#![cfg_attr(feature = "cargo-clippy", allow(many_single_char_names))] use consts::{BLOCK_LEN, K0, K1, K2, K3}; use block_buffer::byteorder::{BE, ByteOrder}; use simd::u32x4; use digest::generic_array::GenericArray; use digest::generic_array::typenum::U64; type Block = GenericArray; /// Not an intrinsic, but gets the first element of a vector. #[inline] pub fn sha1_first(w0: u32x4) -> u32 { w0.0 } /// Not an intrinsic, but adds a word to the first element of a vector. #[inline] pub fn sha1_first_add(e: u32, w0: u32x4) -> u32x4 { let u32x4(a, b, c, d) = w0; u32x4(e.wrapping_add(a), b, c, d) } /// Emulates `llvm.x86.sha1msg1` intrinsic. fn sha1msg1(a: u32x4, b: u32x4) -> u32x4 { let u32x4(_, _, w2, w3) = a; let u32x4(w4, w5, _, _) = b; a ^ u32x4(w2, w3, w4, w5) } /// Emulates `llvm.x86.sha1msg2` intrinsic. fn sha1msg2(a: u32x4, b: u32x4) -> u32x4 { let u32x4(x0, x1, x2, x3) = a; let u32x4(_, w13, w14, w15) = b; let w16 = (x0 ^ w13).rotate_left(1); let w17 = (x1 ^ w14).rotate_left(1); let w18 = (x2 ^ w15).rotate_left(1); let w19 = (x3 ^ w16).rotate_left(1); u32x4(w16, w17, w18, w19) } /// Performs 4 rounds of the message schedule update. /* pub fn sha1_schedule_x4(v0: u32x4, v1: u32x4, v2: u32x4, v3: u32x4) -> u32x4 { sha1msg2(sha1msg1(v0, v1) ^ v2, v3) } */ /// Emulates `llvm.x86.sha1nexte` intrinsic. #[inline] fn sha1_first_half(abcd: u32x4, msg: u32x4) -> u32x4 { sha1_first_add(sha1_first(abcd).rotate_left(30), msg) } /// Emulates `llvm.x86.sha1rnds4` intrinsic. /// Performs 4 rounds of the message block digest. fn sha1_digest_round_x4(abcd: u32x4, work: u32x4, i: i8) -> u32x4 { const K0V: u32x4 = u32x4(K0, K0, K0, K0); const K1V: u32x4 = u32x4(K1, K1, K1, K1); const K2V: u32x4 = u32x4(K2, K2, K2, K2); const K3V: u32x4 = u32x4(K3, K3, K3, K3); match i { 0 => sha1rnds4c(abcd, work + K0V), 1 => sha1rnds4p(abcd, work + K1V), 2 => sha1rnds4m(abcd, work + K2V), 3 => sha1rnds4p(abcd, work + K3V), _ => unreachable!("unknown icosaround index"), } } /// Not an intrinsic, but helps emulate `llvm.x86.sha1rnds4` intrinsic. fn sha1rnds4c(abcd: u32x4, msg: u32x4) -> u32x4 { let u32x4(mut a, mut b, mut c, mut d) = abcd; let u32x4(t, u, v, w) = msg; let mut e = 0u32; macro_rules! bool3ary_202 { ($a:expr, $b:expr, $c:expr) => ($c ^ ($a & ($b ^ $c))) } // Choose, MD5F, SHA1C e = e.wrapping_add(a.rotate_left(5)) .wrapping_add(bool3ary_202!(b, c, d)) .wrapping_add(t); b = b.rotate_left(30); d = d.wrapping_add(e.rotate_left(5)) .wrapping_add(bool3ary_202!(a, b, c)) .wrapping_add(u); a = a.rotate_left(30); c = c.wrapping_add(d.rotate_left(5)) .wrapping_add(bool3ary_202!(e, a, b)) .wrapping_add(v); e = e.rotate_left(30); b = b.wrapping_add(c.rotate_left(5)) .wrapping_add(bool3ary_202!(d, e, a)) .wrapping_add(w); d = d.rotate_left(30); u32x4(b, c, d, e) } /// Not an intrinsic, but helps emulate `llvm.x86.sha1rnds4` intrinsic. fn sha1rnds4p(abcd: u32x4, msg: u32x4) -> u32x4 { let u32x4(mut a, mut b, mut c, mut d) = abcd; let u32x4(t, u, v, w) = msg; let mut e = 0u32; macro_rules! bool3ary_150 { ($a:expr, $b:expr, $c:expr) => ($a ^ $b ^ $c) } // Parity, XOR, MD5H, SHA1P e = e.wrapping_add(a.rotate_left(5)) .wrapping_add(bool3ary_150!(b, c, d)) .wrapping_add(t); b = b.rotate_left(30); d = d.wrapping_add(e.rotate_left(5)) .wrapping_add(bool3ary_150!(a, b, c)) .wrapping_add(u); a = a.rotate_left(30); c = c.wrapping_add(d.rotate_left(5)) .wrapping_add(bool3ary_150!(e, a, b)) .wrapping_add(v); e = e.rotate_left(30); b = b.wrapping_add(c.rotate_left(5)) .wrapping_add(bool3ary_150!(d, e, a)) .wrapping_add(w); d = d.rotate_left(30); u32x4(b, c, d, e) } /// Not an intrinsic, but helps emulate `llvm.x86.sha1rnds4` intrinsic. fn sha1rnds4m(abcd: u32x4, msg: u32x4) -> u32x4 { let u32x4(mut a, mut b, mut c, mut d) = abcd; let u32x4(t, u, v, w) = msg; let mut e = 0u32; macro_rules! bool3ary_232 { ($a:expr, $b:expr, $c:expr) => (($a & $b) ^ ($a & $c) ^ ($b & $c)) } // Majority, SHA1M e = e.wrapping_add(a.rotate_left(5)) .wrapping_add(bool3ary_232!(b, c, d)) .wrapping_add(t); b = b.rotate_left(30); d = d.wrapping_add(e.rotate_left(5)) .wrapping_add(bool3ary_232!(a, b, c)) .wrapping_add(u); a = a.rotate_left(30); c = c.wrapping_add(d.rotate_left(5)) .wrapping_add(bool3ary_232!(e, a, b)) .wrapping_add(v); e = e.rotate_left(30); b = b.wrapping_add(c.rotate_left(5)) .wrapping_add(bool3ary_232!(d, e, a)) .wrapping_add(w); d = d.rotate_left(30); u32x4(b, c, d, e) } /// Process a block with the SHA-1 algorithm. fn sha1_digest_block_u32(state: &mut [u32; 5], block: &[u32; 16]) { macro_rules! schedule { ($v0:expr, $v1:expr, $v2:expr, $v3:expr) => ( sha1msg2(sha1msg1($v0, $v1) ^ $v2, $v3) ) } macro_rules! rounds4 { ($h0:ident, $h1:ident, $wk:expr, $i:expr) => ( sha1_digest_round_x4($h0, sha1_first_half($h1, $wk), $i) ) } // Rounds 0..20 // TODO: replace with `u32x4::load` let mut h0 = u32x4(state[0], state[1], state[2], state[3]); let mut w0 = u32x4(block[0], block[1], block[2], block[3]); let mut h1 = sha1_digest_round_x4(h0, sha1_first_add(state[4], w0), 0); let mut w1 = u32x4(block[4], block[5], block[6], block[7]); h0 = rounds4!(h1, h0, w1, 0); let mut w2 = u32x4(block[8], block[9], block[10], block[11]); h1 = rounds4!(h0, h1, w2, 0); let mut w3 = u32x4(block[12], block[13], block[14], block[15]); h0 = rounds4!(h1, h0, w3, 0); let mut w4 = schedule!(w0, w1, w2, w3); h1 = rounds4!(h0, h1, w4, 0); // Rounds 20..40 w0 = schedule!(w1, w2, w3, w4); h0 = rounds4!(h1, h0, w0, 1); w1 = schedule!(w2, w3, w4, w0); h1 = rounds4!(h0, h1, w1, 1); w2 = schedule!(w3, w4, w0, w1); h0 = rounds4!(h1, h0, w2, 1); w3 = schedule!(w4, w0, w1, w2); h1 = rounds4!(h0, h1, w3, 1); w4 = schedule!(w0, w1, w2, w3); h0 = rounds4!(h1, h0, w4, 1); // Rounds 40..60 w0 = schedule!(w1, w2, w3, w4); h1 = rounds4!(h0, h1, w0, 2); w1 = schedule!(w2, w3, w4, w0); h0 = rounds4!(h1, h0, w1, 2); w2 = schedule!(w3, w4, w0, w1); h1 = rounds4!(h0, h1, w2, 2); w3 = schedule!(w4, w0, w1, w2); h0 = rounds4!(h1, h0, w3, 2); w4 = schedule!(w0, w1, w2, w3); h1 = rounds4!(h0, h1, w4, 2); // Rounds 60..80 w0 = schedule!(w1, w2, w3, w4); h0 = rounds4!(h1, h0, w0, 3); w1 = schedule!(w2, w3, w4, w0); h1 = rounds4!(h0, h1, w1, 3); w2 = schedule!(w3, w4, w0, w1); h0 = rounds4!(h1, h0, w2, 3); w3 = schedule!(w4, w0, w1, w2); h1 = rounds4!(h0, h1, w3, 3); w4 = schedule!(w0, w1, w2, w3); h0 = rounds4!(h1, h0, w4, 3); let e = sha1_first(h1).rotate_left(30); let u32x4(a, b, c, d) = h0; state[0] = state[0].wrapping_add(a); state[1] = state[1].wrapping_add(b); state[2] = state[2].wrapping_add(c); state[3] = state[3].wrapping_add(d); state[4] = state[4].wrapping_add(e); } /// Process a block with the SHA-1 algorithm. (See more...) /// /// SHA-1 is a cryptographic hash function, and as such, it operates /// on an arbitrary number of bytes. This function operates on a fixed /// number of bytes. If you call this function with anything other than /// 64 bytes, then it will panic! This function takes two arguments: /// /// * `state` is reference to an **array** of 5 words. /// * `block` is reference to a **slice** of 64 bytes. /// /// If you want the function that performs a message digest on an arbitrary /// number of bytes, then see also the `Sha1` struct above. /// /// # Implementation /// /// First, some background. Both ARM and Intel are releasing documentation /// that they plan to include instruction set extensions for SHA1 and SHA256 /// sometime in the near future. Second, LLVM won't lower these intrinsics yet, /// so these functions were written emulate these instructions. Finally, /// the block function implemented with these emulated intrinsics turned out /// to be quite fast! What follows is a discussion of this CPU-level view /// of the SHA-1 algorithm and how it relates to the mathematical definition. /// /// The SHA instruction set extensions can be divided up into two categories: /// /// * message work schedule update calculation ("schedule" v., "work" n.) /// * message block 80-round digest calculation ("digest" v., "block" n.) /// /// The schedule-related functions can be used to easily perform 4 rounds /// of the message work schedule update calculation, as shown below: /// /// ```ignore /// macro_rules! schedule_x4 { /// ($v0:expr, $v1:expr, $v2:expr, $v3:expr) => ( /// sha1msg2(sha1msg1($v0, $v1) ^ $v2, $v3) /// ) /// } /// /// macro_rules! round_x4 { /// ($h0:ident, $h1:ident, $wk:expr, $i:expr) => ( /// sha1rnds4($h0, sha1_first_half($h1, $wk), $i) /// ) /// } /// ``` /// /// and also shown above is how the digest-related functions can be used to /// perform 4 rounds of the message block digest calculation. /// pub fn compress(state: &mut [u32; 5], block: &Block) { let mut block_u32 = [0u32; BLOCK_LEN]; BE::read_u32_into(block, &mut block_u32[..]); sha1_digest_block_u32(state, &block_u32); }