//! A stably addressed token buffer supporting efficient traversal based on a //! cheaply copyable cursor. // This module is heavily commented as it contains most of the unsafe code in // Syn, and caution should be used when editing it. The public-facing interface // is 100% safe but the implementation is fragile internally. use crate::Lifetime; use proc_macro2::extra::DelimSpan; use proc_macro2::{Delimiter, Group, Ident, Literal, Punct, Spacing, Span, TokenStream, TokenTree}; use std::cmp::Ordering; use std::marker::PhantomData; /// Internal type which is used instead of `TokenTree` to represent a token tree /// within a `TokenBuffer`. enum Entry { // Mimicking types from proc-macro. // Group entries contain the offset to the matching End entry. Group(Group, usize), Ident(Ident), Punct(Punct), Literal(Literal), // End entries contain the offset (negative) to the start of the buffer. End(isize), } /// A buffer that can be efficiently traversed multiple times, unlike /// `TokenStream` which requires a deep copy in order to traverse more than /// once. pub struct TokenBuffer { // NOTE: Do not implement clone on this - while the current design could be // cloned, other designs which could be desirable may not be cloneable. entries: Box<[Entry]>, } impl TokenBuffer { fn recursive_new(entries: &mut Vec, stream: TokenStream) { for tt in stream { match tt { TokenTree::Ident(ident) => entries.push(Entry::Ident(ident)), TokenTree::Punct(punct) => entries.push(Entry::Punct(punct)), TokenTree::Literal(literal) => entries.push(Entry::Literal(literal)), TokenTree::Group(group) => { let group_start_index = entries.len(); entries.push(Entry::End(0)); // we replace this below Self::recursive_new(entries, group.stream()); let group_end_index = entries.len(); entries.push(Entry::End(-(group_end_index as isize))); let group_end_offset = group_end_index - group_start_index; entries[group_start_index] = Entry::Group(group, group_end_offset); } } } } /// Creates a `TokenBuffer` containing all the tokens from the input /// `proc_macro::TokenStream`. #[cfg(feature = "proc-macro")] #[cfg_attr(doc_cfg, doc(cfg(feature = "proc-macro")))] pub fn new(stream: proc_macro::TokenStream) -> Self { Self::new2(stream.into()) } /// Creates a `TokenBuffer` containing all the tokens from the input /// `proc_macro2::TokenStream`. pub fn new2(stream: TokenStream) -> Self { let mut entries = Vec::new(); Self::recursive_new(&mut entries, stream); entries.push(Entry::End(-(entries.len() as isize))); Self { entries: entries.into_boxed_slice(), } } /// Creates a cursor referencing the first token in the buffer and able to /// traverse until the end of the buffer. pub fn begin(&self) -> Cursor { let ptr = self.entries.as_ptr(); unsafe { Cursor::create(ptr, ptr.add(self.entries.len() - 1)) } } } /// A cheaply copyable cursor into a `TokenBuffer`. /// /// This cursor holds a shared reference into the immutable data which is used /// internally to represent a `TokenStream`, and can be efficiently manipulated /// and copied around. /// /// An empty `Cursor` can be created directly, or one may create a `TokenBuffer` /// object and get a cursor to its first token with `begin()`. pub struct Cursor<'a> { // The current entry which the `Cursor` is pointing at. ptr: *const Entry, // This is the only `Entry::End` object which this cursor is allowed to // point at. All other `End` objects are skipped over in `Cursor::create`. scope: *const Entry, // Cursor is covariant in 'a. This field ensures that our pointers are still // valid. marker: PhantomData<&'a Entry>, } impl<'a> Cursor<'a> { /// Creates a cursor referencing a static empty TokenStream. pub fn empty() -> Self { // It's safe in this situation for us to put an `Entry` object in global // storage, despite it not actually being safe to send across threads // (`Ident` is a reference into a thread-local table). This is because // this entry never includes a `Ident` object. // // This wrapper struct allows us to break the rules and put a `Sync` // object in global storage. struct UnsafeSyncEntry(Entry); unsafe impl Sync for UnsafeSyncEntry {} static EMPTY_ENTRY: UnsafeSyncEntry = UnsafeSyncEntry(Entry::End(0)); Cursor { ptr: &EMPTY_ENTRY.0, scope: &EMPTY_ENTRY.0, marker: PhantomData, } } /// This create method intelligently exits non-explicitly-entered /// `None`-delimited scopes when the cursor reaches the end of them, /// allowing for them to be treated transparently. unsafe fn create(mut ptr: *const Entry, scope: *const Entry) -> Self { // NOTE: If we're looking at a `End`, we want to advance the cursor // past it, unless `ptr == scope`, which means that we're at the edge of // our cursor's scope. We should only have `ptr != scope` at the exit // from None-delimited groups entered with `ignore_none`. while let Entry::End(_) = *ptr { if ptr == scope { break; } ptr = ptr.add(1); } Cursor { ptr, scope, marker: PhantomData, } } /// Get the current entry. fn entry(self) -> &'a Entry { unsafe { &*self.ptr } } /// Bump the cursor to point at the next token after the current one. This /// is undefined behavior if the cursor is currently looking at an /// `Entry::End`. /// /// If the cursor is looking at an `Entry::Group`, the bumped cursor will /// point at the first token in the group (with the same scope end). unsafe fn bump_ignore_group(self) -> Cursor<'a> { Cursor::create(self.ptr.offset(1), self.scope) } /// While the cursor is looking at a `None`-delimited group, move it to look /// at the first token inside instead. If the group is empty, this will move /// the cursor past the `None`-delimited group. /// /// WARNING: This mutates its argument. fn ignore_none(&mut self) { while let Entry::Group(group, _) = self.entry() { if group.delimiter() == Delimiter::None { unsafe { *self = self.bump_ignore_group() }; } else { break; } } } /// Checks whether the cursor is currently pointing at the end of its valid /// scope. pub fn eof(self) -> bool { // We're at eof if we're at the end of our scope. self.ptr == self.scope } /// If the cursor is pointing at a `Group` with the given delimiter, returns /// a cursor into that group and one pointing to the next `TokenTree`. pub fn group(mut self, delim: Delimiter) -> Option<(Cursor<'a>, DelimSpan, Cursor<'a>)> { // If we're not trying to enter a none-delimited group, we want to // ignore them. We have to make sure to _not_ ignore them when we want // to enter them, of course. For obvious reasons. if delim != Delimiter::None { self.ignore_none(); } if let Entry::Group(group, end_offset) = self.entry() { if group.delimiter() == delim { let span = group.delim_span(); let end_of_group = unsafe { self.ptr.add(*end_offset) }; let inside_of_group = unsafe { Cursor::create(self.ptr.add(1), end_of_group) }; let after_group = unsafe { Cursor::create(end_of_group, self.scope) }; return Some((inside_of_group, span, after_group)); } } None } pub(crate) fn any_group(self) -> Option<(Cursor<'a>, Delimiter, DelimSpan, Cursor<'a>)> { if let Entry::Group(group, end_offset) = self.entry() { let delimiter = group.delimiter(); let span = group.delim_span(); let end_of_group = unsafe { self.ptr.add(*end_offset) }; let inside_of_group = unsafe { Cursor::create(self.ptr.add(1), end_of_group) }; let after_group = unsafe { Cursor::create(end_of_group, self.scope) }; return Some((inside_of_group, delimiter, span, after_group)); } None } pub(crate) fn any_group_token(self) -> Option<(Group, Cursor<'a>)> { if let Entry::Group(group, end_offset) = self.entry() { let end_of_group = unsafe { self.ptr.add(*end_offset) }; let after_group = unsafe { Cursor::create(end_of_group, self.scope) }; return Some((group.clone(), after_group)); } None } /// If the cursor is pointing at a `Ident`, returns it along with a cursor /// pointing at the next `TokenTree`. pub fn ident(mut self) -> Option<(Ident, Cursor<'a>)> { self.ignore_none(); match self.entry() { Entry::Ident(ident) => Some((ident.clone(), unsafe { self.bump_ignore_group() })), _ => None, } } /// If the cursor is pointing at a `Punct`, returns it along with a cursor /// pointing at the next `TokenTree`. pub fn punct(mut self) -> Option<(Punct, Cursor<'a>)> { self.ignore_none(); match self.entry() { Entry::Punct(punct) if punct.as_char() != '\'' => { Some((punct.clone(), unsafe { self.bump_ignore_group() })) } _ => None, } } /// If the cursor is pointing at a `Literal`, return it along with a cursor /// pointing at the next `TokenTree`. pub fn literal(mut self) -> Option<(Literal, Cursor<'a>)> { self.ignore_none(); match self.entry() { Entry::Literal(literal) => Some((literal.clone(), unsafe { self.bump_ignore_group() })), _ => None, } } /// If the cursor is pointing at a `Lifetime`, returns it along with a /// cursor pointing at the next `TokenTree`. pub fn lifetime(mut self) -> Option<(Lifetime, Cursor<'a>)> { self.ignore_none(); match self.entry() { Entry::Punct(punct) if punct.as_char() == '\'' && punct.spacing() == Spacing::Joint => { let next = unsafe { self.bump_ignore_group() }; let (ident, rest) = next.ident()?; let lifetime = Lifetime { apostrophe: punct.span(), ident, }; Some((lifetime, rest)) } _ => None, } } /// Copies all remaining tokens visible from this cursor into a /// `TokenStream`. pub fn token_stream(self) -> TokenStream { let mut tts = Vec::new(); let mut cursor = self; while let Some((tt, rest)) = cursor.token_tree() { tts.push(tt); cursor = rest; } tts.into_iter().collect() } /// If the cursor is pointing at a `TokenTree`, returns it along with a /// cursor pointing at the next `TokenTree`. /// /// Returns `None` if the cursor has reached the end of its stream. /// /// This method does not treat `None`-delimited groups as transparent, and /// will return a `Group(None, ..)` if the cursor is looking at one. pub fn token_tree(self) -> Option<(TokenTree, Cursor<'a>)> { let (tree, len) = match self.entry() { Entry::Group(group, end_offset) => (group.clone().into(), *end_offset), Entry::Literal(literal) => (literal.clone().into(), 1), Entry::Ident(ident) => (ident.clone().into(), 1), Entry::Punct(punct) => (punct.clone().into(), 1), Entry::End(_) => return None, }; let rest = unsafe { Cursor::create(self.ptr.add(len), self.scope) }; Some((tree, rest)) } /// Returns the `Span` of the current token, or `Span::call_site()` if this /// cursor points to eof. pub fn span(self) -> Span { match self.entry() { Entry::Group(group, _) => group.span(), Entry::Literal(literal) => literal.span(), Entry::Ident(ident) => ident.span(), Entry::Punct(punct) => punct.span(), Entry::End(_) => Span::call_site(), } } /// Returns the `Span` of the token immediately prior to the position of /// this cursor, or of the current token if there is no previous one. #[cfg(any(feature = "full", feature = "derive"))] pub(crate) fn prev_span(mut self) -> Span { if start_of_buffer(self) < self.ptr { self.ptr = unsafe { self.ptr.offset(-1) }; if let Entry::End(_) = self.entry() { // Locate the matching Group begin token. let mut depth = 1; loop { self.ptr = unsafe { self.ptr.offset(-1) }; match self.entry() { Entry::Group(group, _) => { depth -= 1; if depth == 0 { return group.span(); } } Entry::End(_) => depth += 1, Entry::Literal(_) | Entry::Ident(_) | Entry::Punct(_) => {} } } } } self.span() } /// Skip over the next token without cloning it. Returns `None` if this /// cursor points to eof. /// /// This method treats `'lifetimes` as a single token. pub(crate) fn skip(self) -> Option> { let len = match self.entry() { Entry::End(_) => return None, // Treat lifetimes as a single tt for the purposes of 'skip'. Entry::Punct(punct) if punct.as_char() == '\'' && punct.spacing() == Spacing::Joint => { match unsafe { &*self.ptr.add(1) } { Entry::Ident(_) => 2, _ => 1, } } Entry::Group(_, end_offset) => *end_offset, _ => 1, }; Some(unsafe { Cursor::create(self.ptr.add(len), self.scope) }) } } impl<'a> Copy for Cursor<'a> {} impl<'a> Clone for Cursor<'a> { fn clone(&self) -> Self { *self } } impl<'a> Eq for Cursor<'a> {} impl<'a> PartialEq for Cursor<'a> { fn eq(&self, other: &Self) -> bool { self.ptr == other.ptr } } impl<'a> PartialOrd for Cursor<'a> { fn partial_cmp(&self, other: &Self) -> Option { if same_buffer(*self, *other) { Some(self.ptr.cmp(&other.ptr)) } else { None } } } pub(crate) fn same_scope(a: Cursor, b: Cursor) -> bool { a.scope == b.scope } pub(crate) fn same_buffer(a: Cursor, b: Cursor) -> bool { start_of_buffer(a) == start_of_buffer(b) } fn start_of_buffer(cursor: Cursor) -> *const Entry { unsafe { match &*cursor.scope { Entry::End(offset) => cursor.scope.offset(*offset), _ => unreachable!(), } } } #[cfg(any(feature = "full", feature = "derive"))] pub(crate) fn cmp_assuming_same_buffer(a: Cursor, b: Cursor) -> Ordering { a.ptr.cmp(&b.ptr) } pub(crate) fn open_span_of_group(cursor: Cursor) -> Span { match cursor.entry() { Entry::Group(group, _) => group.span_open(), _ => cursor.span(), } } pub(crate) fn close_span_of_group(cursor: Cursor) -> Span { match cursor.entry() { Entry::Group(group, _) => group.span_close(), _ => cursor.span(), } }