// Implementation derived from `weak` in Rust's // library/std/src/sys/unix/weak.rs at revision // fd0cb0cdc21dd9c06025277d772108f8d42cb25f. // // Ideally we should update to a newer version which doesn't need `dlsym`, // however that depends on the `extern_weak` feature which is currently // unstable. #![cfg_attr(linux_raw, allow(unsafe_code))] //! Support for "weak linkage" to symbols on Unix //! //! Some I/O operations we do in libstd require newer versions of OSes but we //! need to maintain binary compatibility with older releases for now. In order //! to use the new functionality when available we use this module for //! detection. //! //! One option to use here is weak linkage, but that is unfortunately only //! really workable on Linux. Hence, use dlsym to get the symbol value at //! runtime. This is also done for compatibility with older versions of glibc, //! and to avoid creating dependencies on `GLIBC_PRIVATE` symbols. It assumes //! that we've been dynamically linked to the library the symbol comes from, //! but that is currently always the case for things like libpthread/libc. //! //! A long time ago this used weak linkage for the `__pthread_get_minstack` //! symbol, but that caused Debian to detect an unnecessarily strict versioned //! dependency on libc6 (#23628). // There are a variety of `#[cfg]`s controlling which targets are involved in // each instance of `weak!` and `syscall!`. Rather than trying to unify all of // that, we'll just allow that some unix targets don't use this module at all. #![allow(dead_code, unused_macros)] #![allow(clippy::doc_markdown)] use crate::ffi::CStr; use core::ffi::c_void; use core::ptr::null_mut; use core::sync::atomic::{self, AtomicPtr, Ordering}; use core::{marker, mem}; const NULL: *mut c_void = null_mut(); const INVALID: *mut c_void = 1 as *mut c_void; macro_rules! weak { ($vis:vis fn $name:ident($($t:ty),*) -> $ret:ty) => ( #[allow(non_upper_case_globals)] $vis static $name: $crate::weak::Weak $ret> = $crate::weak::Weak::new(concat!(stringify!($name), '\0')); ) } pub(crate) struct Weak { name: &'static str, addr: AtomicPtr, _marker: marker::PhantomData, } impl Weak { pub(crate) const fn new(name: &'static str) -> Self { Self { name, addr: AtomicPtr::new(INVALID), _marker: marker::PhantomData, } } pub(crate) fn get(&self) -> Option { assert_eq!(mem::size_of::(), mem::size_of::()); unsafe { // Relaxed is fine here because we fence before reading through the // pointer (see the comment below). match self.addr.load(Ordering::Relaxed) { INVALID => self.initialize(), NULL => None, addr => { let func = mem::transmute_copy::<*mut c_void, F>(&addr); // The caller is presumably going to read through this value // (by calling the function we've dlsymed). This means we'd // need to have loaded it with at least C11's consume // ordering in order to be guaranteed that the data we read // from the pointer isn't from before the pointer was // stored. Rust has no equivalent to memory_order_consume, // so we use an acquire fence (sorry, ARM). // // Now, in practice this likely isn't needed even on CPUs // where relaxed and consume mean different things. The // symbols we're loading are probably present (or not) at // init, and even if they aren't the runtime dynamic loader // is extremely likely have sufficient barriers internally // (possibly implicitly, for example the ones provided by // invoking `mprotect`). // // That said, none of that's *guaranteed*, and so we fence. atomic::fence(Ordering::Acquire); Some(func) } } } } // Cold because it should only happen during first-time initialization. #[cold] unsafe fn initialize(&self) -> Option { let val = fetch(self.name); // This synchronizes with the acquire fence in `get`. self.addr.store(val, Ordering::Release); match val { NULL => None, addr => Some(mem::transmute_copy::<*mut c_void, F>(&addr)), } } } // To avoid having the `linux_raw` backend depend on the libc crate, just // declare the few things we need in a module called `libc` so that `fetch` // uses it. #[cfg(linux_raw)] mod libc { use core::ptr; use linux_raw_sys::ctypes::{c_char, c_void}; #[cfg(all(target_os = "android", target_pointer_width = "32"))] pub(super) const RTLD_DEFAULT: *mut c_void = -1isize as *mut c_void; #[cfg(not(all(target_os = "android", target_pointer_width = "32")))] pub(super) const RTLD_DEFAULT: *mut c_void = ptr::null_mut(); extern "C" { pub(super) fn dlsym(handle: *mut c_void, symbol: *const c_char) -> *mut c_void; } #[test] fn test_abi() { assert_eq!(self::RTLD_DEFAULT, ::libc::RTLD_DEFAULT); } } unsafe fn fetch(name: &str) -> *mut c_void { let name = match CStr::from_bytes_with_nul(name.as_bytes()) { Ok(c_str) => c_str, Err(..) => return null_mut(), }; libc::dlsym(libc::RTLD_DEFAULT, name.as_ptr().cast()) } #[cfg(not(linux_kernel))] macro_rules! syscall { (fn $name:ident($($arg_name:ident: $t:ty),*) via $_sys_name:ident -> $ret:ty) => ( unsafe fn $name($($arg_name: $t),*) -> $ret { weak! { fn $name($($t),*) -> $ret } if let Some(fun) = $name.get() { fun($($arg_name),*) } else { libc_errno::set_errno(libc_errno::Errno(libc::ENOSYS)); -1 } } ) } #[cfg(linux_kernel)] macro_rules! syscall { (fn $name:ident($($arg_name:ident: $t:ty),*) via $sys_name:ident -> $ret:ty) => ( unsafe fn $name($($arg_name:$t),*) -> $ret { // This looks like a hack, but `concat_idents` only accepts idents // (not paths). use libc::*; trait AsSyscallArg { type SyscallArgType; fn into_syscall_arg(self) -> Self::SyscallArgType; } // Pass pointer types as pointers, to preserve provenance. impl AsSyscallArg for *mut T { type SyscallArgType = *mut T; fn into_syscall_arg(self) -> Self::SyscallArgType { self } } impl AsSyscallArg for *const T { type SyscallArgType = *const T; fn into_syscall_arg(self) -> Self::SyscallArgType { self } } // Pass `BorrowedFd` values as the integer value. impl AsSyscallArg for $crate::fd::BorrowedFd<'_> { type SyscallArgType = ::libc::c_int; fn into_syscall_arg(self) -> Self::SyscallArgType { $crate::fd::AsRawFd::as_raw_fd(&self) as _ } } // Coerce integer values into `c_long`. impl AsSyscallArg for i8 { type SyscallArgType = ::libc::c_int; fn into_syscall_arg(self) -> Self::SyscallArgType { self.into() } } impl AsSyscallArg for u8 { type SyscallArgType = ::libc::c_int; fn into_syscall_arg(self) -> Self::SyscallArgType { self.into() } } impl AsSyscallArg for i16 { type SyscallArgType = ::libc::c_int; fn into_syscall_arg(self) -> Self::SyscallArgType { self.into() } } impl AsSyscallArg for u16 { type SyscallArgType = ::libc::c_int; fn into_syscall_arg(self) -> Self::SyscallArgType { self.into() } } impl AsSyscallArg for i32 { type SyscallArgType = ::libc::c_int; fn into_syscall_arg(self) -> Self::SyscallArgType { self } } impl AsSyscallArg for u32 { type SyscallArgType = ::libc::c_uint; fn into_syscall_arg(self) -> Self::SyscallArgType { self } } impl AsSyscallArg for usize { type SyscallArgType = ::libc::c_ulong; fn into_syscall_arg(self) -> Self::SyscallArgType { self as _ } } // On 64-bit platforms, also coerce `i64` and `u64` since `c_long` // is 64-bit and can hold those values. #[cfg(target_pointer_width = "64")] impl AsSyscallArg for i64 { type SyscallArgType = ::libc::c_long; fn into_syscall_arg(self) -> Self::SyscallArgType { self } } #[cfg(target_pointer_width = "64")] impl AsSyscallArg for u64 { type SyscallArgType = ::libc::c_ulong; fn into_syscall_arg(self) -> Self::SyscallArgType { self } } // `concat_idents` is [unstable], so we take an extra `sys_name` // parameter and have our users do the concat for us for now. // // [unstable]: https://github.com/rust-lang/rust/issues/29599 /* syscall( concat_idents!(SYS_, $name), $($arg_name.into_syscall_arg()),* ) as $ret */ syscall($sys_name, $($arg_name.into_syscall_arg()),*) as $ret } ) } macro_rules! weakcall { ($vis:vis fn $name:ident($($arg_name:ident: $t:ty),*) -> $ret:ty) => ( $vis unsafe fn $name($($arg_name: $t),*) -> $ret { weak! { fn $name($($t),*) -> $ret } // Use a weak symbol from libc when possible, allowing `LD_PRELOAD` // interposition, but if it's not found just fail. if let Some(fun) = $name.get() { fun($($arg_name),*) } else { libc_errno::set_errno(libc_errno::Errno(libc::ENOSYS)); -1 } } ) } /// A combination of `weakcall` and `syscall`. Use the libc function if it's /// available, and fall back to `libc::syscall` otherwise. macro_rules! weak_or_syscall { ($vis:vis fn $name:ident($($arg_name:ident: $t:ty),*) via $sys_name:ident -> $ret:ty) => ( $vis unsafe fn $name($($arg_name: $t),*) -> $ret { weak! { fn $name($($t),*) -> $ret } // Use a weak symbol from libc when possible, allowing `LD_PRELOAD` // interposition, but if it's not found just fail. if let Some(fun) = $name.get() { fun($($arg_name),*) } else { syscall! { fn $name($($arg_name: $t),*) via $sys_name -> $ret } $name($($arg_name),*) } } ) }