//! Shared secret derivation. //! //! # Example //! //! The following example implements [ECDH] using `NIST P-384` keys: //! //! ``` //! # fn main() -> Result<(), Box> { //! # use std::convert::TryInto; //! use openssl::bn::BigNumContext; //! use openssl::pkey::PKey; //! use openssl::derive::Deriver; //! use openssl::ec::{EcGroup, EcKey, EcPoint, PointConversionForm}; //! use openssl::nid::Nid; //! //! let group = EcGroup::from_curve_name(Nid::SECP384R1)?; //! //! let first: PKey<_> = EcKey::generate(&group)?.try_into()?; //! //! // second party generates an ephemeral key and derives //! // a shared secret using first party's public key //! let shared_key = EcKey::generate(&group)?; //! // shared_public is sent to first party //! let mut ctx = BigNumContext::new()?; //! let shared_public = shared_key.public_key().to_bytes( //! &group, //! PointConversionForm::COMPRESSED, //! &mut ctx, //! )?; //! //! let shared_key: PKey<_> = shared_key.try_into()?; //! let mut deriver = Deriver::new(&shared_key)?; //! deriver.set_peer(&first)?; //! // secret can be used e.g. as a symmetric encryption key //! let secret = deriver.derive_to_vec()?; //! # drop(deriver); //! //! // first party derives the same shared secret using //! // shared_public //! let point = EcPoint::from_bytes(&group, &shared_public, &mut ctx)?; //! let recipient_key: PKey<_> = EcKey::from_public_key(&group, &point)?.try_into()?; //! let mut deriver = Deriver::new(&first)?; //! deriver.set_peer(&recipient_key)?; //! let first_secret = deriver.derive_to_vec()?; //! //! assert_eq!(secret, first_secret); //! # Ok(()) } //! ``` //! //! [ECDH]: https://wiki.openssl.org/index.php/Elliptic_Curve_Diffie_Hellman use foreign_types::ForeignTypeRef; use std::marker::PhantomData; use std::ptr; use crate::error::ErrorStack; use crate::pkey::{HasPrivate, HasPublic, PKeyRef}; use crate::{cvt, cvt_p}; use openssl_macros::corresponds; /// A type used to derive a shared secret between two keys. pub struct Deriver<'a>(*mut ffi::EVP_PKEY_CTX, PhantomData<&'a ()>); unsafe impl<'a> Sync for Deriver<'a> {} unsafe impl<'a> Send for Deriver<'a> {} #[allow(clippy::len_without_is_empty)] impl<'a> Deriver<'a> { /// Creates a new `Deriver` using the provided private key. /// /// This corresponds to [`EVP_PKEY_derive_init`]. /// /// [`EVP_PKEY_derive_init`]: https://www.openssl.org/docs/manmaster/crypto/EVP_PKEY_derive_init.html pub fn new(key: &'a PKeyRef) -> Result, ErrorStack> where T: HasPrivate, { unsafe { cvt_p(ffi::EVP_PKEY_CTX_new(key.as_ptr(), ptr::null_mut())) .map(|p| Deriver(p, PhantomData)) .and_then(|ctx| cvt(ffi::EVP_PKEY_derive_init(ctx.0)).map(|_| ctx)) } } /// Sets the peer key used for secret derivation. #[corresponds(EVP_PKEY_derive_set_peer)] pub fn set_peer(&mut self, key: &'a PKeyRef) -> Result<(), ErrorStack> where T: HasPublic, { unsafe { cvt(ffi::EVP_PKEY_derive_set_peer(self.0, key.as_ptr())).map(|_| ()) } } /// Sets the peer key used for secret derivation along with optionally validating the peer public key. /// /// Requires OpenSSL 3.0.0 or newer. #[corresponds(EVP_PKEY_derive_set_peer_ex)] #[cfg(ossl300)] pub fn set_peer_ex( &mut self, key: &'a PKeyRef, validate_peer: bool, ) -> Result<(), ErrorStack> where T: HasPublic, { unsafe { cvt(ffi::EVP_PKEY_derive_set_peer_ex( self.0, key.as_ptr(), validate_peer as i32, )) .map(|_| ()) } } /// Returns the size of the shared secret. /// /// It can be used to size the buffer passed to [`Deriver::derive`]. /// /// This corresponds to [`EVP_PKEY_derive`]. /// /// [`Deriver::derive`]: #method.derive /// [`EVP_PKEY_derive`]: https://www.openssl.org/docs/manmaster/crypto/EVP_PKEY_derive_init.html pub fn len(&mut self) -> Result { unsafe { let mut len = 0; cvt(ffi::EVP_PKEY_derive(self.0, ptr::null_mut(), &mut len)).map(|_| len) } } /// Derives a shared secret between the two keys, writing it into the buffer. /// /// Returns the number of bytes written. /// /// This corresponds to [`EVP_PKEY_derive`]. /// /// [`EVP_PKEY_derive`]: https://www.openssl.org/docs/manmaster/crypto/EVP_PKEY_derive_init.html pub fn derive(&mut self, buf: &mut [u8]) -> Result { let mut len = buf.len(); unsafe { cvt(ffi::EVP_PKEY_derive( self.0, buf.as_mut_ptr() as *mut _, &mut len, )) .map(|_| len) } } /// A convenience function which derives a shared secret and returns it in a new buffer. /// /// This simply wraps [`Deriver::len`] and [`Deriver::derive`]. /// /// [`Deriver::len`]: #method.len /// [`Deriver::derive`]: #method.derive pub fn derive_to_vec(&mut self) -> Result, ErrorStack> { let len = self.len()?; let mut buf = vec![0; len]; let len = self.derive(&mut buf)?; buf.truncate(len); Ok(buf) } } impl<'a> Drop for Deriver<'a> { fn drop(&mut self) { unsafe { ffi::EVP_PKEY_CTX_free(self.0); } } } #[cfg(test)] mod test { use super::*; use crate::ec::{EcGroup, EcKey}; use crate::nid::Nid; use crate::pkey::PKey; #[test] fn derive_without_peer() { let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap(); let ec_key = EcKey::generate(&group).unwrap(); let pkey = PKey::from_ec_key(ec_key).unwrap(); let mut deriver = Deriver::new(&pkey).unwrap(); deriver.derive_to_vec().unwrap_err(); } #[test] fn test_ec_key_derive() { let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap(); let ec_key = EcKey::generate(&group).unwrap(); let ec_key2 = EcKey::generate(&group).unwrap(); let pkey = PKey::from_ec_key(ec_key).unwrap(); let pkey2 = PKey::from_ec_key(ec_key2).unwrap(); let mut deriver = Deriver::new(&pkey).unwrap(); deriver.set_peer(&pkey2).unwrap(); let shared = deriver.derive_to_vec().unwrap(); assert!(!shared.is_empty()); } #[test] #[cfg(ossl300)] fn test_ec_key_derive_ex() { let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap(); let ec_key = EcKey::generate(&group).unwrap(); let ec_key2 = EcKey::generate(&group).unwrap(); let pkey = PKey::from_ec_key(ec_key).unwrap(); let pkey2 = PKey::from_ec_key(ec_key2).unwrap(); let mut deriver = Deriver::new(&pkey).unwrap(); deriver.set_peer_ex(&pkey2, true).unwrap(); let shared = deriver.derive_to_vec().unwrap(); assert!(!shared.is_empty()); } }