use std::alloc::Layout; use std::future::Future; use std::panic::AssertUnwindSafe; use std::pin::Pin; use std::ptr::{self, NonNull}; use std::task::{Context, Poll}; use std::{fmt, panic}; /// A reusable `Pin + Send>>`. /// /// This type lets you replace the future stored in the box without /// reallocating when the size and alignment permits this. pub(crate) struct ReusableBoxFuture { boxed: NonNull + Send>, } impl ReusableBoxFuture { /// Create a new `ReusableBoxFuture` containing the provided future. pub(crate) fn new(future: F) -> Self where F: Future + Send + 'static, { let boxed: Box + Send> = Box::new(future); let boxed = Box::into_raw(boxed); // SAFETY: Box::into_raw does not return null pointers. let boxed = unsafe { NonNull::new_unchecked(boxed) }; Self { boxed } } /// Replace the future currently stored in this box. /// /// This reallocates if and only if the layout of the provided future is /// different from the layout of the currently stored future. pub(crate) fn set(&mut self, future: F) where F: Future + Send + 'static, { if let Err(future) = self.try_set(future) { *self = Self::new(future); } } /// Replace the future currently stored in this box. /// /// This function never reallocates, but returns an error if the provided /// future has a different size or alignment from the currently stored /// future. pub(crate) fn try_set(&mut self, future: F) -> Result<(), F> where F: Future + Send + 'static, { // SAFETY: The pointer is not dangling. let self_layout = { let dyn_future: &(dyn Future + Send) = unsafe { self.boxed.as_ref() }; Layout::for_value(dyn_future) }; if Layout::new::() == self_layout { // SAFETY: We just checked that the layout of F is correct. unsafe { self.set_same_layout(future); } Ok(()) } else { Err(future) } } /// Set the current future. /// /// # Safety /// /// This function requires that the layout of the provided future is the /// same as `self.layout`. unsafe fn set_same_layout(&mut self, future: F) where F: Future + Send + 'static, { // Drop the existing future, catching any panics. let result = panic::catch_unwind(AssertUnwindSafe(|| { ptr::drop_in_place(self.boxed.as_ptr()); })); // Overwrite the future behind the pointer. This is safe because the // allocation was allocated with the same size and alignment as the type F. let self_ptr: *mut F = self.boxed.as_ptr() as *mut F; ptr::write(self_ptr, future); // Update the vtable of self.boxed. The pointer is not null because we // just got it from self.boxed, which is not null. self.boxed = NonNull::new_unchecked(self_ptr); // If the old future's destructor panicked, resume unwinding. match result { Ok(()) => {} Err(payload) => { panic::resume_unwind(payload); } } } /// Get a pinned reference to the underlying future. pub(crate) fn get_pin(&mut self) -> Pin<&mut (dyn Future + Send)> { // SAFETY: The user of this box cannot move the box, and we do not move it // either. unsafe { Pin::new_unchecked(self.boxed.as_mut()) } } /// Poll the future stored inside this box. pub(crate) fn poll(&mut self, cx: &mut Context<'_>) -> Poll { self.get_pin().poll(cx) } } impl Future for ReusableBoxFuture { type Output = T; /// Poll the future stored inside this box. fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll { Pin::into_inner(self).get_pin().poll(cx) } } // The future stored inside ReusableBoxFuture must be Send. unsafe impl Send for ReusableBoxFuture {} // The only method called on self.boxed is poll, which takes &mut self, so this // struct being Sync does not permit any invalid access to the Future, even if // the future is not Sync. unsafe impl Sync for ReusableBoxFuture {} // Just like a Pin> is always Unpin, so is this type. impl Unpin for ReusableBoxFuture {} impl Drop for ReusableBoxFuture { fn drop(&mut self) { unsafe { drop(Box::from_raw(self.boxed.as_ptr())); } } } impl fmt::Debug for ReusableBoxFuture { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("ReusableBoxFuture").finish() } } #[cfg(test)] mod test { use super::ReusableBoxFuture; use futures::future::FutureExt; use std::alloc::Layout; use std::future::Future; use std::pin::Pin; use std::task::{Context, Poll}; #[test] fn test_different_futures() { let fut = async move { 10 }; // Not zero sized! assert_eq!(Layout::for_value(&fut).size(), 1); let mut b = ReusableBoxFuture::new(fut); assert_eq!(b.get_pin().now_or_never(), Some(10)); b.try_set(async move { 20 }) .unwrap_or_else(|_| panic!("incorrect size")); assert_eq!(b.get_pin().now_or_never(), Some(20)); b.try_set(async move { 30 }) .unwrap_or_else(|_| panic!("incorrect size")); assert_eq!(b.get_pin().now_or_never(), Some(30)); } #[test] fn test_different_sizes() { let fut1 = async move { 10 }; let val = [0u32; 1000]; let fut2 = async move { val[0] }; let fut3 = ZeroSizedFuture {}; assert_eq!(Layout::for_value(&fut1).size(), 1); assert_eq!(Layout::for_value(&fut2).size(), 4004); assert_eq!(Layout::for_value(&fut3).size(), 0); let mut b = ReusableBoxFuture::new(fut1); assert_eq!(b.get_pin().now_or_never(), Some(10)); b.set(fut2); assert_eq!(b.get_pin().now_or_never(), Some(0)); b.set(fut3); assert_eq!(b.get_pin().now_or_never(), Some(5)); } struct ZeroSizedFuture {} impl Future for ZeroSizedFuture { type Output = u32; fn poll(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll { Poll::Ready(5) } } #[test] fn test_zero_sized() { let fut = ZeroSizedFuture {}; // Zero sized! assert_eq!(Layout::for_value(&fut).size(), 0); let mut b = ReusableBoxFuture::new(fut); assert_eq!(b.get_pin().now_or_never(), Some(5)); assert_eq!(b.get_pin().now_or_never(), Some(5)); b.try_set(ZeroSizedFuture {}) .unwrap_or_else(|_| panic!("incorrect size")); assert_eq!(b.get_pin().now_or_never(), Some(5)); assert_eq!(b.get_pin().now_or_never(), Some(5)); } }