use crate::BackendCoord; // Compute the tanginal and normal vectors of the given straight line. fn get_dir_vector(from: BackendCoord, to: BackendCoord, flag: bool) -> ((f64, f64), (f64, f64)) { let v = (i64::from(to.0 - from.0), i64::from(to.1 - from.1)); let l = ((v.0 * v.0 + v.1 * v.1) as f64).sqrt(); let v = (v.0 as f64 / l, v.1 as f64 / l); if flag { (v, (v.1, -v.0)) } else { (v, (-v.1, v.0)) } } // Compute the polygonized vertex of the given angle // d is the distance between the polygon edge and the actual line. // d can be negative, this will emit a vertex on the other side of the line. fn compute_polygon_vertex(triple: &[BackendCoord; 3], d: f64, buf: &mut Vec) { buf.clear(); // Compute the tanginal and normal vectors of the given straight line. let (a_t, a_n) = get_dir_vector(triple[0], triple[1], false); let (b_t, b_n) = get_dir_vector(triple[2], triple[1], true); // Compute a point that is d away from the line for line a and line b. let a_p = ( f64::from(triple[1].0) + d * a_n.0, f64::from(triple[1].1) + d * a_n.1, ); let b_p = ( f64::from(triple[1].0) + d * b_n.0, f64::from(triple[1].1) + d * b_n.1, ); // If they are actually the same point, then the 3 points are colinear, so just emit the point. if a_p.0 as i32 == b_p.0 as i32 && a_p.1 as i32 == b_p.1 as i32 { buf.push((a_p.0 as i32, a_p.1 as i32)); return; } // So we are actually computing the intersection of two lines: // a_p + u * a_t and b_p + v * b_t. // We can solve the following vector equation: // u * a_t + a_p = v * b_t + b_p // // which is actually a equation system: // u * a_t.0 - v * b_t.0 = b_p.0 - a_p.0 // u * a_t.1 - v * b_t.1 = b_p.1 - a_p.1 // The following vars are coefficients of the linear equation system. // a0*u + b0*v = c0 // a1*u + b1*v = c1 // in which x and y are the coordinates that two polygon edges intersect. let a0 = a_t.0; let b0 = -b_t.0; let c0 = b_p.0 - a_p.0; let a1 = a_t.1; let b1 = -b_t.1; let c1 = b_p.1 - a_p.1; let mut x = f64::INFINITY; let mut y = f64::INFINITY; // Well if the determinant is not 0, then we can actuall get a intersection point. if (a0 * b1 - a1 * b0).abs() > f64::EPSILON { let u = (c0 * b1 - c1 * b0) / (a0 * b1 - a1 * b0); x = a_p.0 + u * a_t.0; y = a_p.1 + u * a_t.1; } let cross_product = a_t.0 * b_t.1 - a_t.1 * b_t.0; if (cross_product < 0.0 && d < 0.0) || (cross_product > 0.0 && d > 0.0) { // Then we are at the outter side of the angle, so we need to consider a cap. let dist_square = (x - triple[1].0 as f64).powi(2) + (y - triple[1].1 as f64).powi(2); // If the point is too far away from the line, we need to cap it. if dist_square > d * d * 16.0 { buf.push((a_p.0.round() as i32, a_p.1.round() as i32)); buf.push((b_p.0.round() as i32, b_p.1.round() as i32)); return; } } buf.push((x.round() as i32, y.round() as i32)); } fn traverse_vertices<'a>( mut vertices: impl Iterator, width: u32, mut op: impl FnMut(BackendCoord), ) { let mut a = vertices.next().unwrap(); let mut b = vertices.next().unwrap(); while a == b { a = b; if let Some(new_b) = vertices.next() { b = new_b; } else { return; } } let (_, n) = get_dir_vector(*a, *b, false); op(( (f64::from(a.0) + n.0 * f64::from(width) / 2.0).round() as i32, (f64::from(a.1) + n.1 * f64::from(width) / 2.0).round() as i32, )); let mut recent = [(0, 0), *a, *b]; let mut vertex_buf = Vec::with_capacity(3); for p in vertices { if *p == recent[2] { continue; } recent.swap(0, 1); recent.swap(1, 2); recent[2] = *p; compute_polygon_vertex(&recent, f64::from(width) / 2.0, &mut vertex_buf); vertex_buf.iter().cloned().for_each(&mut op); } let b = recent[1]; let a = recent[2]; let (_, n) = get_dir_vector(a, b, true); op(( (f64::from(a.0) + n.0 * f64::from(width) / 2.0).round() as i32, (f64::from(a.1) + n.1 * f64::from(width) / 2.0).round() as i32, )); } /// Covert a path with >1px stroke width into polygon. pub fn polygonize(vertices: &[BackendCoord], stroke_width: u32) -> Vec { if vertices.len() < 2 { return vec![]; } let mut ret = vec![]; traverse_vertices(vertices.iter(), stroke_width, |v| ret.push(v)); traverse_vertices(vertices.iter().rev(), stroke_width, |v| ret.push(v)); ret }