/*! This module provides a regular expression printer for `Hir`. */ use core::fmt; use crate::{ hir::{ self, visitor::{self, Visitor}, Hir, HirKind, }, is_meta_character, }; /// A builder for constructing a printer. /// /// Note that since a printer doesn't have any configuration knobs, this type /// remains unexported. #[derive(Clone, Debug)] struct PrinterBuilder { _priv: (), } impl Default for PrinterBuilder { fn default() -> PrinterBuilder { PrinterBuilder::new() } } impl PrinterBuilder { fn new() -> PrinterBuilder { PrinterBuilder { _priv: () } } fn build(&self) -> Printer { Printer { _priv: () } } } /// A printer for a regular expression's high-level intermediate /// representation. /// /// A printer converts a high-level intermediate representation (HIR) to a /// regular expression pattern string. This particular printer uses constant /// stack space and heap space proportional to the size of the HIR. /// /// Since this printer is only using the HIR, the pattern it prints will likely /// not resemble the original pattern at all. For example, a pattern like /// `\pL` will have its entire class written out. /// /// The purpose of this printer is to provide a means to mutate an HIR and then /// build a regular expression from the result of that mutation. (A regex /// library could provide a constructor from this HIR explicitly, but that /// creates an unnecessary public coupling between the regex library and this /// specific HIR representation.) #[derive(Debug)] pub struct Printer { _priv: (), } impl Printer { /// Create a new printer. pub fn new() -> Printer { PrinterBuilder::new().build() } /// Print the given `Ast` to the given writer. The writer must implement /// `fmt::Write`. Typical implementations of `fmt::Write` that can be used /// here are a `fmt::Formatter` (which is available in `fmt::Display` /// implementations) or a `&mut String`. pub fn print(&mut self, hir: &Hir, wtr: W) -> fmt::Result { visitor::visit(hir, Writer { wtr }) } } #[derive(Debug)] struct Writer { wtr: W, } impl Visitor for Writer { type Output = (); type Err = fmt::Error; fn finish(self) -> fmt::Result { Ok(()) } fn visit_pre(&mut self, hir: &Hir) -> fmt::Result { match *hir.kind() { HirKind::Empty => { // Technically an empty sub-expression could be "printed" by // just ignoring it, but in practice, you could have a // repetition operator attached to an empty expression, and you // really need something in the concrete syntax to make that // work as you'd expect. self.wtr.write_str(r"(?:)")?; } // Repetition operators are strictly suffix oriented. HirKind::Repetition(_) => {} HirKind::Literal(hir::Literal(ref bytes)) => { // See the comment on the 'Concat' and 'Alternation' case below // for why we put parens here. Literals are, conceptually, // a special case of concatenation where each element is a // character. The HIR flattens this into a Box<[u8]>, but we // still need to treat it like a concatenation for correct // printing. As a special case, we don't write parens if there // is only one character. One character means there is no // concat so we don't need parens. Adding parens would still be // correct, but we drop them here because it tends to create // rather noisy regexes even in simple cases. let result = core::str::from_utf8(bytes); let len = result.map_or(bytes.len(), |s| s.chars().count()); if len > 1 { self.wtr.write_str(r"(?:")?; } match result { Ok(string) => { for c in string.chars() { self.write_literal_char(c)?; } } Err(_) => { for &b in bytes.iter() { self.write_literal_byte(b)?; } } } if len > 1 { self.wtr.write_str(r")")?; } } HirKind::Class(hir::Class::Unicode(ref cls)) => { if cls.ranges().is_empty() { return self.wtr.write_str("[a&&b]"); } self.wtr.write_str("[")?; for range in cls.iter() { if range.start() == range.end() { self.write_literal_char(range.start())?; } else if u32::from(range.start()) + 1 == u32::from(range.end()) { self.write_literal_char(range.start())?; self.write_literal_char(range.end())?; } else { self.write_literal_char(range.start())?; self.wtr.write_str("-")?; self.write_literal_char(range.end())?; } } self.wtr.write_str("]")?; } HirKind::Class(hir::Class::Bytes(ref cls)) => { if cls.ranges().is_empty() { return self.wtr.write_str("[a&&b]"); } self.wtr.write_str("(?-u:[")?; for range in cls.iter() { if range.start() == range.end() { self.write_literal_class_byte(range.start())?; } else if range.start() + 1 == range.end() { self.write_literal_class_byte(range.start())?; self.write_literal_class_byte(range.end())?; } else { self.write_literal_class_byte(range.start())?; self.wtr.write_str("-")?; self.write_literal_class_byte(range.end())?; } } self.wtr.write_str("])")?; } HirKind::Look(ref look) => match *look { hir::Look::Start => { self.wtr.write_str(r"\A")?; } hir::Look::End => { self.wtr.write_str(r"\z")?; } hir::Look::StartLF => { self.wtr.write_str("(?m:^)")?; } hir::Look::EndLF => { self.wtr.write_str("(?m:$)")?; } hir::Look::StartCRLF => { self.wtr.write_str("(?mR:^)")?; } hir::Look::EndCRLF => { self.wtr.write_str("(?mR:$)")?; } hir::Look::WordAscii => { self.wtr.write_str(r"(?-u:\b)")?; } hir::Look::WordAsciiNegate => { self.wtr.write_str(r"(?-u:\B)")?; } hir::Look::WordUnicode => { self.wtr.write_str(r"\b")?; } hir::Look::WordUnicodeNegate => { self.wtr.write_str(r"\B")?; } hir::Look::WordStartAscii => { self.wtr.write_str(r"(?-u:\b{start})")?; } hir::Look::WordEndAscii => { self.wtr.write_str(r"(?-u:\b{end})")?; } hir::Look::WordStartUnicode => { self.wtr.write_str(r"\b{start}")?; } hir::Look::WordEndUnicode => { self.wtr.write_str(r"\b{end}")?; } hir::Look::WordStartHalfAscii => { self.wtr.write_str(r"(?-u:\b{start-half})")?; } hir::Look::WordEndHalfAscii => { self.wtr.write_str(r"(?-u:\b{end-half})")?; } hir::Look::WordStartHalfUnicode => { self.wtr.write_str(r"\b{start-half}")?; } hir::Look::WordEndHalfUnicode => { self.wtr.write_str(r"\b{end-half}")?; } }, HirKind::Capture(hir::Capture { ref name, .. }) => { self.wtr.write_str("(")?; if let Some(ref name) = *name { write!(self.wtr, "?P<{}>", name)?; } } // Why do this? Wrapping concats and alts in non-capturing groups // is not *always* necessary, but is sometimes necessary. For // example, 'concat(a, alt(b, c))' should be written as 'a(?:b|c)' // and not 'ab|c'. The former is clearly the intended meaning, but // the latter is actually 'alt(concat(a, b), c)'. // // It would be possible to only group these things in cases where // it's strictly necessary, but it requires knowing the parent // expression. And since this technique is simpler and always // correct, we take this route. More to the point, it is a non-goal // of an HIR printer to show a nice easy-to-read regex. Indeed, // its construction forbids it from doing so. Therefore, inserting // extra groups where they aren't necessary is perfectly okay. HirKind::Concat(_) | HirKind::Alternation(_) => { self.wtr.write_str(r"(?:")?; } } Ok(()) } fn visit_post(&mut self, hir: &Hir) -> fmt::Result { match *hir.kind() { // Handled during visit_pre HirKind::Empty | HirKind::Literal(_) | HirKind::Class(_) | HirKind::Look(_) => {} HirKind::Repetition(ref x) => { match (x.min, x.max) { (0, Some(1)) => { self.wtr.write_str("?")?; } (0, None) => { self.wtr.write_str("*")?; } (1, None) => { self.wtr.write_str("+")?; } (1, Some(1)) => { // 'a{1}' and 'a{1}?' are exactly equivalent to 'a'. return Ok(()); } (m, None) => { write!(self.wtr, "{{{},}}", m)?; } (m, Some(n)) if m == n => { write!(self.wtr, "{{{}}}", m)?; // a{m} and a{m}? are always exactly equivalent. return Ok(()); } (m, Some(n)) => { write!(self.wtr, "{{{},{}}}", m, n)?; } } if !x.greedy { self.wtr.write_str("?")?; } } HirKind::Capture(_) | HirKind::Concat(_) | HirKind::Alternation(_) => { self.wtr.write_str(r")")?; } } Ok(()) } fn visit_alternation_in(&mut self) -> fmt::Result { self.wtr.write_str("|") } } impl Writer { fn write_literal_char(&mut self, c: char) -> fmt::Result { if is_meta_character(c) { self.wtr.write_str("\\")?; } self.wtr.write_char(c) } fn write_literal_byte(&mut self, b: u8) -> fmt::Result { if b <= 0x7F && !b.is_ascii_control() && !b.is_ascii_whitespace() { self.write_literal_char(char::try_from(b).unwrap()) } else { write!(self.wtr, "(?-u:\\x{:02X})", b) } } fn write_literal_class_byte(&mut self, b: u8) -> fmt::Result { if b <= 0x7F && !b.is_ascii_control() && !b.is_ascii_whitespace() { self.write_literal_char(char::try_from(b).unwrap()) } else { write!(self.wtr, "\\x{:02X}", b) } } } #[cfg(test)] mod tests { use alloc::{ boxed::Box, string::{String, ToString}, }; use crate::ParserBuilder; use super::*; fn roundtrip(given: &str, expected: &str) { roundtrip_with(|b| b, given, expected); } fn roundtrip_bytes(given: &str, expected: &str) { roundtrip_with(|b| b.utf8(false), given, expected); } fn roundtrip_with(mut f: F, given: &str, expected: &str) where F: FnMut(&mut ParserBuilder) -> &mut ParserBuilder, { let mut builder = ParserBuilder::new(); f(&mut builder); let hir = builder.build().parse(given).unwrap(); let mut printer = Printer::new(); let mut dst = String::new(); printer.print(&hir, &mut dst).unwrap(); // Check that the result is actually valid. builder.build().parse(&dst).unwrap(); assert_eq!(expected, dst); } #[test] fn print_literal() { roundtrip("a", "a"); roundtrip(r"\xff", "\u{FF}"); roundtrip_bytes(r"\xff", "\u{FF}"); roundtrip_bytes(r"(?-u)\xff", r"(?-u:\xFF)"); roundtrip("☃", "☃"); } #[test] fn print_class() { roundtrip(r"[a]", r"a"); roundtrip(r"[ab]", r"[ab]"); roundtrip(r"[a-z]", r"[a-z]"); roundtrip(r"[a-z--b-c--x-y]", r"[ad-wz]"); roundtrip(r"[^\x01-\u{10FFFF}]", "\u{0}"); roundtrip(r"[-]", r"\-"); roundtrip(r"[☃-⛄]", r"[☃-⛄]"); roundtrip(r"(?-u)[a]", r"a"); roundtrip(r"(?-u)[ab]", r"(?-u:[ab])"); roundtrip(r"(?-u)[a-z]", r"(?-u:[a-z])"); roundtrip_bytes(r"(?-u)[a-\xFF]", r"(?-u:[a-\xFF])"); // The following test that the printer escapes meta characters // in character classes. roundtrip(r"[\[]", r"\["); roundtrip(r"[Z-_]", r"[Z-_]"); roundtrip(r"[Z-_--Z]", r"[\[-_]"); // The following test that the printer escapes meta characters // in byte oriented character classes. roundtrip_bytes(r"(?-u)[\[]", r"\["); roundtrip_bytes(r"(?-u)[Z-_]", r"(?-u:[Z-_])"); roundtrip_bytes(r"(?-u)[Z-_--Z]", r"(?-u:[\[-_])"); // This tests that an empty character class is correctly roundtripped. #[cfg(feature = "unicode-gencat")] roundtrip(r"\P{any}", r"[a&&b]"); roundtrip_bytes(r"(?-u)[^\x00-\xFF]", r"[a&&b]"); } #[test] fn print_anchor() { roundtrip(r"^", r"\A"); roundtrip(r"$", r"\z"); roundtrip(r"(?m)^", r"(?m:^)"); roundtrip(r"(?m)$", r"(?m:$)"); } #[test] fn print_word_boundary() { roundtrip(r"\b", r"\b"); roundtrip(r"\B", r"\B"); roundtrip(r"(?-u)\b", r"(?-u:\b)"); roundtrip_bytes(r"(?-u)\B", r"(?-u:\B)"); } #[test] fn print_repetition() { roundtrip("a?", "a?"); roundtrip("a??", "a??"); roundtrip("(?U)a?", "a??"); roundtrip("a*", "a*"); roundtrip("a*?", "a*?"); roundtrip("(?U)a*", "a*?"); roundtrip("a+", "a+"); roundtrip("a+?", "a+?"); roundtrip("(?U)a+", "a+?"); roundtrip("a{1}", "a"); roundtrip("a{2}", "a{2}"); roundtrip("a{1,}", "a+"); roundtrip("a{1,5}", "a{1,5}"); roundtrip("a{1}?", "a"); roundtrip("a{2}?", "a{2}"); roundtrip("a{1,}?", "a+?"); roundtrip("a{1,5}?", "a{1,5}?"); roundtrip("(?U)a{1}", "a"); roundtrip("(?U)a{2}", "a{2}"); roundtrip("(?U)a{1,}", "a+?"); roundtrip("(?U)a{1,5}", "a{1,5}?"); // Test that various zero-length repetitions always translate to an // empty regex. This is more a property of HIR's smart constructors // than the printer though. roundtrip("a{0}", "(?:)"); roundtrip("(?:ab){0}", "(?:)"); #[cfg(feature = "unicode-gencat")] { roundtrip(r"\p{any}{0}", "(?:)"); roundtrip(r"\P{any}{0}", "(?:)"); } } #[test] fn print_group() { roundtrip("()", "((?:))"); roundtrip("(?P)", "(?P(?:))"); roundtrip("(?:)", "(?:)"); roundtrip("(a)", "(a)"); roundtrip("(?Pa)", "(?Pa)"); roundtrip("(?:a)", "a"); roundtrip("((((a))))", "((((a))))"); } #[test] fn print_alternation() { roundtrip("|", "(?:(?:)|(?:))"); roundtrip("||", "(?:(?:)|(?:)|(?:))"); roundtrip("a|b", "[ab]"); roundtrip("ab|cd", "(?:(?:ab)|(?:cd))"); roundtrip("a|b|c", "[a-c]"); roundtrip("ab|cd|ef", "(?:(?:ab)|(?:cd)|(?:ef))"); roundtrip("foo|bar|quux", "(?:(?:foo)|(?:bar)|(?:quux))"); } // This is a regression test that stresses a peculiarity of how the HIR // is both constructed and printed. Namely, it is legal for a repetition // to directly contain a concatenation. This particular construct isn't // really possible to build from the concrete syntax directly, since you'd // be forced to put the concatenation into (at least) a non-capturing // group. Concurrently, the printer doesn't consider this case and just // kind of naively prints the child expression and tacks on the repetition // operator. // // As a result, if you attached '+' to a 'concat(a, b)', the printer gives // you 'ab+', but clearly it really should be '(?:ab)+'. // // This bug isn't easy to surface because most ways of building an HIR // come directly from the concrete syntax, and as mentioned above, it just // isn't possible to build this kind of HIR from the concrete syntax. // Nevertheless, this is definitely a bug. // // See: https://github.com/rust-lang/regex/issues/731 #[test] fn regression_repetition_concat() { let expr = Hir::concat(alloc::vec![ Hir::literal("x".as_bytes()), Hir::repetition(hir::Repetition { min: 1, max: None, greedy: true, sub: Box::new(Hir::literal("ab".as_bytes())), }), Hir::literal("y".as_bytes()), ]); assert_eq!(r"(?:x(?:ab)+y)", expr.to_string()); let expr = Hir::concat(alloc::vec![ Hir::look(hir::Look::Start), Hir::repetition(hir::Repetition { min: 1, max: None, greedy: true, sub: Box::new(Hir::concat(alloc::vec![ Hir::look(hir::Look::Start), Hir::look(hir::Look::End), ])), }), Hir::look(hir::Look::End), ]); assert_eq!(r"(?:\A\A\z\z)", expr.to_string()); } // Just like regression_repetition_concat, but with the repetition using // an alternation as a child expression instead. // // See: https://github.com/rust-lang/regex/issues/731 #[test] fn regression_repetition_alternation() { let expr = Hir::concat(alloc::vec![ Hir::literal("ab".as_bytes()), Hir::repetition(hir::Repetition { min: 1, max: None, greedy: true, sub: Box::new(Hir::alternation(alloc::vec![ Hir::literal("cd".as_bytes()), Hir::literal("ef".as_bytes()), ])), }), Hir::literal("gh".as_bytes()), ]); assert_eq!(r"(?:(?:ab)(?:(?:cd)|(?:ef))+(?:gh))", expr.to_string()); let expr = Hir::concat(alloc::vec![ Hir::look(hir::Look::Start), Hir::repetition(hir::Repetition { min: 1, max: None, greedy: true, sub: Box::new(Hir::alternation(alloc::vec![ Hir::look(hir::Look::Start), Hir::look(hir::Look::End), ])), }), Hir::look(hir::Look::End), ]); assert_eq!(r"(?:\A(?:\A|\z)\z)", expr.to_string()); } // This regression test is very similar in flavor to // regression_repetition_concat in that the root of the issue lies in a // peculiarity of how the HIR is represented and how the printer writes it // out. Like the other regression, this one is also rooted in the fact that // you can't produce the peculiar HIR from the concrete syntax. Namely, you // just can't have a 'concat(a, alt(b, c))' because the 'alt' will normally // be in (at least) a non-capturing group. Why? Because the '|' has very // low precedence (lower that concatenation), and so something like 'ab|c' // is actually 'alt(ab, c)'. // // See: https://github.com/rust-lang/regex/issues/516 #[test] fn regression_alternation_concat() { let expr = Hir::concat(alloc::vec![ Hir::literal("ab".as_bytes()), Hir::alternation(alloc::vec![ Hir::literal("mn".as_bytes()), Hir::literal("xy".as_bytes()), ]), ]); assert_eq!(r"(?:(?:ab)(?:(?:mn)|(?:xy)))", expr.to_string()); let expr = Hir::concat(alloc::vec![ Hir::look(hir::Look::Start), Hir::alternation(alloc::vec![ Hir::look(hir::Look::Start), Hir::look(hir::Look::End), ]), ]); assert_eq!(r"(?:\A(?:\A|\z))", expr.to_string()); } }