//! Implement syscalls using the vDSO. //! //! //! //! # Safety //! //! Similar to syscalls.rs, this file performs raw system calls, and sometimes //! passes them uninitialized memory buffers. This file also calls vDSO //! functions. #![allow(unsafe_code)] use super::conv::{c_int, ret}; #[cfg(target_arch = "x86")] use super::reg::{ArgReg, RetReg, SyscallNumber, A0, A1, A2, A3, A4, A5, R0}; use super::time::types::{ClockId, DynamicClockId, Timespec}; use super::{c, vdso}; use crate::io; #[cfg(all(asm, target_arch = "x86"))] use core::arch::asm; use core::mem::{transmute, MaybeUninit}; use core::ptr::null_mut; use core::sync::atomic::AtomicPtr; use core::sync::atomic::Ordering::Relaxed; #[cfg(target_pointer_width = "32")] use linux_raw_sys::general::timespec as __kernel_old_timespec; use linux_raw_sys::general::{__kernel_clockid_t, __kernel_timespec}; #[inline] pub(crate) fn clock_gettime(which_clock: ClockId) -> __kernel_timespec { // Safety: `CLOCK_GETTIME` contains either null or the address of a // function with an ABI like libc `clock_gettime`, and calling it has // the side effect of writing to the result buffer, and no others. unsafe { let mut result = MaybeUninit::<__kernel_timespec>::uninit(); let callee = match transmute(CLOCK_GETTIME.load(Relaxed)) { Some(callee) => callee, None => init_clock_gettime(), }; let r0 = callee(which_clock as c::c_int, result.as_mut_ptr()); assert_eq!(r0, 0); result.assume_init() } } #[inline] pub(crate) fn clock_gettime_dynamic(which_clock: DynamicClockId<'_>) -> io::Result { let id = match which_clock { DynamicClockId::Known(id) => id as __kernel_clockid_t, DynamicClockId::Dynamic(fd) => { // See `FD_TO_CLOCKID` in Linux's `clock_gettime` documentation. use crate::imp::fd::AsRawFd; const CLOCKFD: i32 = 3; ((!fd.as_raw_fd() << 3) | CLOCKFD) as __kernel_clockid_t } DynamicClockId::RealtimeAlarm => { linux_raw_sys::general::CLOCK_REALTIME_ALARM as __kernel_clockid_t } DynamicClockId::Tai => linux_raw_sys::general::CLOCK_TAI as __kernel_clockid_t, DynamicClockId::Boottime => linux_raw_sys::general::CLOCK_BOOTTIME as __kernel_clockid_t, DynamicClockId::BoottimeAlarm => { linux_raw_sys::general::CLOCK_BOOTTIME_ALARM as __kernel_clockid_t } }; // Safety: `CLOCK_GETTIME` contains either null or the address of a // function with an ABI like libc `clock_gettime`, and calling it has // the side effect of writing to the result buffer, and no others. unsafe { const EINVAL: c::c_int = -(c::EINVAL as c::c_int); let mut timespec = MaybeUninit::::uninit(); let callee = match transmute(CLOCK_GETTIME.load(Relaxed)) { Some(callee) => callee, None => init_clock_gettime(), }; match callee(id, timespec.as_mut_ptr()) { 0 => (), EINVAL => return Err(io::Errno::INVAL), _ => _rustix_clock_gettime_via_syscall(id, timespec.as_mut_ptr())?, } Ok(timespec.assume_init()) } } #[cfg(target_arch = "x86")] pub(super) mod x86_via_vdso { use super::{transmute, ArgReg, Relaxed, RetReg, SyscallNumber, A0, A1, A2, A3, A4, A5, R0}; use crate::imp::arch::asm; #[inline] pub(in crate::imp) unsafe fn syscall0(nr: SyscallNumber<'_>) -> RetReg { let callee = match transmute(super::SYSCALL.load(Relaxed)) { Some(callee) => callee, None => super::init_syscall(), }; asm::indirect_syscall0(callee, nr) } #[inline] pub(in crate::imp) unsafe fn syscall1<'a>( nr: SyscallNumber<'a>, a0: ArgReg<'a, A0>, ) -> RetReg { let callee = match transmute(super::SYSCALL.load(Relaxed)) { Some(callee) => callee, None => super::init_syscall(), }; asm::indirect_syscall1(callee, nr, a0) } #[inline] pub(in crate::imp) unsafe fn syscall1_noreturn<'a>( nr: SyscallNumber<'a>, a0: ArgReg<'a, A0>, ) -> ! { let callee = match transmute(super::SYSCALL.load(Relaxed)) { Some(callee) => callee, None => super::init_syscall(), }; asm::indirect_syscall1_noreturn(callee, nr, a0) } #[inline] pub(in crate::imp) unsafe fn syscall2<'a>( nr: SyscallNumber<'a>, a0: ArgReg<'a, A0>, a1: ArgReg<'a, A1>, ) -> RetReg { let callee = match transmute(super::SYSCALL.load(Relaxed)) { Some(callee) => callee, None => super::init_syscall(), }; asm::indirect_syscall2(callee, nr, a0, a1) } #[inline] pub(in crate::imp) unsafe fn syscall3<'a>( nr: SyscallNumber<'a>, a0: ArgReg<'a, A0>, a1: ArgReg<'a, A1>, a2: ArgReg<'a, A2>, ) -> RetReg { let callee = match transmute(super::SYSCALL.load(Relaxed)) { Some(callee) => callee, None => super::init_syscall(), }; asm::indirect_syscall3(callee, nr, a0, a1, a2) } #[inline] pub(in crate::imp) unsafe fn syscall4<'a>( nr: SyscallNumber<'a>, a0: ArgReg<'a, A0>, a1: ArgReg<'a, A1>, a2: ArgReg<'a, A2>, a3: ArgReg<'a, A3>, ) -> RetReg { let callee = match transmute(super::SYSCALL.load(Relaxed)) { Some(callee) => callee, None => super::init_syscall(), }; asm::indirect_syscall4(callee, nr, a0, a1, a2, a3) } #[inline] pub(in crate::imp) unsafe fn syscall5<'a>( nr: SyscallNumber<'a>, a0: ArgReg<'a, A0>, a1: ArgReg<'a, A1>, a2: ArgReg<'a, A2>, a3: ArgReg<'a, A3>, a4: ArgReg<'a, A4>, ) -> RetReg { let callee = match transmute(super::SYSCALL.load(Relaxed)) { Some(callee) => callee, None => super::init_syscall(), }; asm::indirect_syscall5(callee, nr, a0, a1, a2, a3, a4) } #[inline] pub(in crate::imp) unsafe fn syscall6<'a>( nr: SyscallNumber<'a>, a0: ArgReg<'a, A0>, a1: ArgReg<'a, A1>, a2: ArgReg<'a, A2>, a3: ArgReg<'a, A3>, a4: ArgReg<'a, A4>, a5: ArgReg<'a, A5>, ) -> RetReg { let callee = match transmute(super::SYSCALL.load(Relaxed)) { Some(callee) => callee, None => super::init_syscall(), }; asm::indirect_syscall6(callee, nr, a0, a1, a2, a3, a4, a5) } // With the indirect call, it isn't meaningful to do a separate // `_readonly` optimization. pub(in crate::imp) use { syscall0 as syscall0_readonly, syscall1 as syscall1_readonly, syscall2 as syscall2_readonly, syscall3 as syscall3_readonly, syscall4 as syscall4_readonly, syscall5 as syscall5_readonly, syscall6 as syscall6_readonly, }; } type ClockGettimeType = unsafe extern "C" fn(c::c_int, *mut Timespec) -> c::c_int; /// The underlying syscall functions are only called from asm, using the /// special syscall calling convention to pass arguments and return values, /// which the signature here doesn't reflect. #[cfg(target_arch = "x86")] pub(super) type SyscallType = unsafe extern "C" fn(); fn init_clock_gettime() -> ClockGettimeType { init(); // Safety: Load the function address from static storage that we // just initialized. unsafe { transmute(CLOCK_GETTIME.load(Relaxed)) } } #[cfg(target_arch = "x86")] fn init_syscall() -> SyscallType { init(); // Safety: Load the function address from static storage that we // just initialized. unsafe { transmute(SYSCALL.load(Relaxed)) } } /// `AtomicPtr` can't hold a `fn` pointer, so we use a `*` pointer to this /// placeholder type, and cast it as needed. struct Function; static mut CLOCK_GETTIME: AtomicPtr = AtomicPtr::new(null_mut()); #[cfg(target_arch = "x86")] static mut SYSCALL: AtomicPtr = AtomicPtr::new(null_mut()); unsafe extern "C" fn rustix_clock_gettime_via_syscall( clockid: c::c_int, res: *mut Timespec, ) -> c::c_int { match _rustix_clock_gettime_via_syscall(clockid, res) { Ok(()) => 0, Err(e) => e.raw_os_error().wrapping_neg(), } } #[cfg(target_pointer_width = "32")] unsafe fn _rustix_clock_gettime_via_syscall( clockid: c::c_int, res: *mut Timespec, ) -> io::Result<()> { let r0 = syscall!(__NR_clock_gettime64, c_int(clockid), res); match ret(r0) { Err(io::Errno::NOSYS) => _rustix_clock_gettime_via_syscall_old(clockid, res), otherwise => otherwise, } } #[cfg(target_pointer_width = "32")] unsafe fn _rustix_clock_gettime_via_syscall_old( clockid: c::c_int, res: *mut Timespec, ) -> io::Result<()> { // Ordinarily `rustix` doesn't like to emulate system calls, but in // the case of time APIs, it's specific to Linux, specific to // 32-bit architectures *and* specific to old kernel versions, and // it's not that hard to fix up here, so that no other code needs // to worry about this. let mut old_result = MaybeUninit::<__kernel_old_timespec>::uninit(); let r0 = syscall!(__NR_clock_gettime, c_int(clockid), &mut old_result); match ret(r0) { Ok(()) => { let old_result = old_result.assume_init(); *res = Timespec { tv_sec: old_result.tv_sec.into(), tv_nsec: old_result.tv_nsec.into(), }; Ok(()) } otherwise => otherwise, } } #[cfg(target_pointer_width = "64")] unsafe fn _rustix_clock_gettime_via_syscall( clockid: c::c_int, res: *mut Timespec, ) -> io::Result<()> { ret(syscall!(__NR_clock_gettime, c_int(clockid), res)) } /// A symbol pointing to an `int 0x80` instruction. This "function" is only /// called from assembly, and only with the x86 syscall calling convention, /// so its signature here is not its true signature. #[cfg(all(asm, target_arch = "x86"))] #[naked] unsafe extern "C" fn rustix_int_0x80() { asm!("int $$0x80", "ret", options(noreturn)) } // The outline version of the `rustix_int_0x80` above. #[cfg(all(not(asm), target_arch = "x86"))] extern "C" { fn rustix_int_0x80(); } fn minimal_init() { // Safety: Store default function addresses in static storage so that if we // end up making any system calls while we read the vDSO, they'll work. // If the memory happens to already be initialized, this is redundant, but // not harmful. unsafe { CLOCK_GETTIME .compare_exchange( null_mut(), rustix_clock_gettime_via_syscall as *mut Function, Relaxed, Relaxed, ) .ok(); #[cfg(target_arch = "x86")] { SYSCALL .compare_exchange( null_mut(), rustix_int_0x80 as *mut Function, Relaxed, Relaxed, ) .ok(); } } } fn init() { minimal_init(); if let Some(vdso) = vdso::Vdso::new() { // Look up the platform-specific `clock_gettime` symbol as documented // [here], except on 32-bit platforms where we look up the // `64`-suffixed variant and fail if we don't find it. // // [here]: https://man7.org/linux/man-pages/man7/vdso.7.html #[cfg(target_arch = "x86_64")] let ptr = vdso.sym(cstr!("LINUX_2.6"), cstr!("__vdso_clock_gettime")); #[cfg(target_arch = "arm")] let ptr = vdso.sym(cstr!("LINUX_2.6"), cstr!("__vdso_clock_gettime64")); #[cfg(target_arch = "aarch64")] let ptr = vdso.sym(cstr!("LINUX_2.6.39"), cstr!("__kernel_clock_gettime")); #[cfg(target_arch = "x86")] let ptr = vdso.sym(cstr!("LINUX_2.6"), cstr!("__vdso_clock_gettime64")); #[cfg(target_arch = "riscv64")] let ptr = vdso.sym(cstr!("LINUX_4.15"), cstr!("__vdso_clock_gettime")); #[cfg(target_arch = "powerpc64")] let ptr = vdso.sym(cstr!("LINUX_2.6.15"), cstr!("__kernel_clock_gettime")); #[cfg(target_arch = "mips")] let ptr = vdso.sym(cstr!("LINUX_2.6"), cstr!("__vdso_clock_gettime64")); #[cfg(target_arch = "mips64")] let ptr = vdso.sym(cstr!("LINUX_2.6"), cstr!("__vdso_clock_gettime")); // On all 64-bit platforms, the 64-bit `clock_gettime` symbols are // always available. #[cfg(any(target_pointer_width = "64"))] let ok = true; // On some 32-bit platforms, the 64-bit `clock_gettime` symbols are not // available on older kernel versions. #[cfg(any(target_arch = "arm", target_arch = "mips", target_arch = "x86"))] let ok = !ptr.is_null(); if ok { assert!(!ptr.is_null()); // Safety: Store the computed function addresses in static storage // so that we don't need to compute it again (but if we do, it doesn't // hurt anything). unsafe { CLOCK_GETTIME.store(ptr.cast(), Relaxed); } } // On x86, also look up the vsyscall entry point. #[cfg(target_arch = "x86")] { let ptr = vdso.sym(cstr!("LINUX_2.5"), cstr!("__kernel_vsyscall")); assert!(!ptr.is_null()); // Safety: As above, store the computed function addresses in // static storage. unsafe { SYSCALL.store(ptr.cast(), Relaxed); } } } }