ietf.org/html/rfc3394) /// /// * `key`: The key-encrypting-key to decrypt the wrapped key. Must be a decrypting key /// * `iv`: The same IV used for wrapping the key /// * `out`: The buffer to write the unwrapped key to /// * `in_`: The input ciphertext /// /// Returns the number of bytes written into `out` /// /// # Panics /// /// Panics if either `out` or `in_` do not have sizes that are a multiple of 8, or /// if `in_` is not 8 bytes longer than `out` #[corresponds(AES_unwrap_key)] pub fn unwrap_key( key: &AesKey, iv: Option<[u8; 8]>, out: &mut [u8], in_: &[u8], ) -> Result { unsafe { assert!(out.len() + 8 <= in_.len()); let written = ffi::AES_unwrap_key( &key.0 as *const _ as *mut _, // this is safe, the implementation only uses the key as a const pointer. iv.as_ref() .map_or(ptr::null(), |iv| iv.as_ptr() as *const _), out.as_ptr() as *mut _, in_.as_ptr() as *const _, in_.len() as AesSizeType, ); if written <= 0 { Err(KeyError(())) } else { Ok(written as usize) } } } #[cfg(test)] mod test { use hex::FromHex; use super::*; #[cfg(not(boringssl))] use crate::symm::Mode; // From https://www.mgp25.com/AESIGE/ #[test] #[cfg(not(boringssl))] #[cfg(not(osslconf = "OPENSSL_NO_DEPRECATED_3_0"))] fn ige_vector_1() { let raw_key = "000102030405060708090A0B0C0D0E0F"; let raw_iv = "000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F"; let raw_pt = "0000000000000000000000000000000000000000000000000000000000000000"; let raw_ct = "1A8519A6557BE652E9DA8E43DA4EF4453CF456B4CA488AA383C79C98B34797CB"; let key = AesKey::new_encrypt(&Vec::from_hex(raw_key).unwrap()).unwrap(); let mut iv = Vec::from_hex(raw_iv).unwrap(); let pt = Vec::from_hex(raw_pt).unwrap(); let ct = Vec::from_hex(raw_ct).unwrap(); let mut ct_actual = vec![0; ct.len()]; aes_ige(&pt, &mut ct_actual, &key, &mut iv, Mode::Encrypt); assert_eq!(ct_actual, ct); let key = AesKey::new_decrypt(&Vec::from_hex(raw_key).unwrap()).unwrap(); let mut iv = Vec::from_hex(raw_iv).unwrap(); let mut pt_actual = vec![0; pt.len()]; aes_ige(&ct, &mut pt_actual, &key, &mut iv, Mode::Decrypt); assert_eq!(pt_actual, pt); } // from the RFC https://tools.ietf.org/html/rfc3394#section-2.2.3 #[test] fn test_wrap_unwrap() { let raw_key = Vec::from_hex("000102030405060708090A0B0C0D0E0F").unwrap(); let key_data = Vec::from_hex("00112233445566778899AABBCCDDEEFF").unwrap(); let expected_ciphertext = Vec::from_hex("1FA68B0A8112B447AEF34BD8FB5A7B829D3E862371D2CFE5").unwrap(); let enc_key = AesKey::new_encrypt(&raw_key).unwrap(); let mut wrapped = [0; 24]; assert_eq!( wrap_key(&enc_key, None, &mut wrapped, &key_data).unwrap(), 24 ); assert_eq!(&wrapped[..], &expected_ciphertext[..]); let dec_key = AesKey::new_decrypt(&raw_key).unwrap(); let mut unwrapped = [0; 16]; assert_eq!( unwrap_key(&dec_key, None, &mut unwrapped, &wrapped).unwrap(), 16 ); assert_eq!(&unwrapped[..], &key_data[..]); } }