//! Envelope encryption. //! //! # Example //! //! ```rust //! use openssl::rsa::Rsa; //! use openssl::envelope::Seal; //! use openssl::pkey::PKey; //! use openssl::symm::Cipher; //! //! let rsa = Rsa::generate(2048).unwrap(); //! let key = PKey::from_rsa(rsa).unwrap(); //! //! let cipher = Cipher::aes_256_cbc(); //! let mut seal = Seal::new(cipher, &[key]).unwrap(); //! //! let secret = b"My secret message"; //! let mut encrypted = vec![0; secret.len() + cipher.block_size()]; //! //! let mut enc_len = seal.update(secret, &mut encrypted).unwrap(); //! enc_len += seal.finalize(&mut encrypted[enc_len..]).unwrap(); //! encrypted.truncate(enc_len); //! ``` use crate::cipher::CipherRef; use crate::cipher_ctx::CipherCtx; use crate::error::ErrorStack; use crate::pkey::{HasPrivate, HasPublic, PKey, PKeyRef}; use crate::symm::Cipher; use foreign_types::ForeignTypeRef; /// Represents an EVP_Seal context. pub struct Seal { ctx: CipherCtx, iv: Option>, enc_keys: Vec>, } impl Seal { /// Creates a new `Seal`. pub fn new(cipher: Cipher, pub_keys: &[PKey]) -> Result where T: HasPublic, { let mut iv = cipher.iv_len().map(|len| vec![0; len]); let mut enc_keys = vec![vec![]; pub_keys.len()]; let mut ctx = CipherCtx::new()?; ctx.seal_init( Some(unsafe { CipherRef::from_ptr(cipher.as_ptr() as *mut _) }), pub_keys, &mut enc_keys, iv.as_deref_mut(), )?; Ok(Seal { ctx, iv, enc_keys }) } /// Returns the initialization vector, if the cipher uses one. #[allow(clippy::option_as_ref_deref)] pub fn iv(&self) -> Option<&[u8]> { self.iv.as_ref().map(|v| &**v) } /// Returns the encrypted keys. pub fn encrypted_keys(&self) -> &[Vec] { &self.enc_keys } /// Feeds data from `input` through the cipher, writing encrypted bytes into `output`. /// /// The number of bytes written to `output` is returned. Note that this may /// not be equal to the length of `input`. /// /// # Panics /// /// Panics if `output.len() < input.len() + block_size` where `block_size` is /// the block size of the cipher (see `Cipher::block_size`), or if /// `output.len() > c_int::max_value()`. pub fn update(&mut self, input: &[u8], output: &mut [u8]) -> Result { self.ctx.cipher_update(input, Some(output)) } /// Finishes the encryption process, writing any remaining data to `output`. /// /// The number of bytes written to `output` is returned. /// /// `update` should not be called after this method. /// /// # Panics /// /// Panics if `output` is less than the cipher's block size. pub fn finalize(&mut self, output: &mut [u8]) -> Result { self.ctx.cipher_final(output) } } /// Represents an EVP_Open context. pub struct Open { ctx: CipherCtx, } impl Open { /// Creates a new `Open`. pub fn new( cipher: Cipher, priv_key: &PKeyRef, iv: Option<&[u8]>, encrypted_key: &[u8], ) -> Result where T: HasPrivate, { let mut ctx = CipherCtx::new()?; ctx.open_init( Some(unsafe { CipherRef::from_ptr(cipher.as_ptr() as *mut _) }), encrypted_key, iv, Some(priv_key), )?; Ok(Open { ctx }) } /// Feeds data from `input` through the cipher, writing decrypted bytes into `output`. /// /// The number of bytes written to `output` is returned. Note that this may /// not be equal to the length of `input`. /// /// # Panics /// /// Panics if `output.len() < input.len() + block_size` where /// `block_size` is the block size of the cipher (see `Cipher::block_size`), /// or if `output.len() > c_int::max_value()`. pub fn update(&mut self, input: &[u8], output: &mut [u8]) -> Result { self.ctx.cipher_update(input, Some(output)) } /// Finishes the decryption process, writing any remaining data to `output`. /// /// The number of bytes written to `output` is returned. /// /// `update` should not be called after this method. /// /// # Panics /// /// Panics if `output` is less than the cipher's block size. pub fn finalize(&mut self, output: &mut [u8]) -> Result { self.ctx.cipher_final(output) } } #[cfg(test)] mod test { use super::*; use crate::pkey::PKey; use crate::symm::Cipher; #[test] fn public_encrypt_private_decrypt() { let private_pem = include_bytes!("../test/rsa.pem"); let public_pem = include_bytes!("../test/rsa.pem.pub"); let private_key = PKey::private_key_from_pem(private_pem).unwrap(); let public_key = PKey::public_key_from_pem(public_pem).unwrap(); let cipher = Cipher::aes_256_cbc(); let secret = b"My secret message"; let mut seal = Seal::new(cipher, &[public_key]).unwrap(); let mut encrypted = vec![0; secret.len() + cipher.block_size()]; let mut enc_len = seal.update(secret, &mut encrypted).unwrap(); enc_len += seal.finalize(&mut encrypted[enc_len..]).unwrap(); let iv = seal.iv(); let encrypted_key = &seal.encrypted_keys()[0]; let mut open = Open::new(cipher, &private_key, iv, encrypted_key).unwrap(); let mut decrypted = vec![0; enc_len + cipher.block_size()]; let mut dec_len = open.update(&encrypted[..enc_len], &mut decrypted).unwrap(); dec_len += open.finalize(&mut decrypted[dec_len..]).unwrap(); assert_eq!(&secret[..], &decrypted[..dec_len]); } }