//! Decoder for PEM encapsulated data. //! //! From RFC 7468 Section 2: //! //! > Textual encoding begins with a line comprising "-----BEGIN ", a //! > label, and "-----", and ends with a line comprising "-----END ", a //! > label, and "-----". Between these lines, or "encapsulation //! > boundaries", are base64-encoded data according to Section 4 of //! > [RFC 4648]. //! //! [RFC 4648]: https://datatracker.ietf.org/doc/html/rfc4648 use crate::{ grammar, Base64Decoder, Error, Result, BASE64_WRAP_WIDTH, POST_ENCAPSULATION_BOUNDARY, PRE_ENCAPSULATION_BOUNDARY, }; use core::str; #[cfg(feature = "alloc")] use alloc::vec::Vec; #[cfg(feature = "std")] use std::io; /// Decode a PEM document according to RFC 7468's "Strict" grammar. /// /// On success, writes the decoded document into the provided buffer, returning /// the decoded label and the portion of the provided buffer containing the /// decoded message. pub fn decode<'i, 'o>(pem: &'i [u8], buf: &'o mut [u8]) -> Result<(&'i str, &'o [u8])> { let mut decoder = Decoder::new(pem).map_err(|e| check_for_headers(pem, e))?; let type_label = decoder.type_label(); let buf = buf .get_mut(..decoder.remaining_len()) .ok_or(Error::Length)?; let decoded = decoder.decode(buf).map_err(|e| check_for_headers(pem, e))?; if decoder.base64.is_finished() { Ok((type_label, decoded)) } else { Err(Error::Length) } } /// Decode a PEM document according to RFC 7468's "Strict" grammar, returning /// the result as a [`Vec`] upon success. #[cfg(feature = "alloc")] #[cfg_attr(docsrs, doc(cfg(feature = "alloc")))] pub fn decode_vec(pem: &[u8]) -> Result<(&str, Vec)> { let mut decoder = Decoder::new(pem).map_err(|e| check_for_headers(pem, e))?; let type_label = decoder.type_label(); let mut buf = Vec::new(); decoder .decode_to_end(&mut buf) .map_err(|e| check_for_headers(pem, e))?; Ok((type_label, buf)) } /// Decode the encapsulation boundaries of a PEM document according to RFC 7468's "Strict" grammar. /// /// On success, returning the decoded label. pub fn decode_label(pem: &[u8]) -> Result<&str> { Ok(Encapsulation::try_from(pem)?.label()) } /// Buffered PEM decoder. /// /// Stateful buffered decoder type which decodes an input PEM document according /// to RFC 7468's "Strict" grammar. #[derive(Clone)] pub struct Decoder<'i> { /// PEM type label. type_label: &'i str, /// Buffered Base64 decoder. base64: Base64Decoder<'i>, } impl<'i> Decoder<'i> { /// Create a new PEM [`Decoder`] with the default options. /// /// Uses the default 64-character line wrapping. pub fn new(pem: &'i [u8]) -> Result { Self::new_wrapped(pem, BASE64_WRAP_WIDTH) } /// Create a new PEM [`Decoder`] which wraps at the given line width. pub fn new_wrapped(pem: &'i [u8], line_width: usize) -> Result { let encapsulation = Encapsulation::try_from(pem)?; let type_label = encapsulation.label(); let base64 = Base64Decoder::new_wrapped(encapsulation.encapsulated_text, line_width)?; Ok(Self { type_label, base64 }) } /// Get the PEM type label for the input document. pub fn type_label(&self) -> &'i str { self.type_label } /// Decode data into the provided output buffer. /// /// There must be at least as much remaining Base64 input to be decoded /// in order to completely fill `buf`. pub fn decode<'o>(&mut self, buf: &'o mut [u8]) -> Result<&'o [u8]> { Ok(self.base64.decode(buf)?) } /// Decode all of the remaining data in the input buffer into `buf`. #[cfg(feature = "alloc")] #[cfg_attr(docsrs, doc(cfg(feature = "alloc")))] pub fn decode_to_end<'o>(&mut self, buf: &'o mut Vec) -> Result<&'o [u8]> { Ok(self.base64.decode_to_end(buf)?) } /// Get the decoded length of the remaining PEM data after Base64 decoding. pub fn remaining_len(&self) -> usize { self.base64.remaining_len() } /// Are we finished decoding the PEM input? pub fn is_finished(&self) -> bool { self.base64.is_finished() } } impl<'i> From> for Base64Decoder<'i> { fn from(decoder: Decoder<'i>) -> Base64Decoder<'i> { decoder.base64 } } #[cfg(feature = "std")] #[cfg_attr(docsrs, doc(cfg(feature = "std")))] impl<'i> io::Read for Decoder<'i> { fn read(&mut self, buf: &mut [u8]) -> io::Result { self.base64.read(buf) } fn read_to_end(&mut self, buf: &mut Vec) -> io::Result { self.base64.read_to_end(buf) } fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> { self.base64.read_exact(buf) } } /// PEM encapsulation parser. /// /// This parser performs an initial pass over the data, locating the /// pre-encapsulation (`---BEGIN [...]---`) and post-encapsulation /// (`---END [...]`) boundaries while attempting to avoid branching /// on the potentially secret Base64-encoded data encapsulated between /// the two boundaries. /// /// It only supports a single encapsulated message at present. Future work /// could potentially include extending it provide an iterator over a series /// of encapsulated messages. #[derive(Copy, Clone, Debug)] struct Encapsulation<'a> { /// Type label extracted from the pre/post-encapsulation boundaries. /// /// From RFC 7468 Section 2: /// /// > The type of data encoded is labeled depending on the type label in /// > the "-----BEGIN " line (pre-encapsulation boundary). For example, /// > the line may be "-----BEGIN CERTIFICATE-----" to indicate that the /// > content is a PKIX certificate (see further below). Generators MUST /// > put the same label on the "-----END " line (post-encapsulation /// > boundary) as the corresponding "-----BEGIN " line. Labels are /// > formally case-sensitive, uppercase, and comprised of zero or more /// > characters; they do not contain consecutive spaces or hyphen-minuses, /// > nor do they contain spaces or hyphen-minuses at either end. Parsers /// > MAY disregard the label in the post-encapsulation boundary instead of /// > signaling an error if there is a label mismatch: some extant /// > implementations require the labels to match; others do not. label: &'a str, /// Encapsulated text portion contained between the boundaries. /// /// This data should be encoded as Base64, however this type performs no /// validation of it so it can be handled in constant-time. encapsulated_text: &'a [u8], } impl<'a> Encapsulation<'a> { /// Parse the type label and encapsulated text from between the /// pre/post-encapsulation boundaries. pub fn parse(data: &'a [u8]) -> Result { // Strip the "preamble": optional text occurring before the pre-encapsulation boundary let data = grammar::strip_preamble(data)?; // Parse pre-encapsulation boundary (including label) let data = data .strip_prefix(PRE_ENCAPSULATION_BOUNDARY) .ok_or(Error::PreEncapsulationBoundary)?; let (label, body) = grammar::split_label(data).ok_or(Error::Label)?; let mut body = match grammar::strip_trailing_eol(body).unwrap_or(body) { [head @ .., b'-', b'-', b'-', b'-', b'-'] => head, _ => return Err(Error::PreEncapsulationBoundary), }; // Ensure body ends with a properly labeled post-encapsulation boundary for &slice in [POST_ENCAPSULATION_BOUNDARY, label.as_bytes()].iter().rev() { // Ensure the input ends with the post encapsulation boundary as // well as a matching label if !body.ends_with(slice) { return Err(Error::PostEncapsulationBoundary); } let len = body.len().checked_sub(slice.len()).ok_or(Error::Length)?; body = body.get(..len).ok_or(Error::PostEncapsulationBoundary)?; } let encapsulated_text = grammar::strip_trailing_eol(body).ok_or(Error::PostEncapsulationBoundary)?; Ok(Self { label, encapsulated_text, }) } /// Get the label parsed from the encapsulation boundaries. pub fn label(self) -> &'a str { self.label } } impl<'a> TryFrom<&'a [u8]> for Encapsulation<'a> { type Error = Error; fn try_from(bytes: &'a [u8]) -> Result { Self::parse(bytes) } } /// Check for PEM headers in the input, as they are disallowed by RFC7468. /// /// Returns `Error::HeaderDisallowed` if headers are encountered. fn check_for_headers(pem: &[u8], err: Error) -> Error { if err == Error::Base64(base64ct::Error::InvalidEncoding) && pem.iter().any(|&b| b == grammar::CHAR_COLON) { Error::HeaderDisallowed } else { err } } #[cfg(test)] mod tests { use super::Encapsulation; #[test] fn pkcs8_example() { let pem = include_bytes!("../tests/examples/pkcs8.pem"); let encapsulation = Encapsulation::parse(pem).unwrap(); assert_eq!(encapsulation.label, "PRIVATE KEY"); assert_eq!( encapsulation.encapsulated_text, &[ 77, 67, 52, 67, 65, 81, 65, 119, 66, 81, 89, 68, 75, 50, 86, 119, 66, 67, 73, 69, 73, 66, 102, 116, 110, 72, 80, 112, 50, 50, 83, 101, 119, 89, 109, 109, 69, 111, 77, 99, 88, 56, 86, 119, 73, 52, 73, 72, 119, 97, 113, 100, 43, 57, 76, 70, 80, 106, 47, 49, 53, 101, 113, 70 ] ); } }