//! Point arithmetic implementation optimised for different curve equations //! //! Support for formulas specialized to the short Weierstrass equation's //! 𝒂-coefficient. use elliptic_curve::{subtle::ConditionallySelectable, Field}; use crate::{AffinePoint, PrimeCurveParams, ProjectivePoint}; mod sealed { use crate::{AffinePoint, PrimeCurveParams, ProjectivePoint}; /// Elliptic point arithmetic implementation /// /// Provides implementation of point arithmetic (point addition, point doubling) which /// might be optimized for the curve. pub trait PointArithmetic { /// Returns `lhs + rhs` fn add(lhs: &ProjectivePoint, rhs: &ProjectivePoint) -> ProjectivePoint; /// Returns `lhs + rhs` fn add_mixed(lhs: &ProjectivePoint, rhs: &AffinePoint) -> ProjectivePoint; /// Returns `point + point` fn double(point: &ProjectivePoint) -> ProjectivePoint; } } /// Allow crate-local visibility pub(crate) use sealed::PointArithmetic; /// The 𝒂-coefficient of the short Weierstrass equation does not have specific /// properties which allow for an optimized implementation. pub struct EquationAIsGeneric {} impl PointArithmetic for EquationAIsGeneric { /// Implements complete addition for any curve /// /// Implements the complete addition formula from [Renes-Costello-Batina 2015] /// (Algorithm 1). The comments after each line indicate which algorithm steps /// are being performed. /// /// [Renes-Costello-Batina 2015]: https://eprint.iacr.org/2015/1060 fn add(lhs: &ProjectivePoint, rhs: &ProjectivePoint) -> ProjectivePoint { let b3 = C::FieldElement::from(3) * C::EQUATION_B; let t0 = lhs.x * rhs.x; // 1 let t1 = lhs.y * rhs.y; // 2 let t2 = lhs.z * rhs.z; // 3 let t3 = lhs.x + lhs.y; // 4 let t4 = rhs.x + rhs.y; // 5 let t3 = t3 * t4; // 6 let t4 = t0 + t1; // 7 let t3 = t3 - t4; // 8 let t4 = lhs.x + lhs.z; // 9 let t5 = rhs.x + rhs.z; // 10 let t4 = t4 * t5; // 11 let t5 = t0 + t2; // 12 let t4 = t4 - t5; // 13 let t5 = lhs.y + lhs.z; // 14 let x3 = rhs.y + rhs.z; // 15 let t5 = t5 * x3; // 16 let x3 = t1 + t2; // 17 let t5 = t5 - x3; // 18 let z3 = C::EQUATION_A * t4; // 19 let x3 = b3 * t2; // 20 let z3 = x3 + z3; // 21 let x3 = t1 - z3; // 22 let z3 = t1 + z3; // 23 let y3 = x3 * z3; // 24 let t1 = t0 + t0; // 25 let t1 = t1 + t0; // 26 let t2 = C::EQUATION_A * t2; // 27 let t4 = b3 * t4; // 28 let t1 = t1 + t2; // 29 let t2 = t0 - t2; // 30 let t2 = C::EQUATION_A * t2; // 31 let t4 = t4 + t2; // 32 let t0 = t1 * t4; // 33 let y3 = y3 + t0; // 34 let t0 = t5 * t4; // 35 let x3 = t3 * x3; // 36 let x3 = x3 - t0; // 37 let t0 = t3 * t1; // 38 let z3 = t5 * z3; // 39 let z3 = z3 + t0; // 40 ProjectivePoint { x: x3, y: y3, z: z3, } } /// Implements complete mixed addition for curves with any `a` /// /// Implements the complete mixed addition formula from [Renes-Costello-Batina 2015] /// (Algorithm 2). The comments after each line indicate which algorithm /// steps are being performed. /// /// [Renes-Costello-Batina 2015]: https://eprint.iacr.org/2015/1060 fn add_mixed(lhs: &ProjectivePoint, rhs: &AffinePoint) -> ProjectivePoint { let b3 = C::EQUATION_B * C::FieldElement::from(3); let t0 = lhs.x * rhs.x; // 1 let t1 = lhs.y * rhs.y; // 2 let t3 = rhs.x + rhs.y; // 3 let t4 = lhs.x + lhs.y; // 4 let t3 = t3 * t4; // 5 let t4 = t0 + t1; // 6 let t3 = t3 - t4; // 7 let t4 = rhs.x * lhs.z; // 8 let t4 = t4 + lhs.x; // 9 let t5 = rhs.y * lhs.z; // 10 let t5 = t5 + lhs.y; // 11 let z3 = C::EQUATION_A * t4; // 12 let x3 = b3 * lhs.z; // 13 let z3 = x3 + z3; // 14 let x3 = t1 - z3; // 15 let z3 = t1 + z3; // 16 let y3 = x3 * z3; // 17 let t1 = t0 + t0; // 18 let t1 = t1 + t0; // 19 let t2 = C::EQUATION_A * lhs.z; // 20 let t4 = b3 * t4; // 21 let t1 = t1 + t2; // 22 let t2 = t0 - t2; // 23 let t2 = C::EQUATION_A * t2; // 24 let t4 = t4 + t2; // 25 let t0 = t1 * t4; // 26 let y3 = y3 + t0; // 27 let t0 = t5 * t4; // 28 let x3 = t3 * x3; // 29 let x3 = x3 - t0; // 30 let t0 = t3 * t1; // 31 let z3 = t5 * z3; // 32 let z3 = z3 + t0; // 33 let mut ret = ProjectivePoint { x: x3, y: y3, z: z3, }; ret.conditional_assign(lhs, rhs.is_identity()); ret } /// Implements point doubling for curves with any `a` /// /// Implements the exception-free point doubling formula from [Renes-Costello-Batina 2015] /// (Algorithm 3). The comments after each line indicate which algorithm /// steps are being performed. /// /// [Renes-Costello-Batina 2015]: https://eprint.iacr.org/2015/1060 fn double(point: &ProjectivePoint) -> ProjectivePoint { let b3 = C::EQUATION_B * C::FieldElement::from(3); let t0 = point.x * point.x; // 1 let t1 = point.y * point.y; // 2 let t2 = point.z * point.z; // 3 let t3 = point.x * point.y; // 4 let t3 = t3 + t3; // 5 let z3 = point.x * point.z; // 6 let z3 = z3 + z3; // 7 let x3 = C::EQUATION_A * z3; // 8 let y3 = b3 * t2; // 9 let y3 = x3 + y3; // 10 let x3 = t1 - y3; // 11 let y3 = t1 + y3; // 12 let y3 = x3 * y3; // 13 let x3 = t3 * x3; // 14 let z3 = b3 * z3; // 15 let t2 = C::EQUATION_A * t2; // 16 let t3 = t0 - t2; // 17 let t3 = C::EQUATION_A * t3; // 18 let t3 = t3 + z3; // 19 let z3 = t0 + t0; // 20 let t0 = z3 + t0; // 21 let t0 = t0 + t2; // 22 let t0 = t0 * t3; // 23 let y3 = y3 + t0; // 24 let t2 = point.y * point.z; // 25 let t2 = t2 + t2; // 26 let t0 = t2 * t3; // 27 let x3 = x3 - t0; // 28 let z3 = t2 * t1; // 29 let z3 = z3 + z3; // 30 let z3 = z3 + z3; // 31 ProjectivePoint { x: x3, y: y3, z: z3, } } } /// The 𝒂-coefficient of the short Weierstrass equation is -3. pub struct EquationAIsMinusThree {} impl PointArithmetic for EquationAIsMinusThree { /// Implements complete addition for curves with `a = -3` /// /// Implements the complete addition formula from [Renes-Costello-Batina 2015] /// (Algorithm 4). The comments after each line indicate which algorithm steps /// are being performed. /// /// [Renes-Costello-Batina 2015]: https://eprint.iacr.org/2015/1060 fn add(lhs: &ProjectivePoint, rhs: &ProjectivePoint) -> ProjectivePoint { debug_assert_eq!( C::EQUATION_A, -C::FieldElement::from(3), "this implementation is only valid for C::EQUATION_A = -3" ); let xx = lhs.x * rhs.x; // 1 let yy = lhs.y * rhs.y; // 2 let zz = lhs.z * rhs.z; // 3 let xy_pairs = ((lhs.x + lhs.y) * (rhs.x + rhs.y)) - (xx + yy); // 4, 5, 6, 7, 8 let yz_pairs = ((lhs.y + lhs.z) * (rhs.y + rhs.z)) - (yy + zz); // 9, 10, 11, 12, 13 let xz_pairs = ((lhs.x + lhs.z) * (rhs.x + rhs.z)) - (xx + zz); // 14, 15, 16, 17, 18 let bzz_part = xz_pairs - (C::EQUATION_B * zz); // 19, 20 let bzz3_part = bzz_part.double() + bzz_part; // 21, 22 let yy_m_bzz3 = yy - bzz3_part; // 23 let yy_p_bzz3 = yy + bzz3_part; // 24 let zz3 = zz.double() + zz; // 26, 27 let bxz_part = (C::EQUATION_B * xz_pairs) - (zz3 + xx); // 25, 28, 29 let bxz3_part = bxz_part.double() + bxz_part; // 30, 31 let xx3_m_zz3 = xx.double() + xx - zz3; // 32, 33, 34 ProjectivePoint { x: (yy_p_bzz3 * xy_pairs) - (yz_pairs * bxz3_part), // 35, 39, 40 y: (yy_p_bzz3 * yy_m_bzz3) + (xx3_m_zz3 * bxz3_part), // 36, 37, 38 z: (yy_m_bzz3 * yz_pairs) + (xy_pairs * xx3_m_zz3), // 41, 42, 43 } } /// Implements complete mixed addition for curves with `a = -3` /// /// Implements the complete mixed addition formula from [Renes-Costello-Batina 2015] /// (Algorithm 5). The comments after each line indicate which algorithm /// steps are being performed. /// /// [Renes-Costello-Batina 2015]: https://eprint.iacr.org/2015/1060 fn add_mixed(lhs: &ProjectivePoint, rhs: &AffinePoint) -> ProjectivePoint { debug_assert_eq!( C::EQUATION_A, -C::FieldElement::from(3), "this implementation is only valid for C::EQUATION_A = -3" ); let xx = lhs.x * rhs.x; // 1 let yy = lhs.y * rhs.y; // 2 let xy_pairs = ((lhs.x + lhs.y) * (rhs.x + rhs.y)) - (xx + yy); // 3, 4, 5, 6, 7 let yz_pairs = (rhs.y * lhs.z) + lhs.y; // 8, 9 (t4) let xz_pairs = (rhs.x * lhs.z) + lhs.x; // 10, 11 (y3) let bz_part = xz_pairs - (C::EQUATION_B * lhs.z); // 12, 13 let bz3_part = bz_part.double() + bz_part; // 14, 15 let yy_m_bzz3 = yy - bz3_part; // 16 let yy_p_bzz3 = yy + bz3_part; // 17 let z3 = lhs.z.double() + lhs.z; // 19, 20 let bxz_part = (C::EQUATION_B * xz_pairs) - (z3 + xx); // 18, 21, 22 let bxz3_part = bxz_part.double() + bxz_part; // 23, 24 let xx3_m_zz3 = xx.double() + xx - z3; // 25, 26, 27 let mut ret = ProjectivePoint { x: (yy_p_bzz3 * xy_pairs) - (yz_pairs * bxz3_part), // 28, 32, 33 y: (yy_p_bzz3 * yy_m_bzz3) + (xx3_m_zz3 * bxz3_part), // 29, 30, 31 z: (yy_m_bzz3 * yz_pairs) + (xy_pairs * xx3_m_zz3), // 34, 35, 36 }; ret.conditional_assign(lhs, rhs.is_identity()); ret } /// Implements point doubling for curves with `a = -3` /// /// Implements the exception-free point doubling formula from [Renes-Costello-Batina 2015] /// (Algorithm 6). The comments after each line indicate which algorithm /// steps are being performed. /// /// [Renes-Costello-Batina 2015]: https://eprint.iacr.org/2015/1060 fn double(point: &ProjectivePoint) -> ProjectivePoint { debug_assert_eq!( C::EQUATION_A, -C::FieldElement::from(3), "this implementation is only valid for C::EQUATION_A = -3" ); let xx = point.x.square(); // 1 let yy = point.y.square(); // 2 let zz = point.z.square(); // 3 let xy2 = (point.x * point.y).double(); // 4, 5 let xz2 = (point.x * point.z).double(); // 6, 7 let bzz_part = (C::EQUATION_B * zz) - xz2; // 8, 9 let bzz3_part = bzz_part.double() + bzz_part; // 10, 11 let yy_m_bzz3 = yy - bzz3_part; // 12 let yy_p_bzz3 = yy + bzz3_part; // 13 let y_frag = yy_p_bzz3 * yy_m_bzz3; // 14 let x_frag = yy_m_bzz3 * xy2; // 15 let zz3 = zz.double() + zz; // 16, 17 let bxz2_part = (C::EQUATION_B * xz2) - (zz3 + xx); // 18, 19, 20 let bxz6_part = bxz2_part.double() + bxz2_part; // 21, 22 let xx3_m_zz3 = xx.double() + xx - zz3; // 23, 24, 25 let y = y_frag + (xx3_m_zz3 * bxz6_part); // 26, 27 let yz2 = (point.y * point.z).double(); // 28, 29 let x = x_frag - (bxz6_part * yz2); // 30, 31 let z = (yz2 * yy).double().double(); // 32, 33, 34 ProjectivePoint { x, y, z } } }