#![warn(rust_2018_idioms)] #![cfg(feature = "sync")] #[cfg(tokio_wasm_not_wasi)] use wasm_bindgen_test::wasm_bindgen_test as test; #[cfg(tokio_wasm_not_wasi)] use wasm_bindgen_test::wasm_bindgen_test as maybe_tokio_test; #[cfg(not(tokio_wasm_not_wasi))] use tokio::test as maybe_tokio_test; use tokio::sync::Mutex; use tokio_test::task::spawn; use tokio_test::{assert_pending, assert_ready}; use std::sync::Arc; #[test] fn straight_execution() { let l = Arc::new(Mutex::new(100)); { let mut t = spawn(l.clone().lock_owned()); let mut g = assert_ready!(t.poll()); assert_eq!(&*g, &100); *g = 99; } { let mut t = spawn(l.clone().lock_owned()); let mut g = assert_ready!(t.poll()); assert_eq!(&*g, &99); *g = 98; } { let mut t = spawn(l.lock_owned()); let g = assert_ready!(t.poll()); assert_eq!(&*g, &98); } } #[test] fn readiness() { let l = Arc::new(Mutex::new(100)); let mut t1 = spawn(l.clone().lock_owned()); let mut t2 = spawn(l.lock_owned()); let g = assert_ready!(t1.poll()); // We can't now acquire the lease since it's already held in g assert_pending!(t2.poll()); // But once g unlocks, we can acquire it drop(g); assert!(t2.is_woken()); assert_ready!(t2.poll()); } /// Ensure a mutex is unlocked if a future holding the lock /// is aborted prematurely. #[tokio::test] #[cfg(feature = "full")] async fn aborted_future_1() { use std::time::Duration; use tokio::time::{interval, timeout}; let m1: Arc> = Arc::new(Mutex::new(0)); { let m2 = m1.clone(); // Try to lock mutex in a future that is aborted prematurely timeout(Duration::from_millis(1u64), async move { let iv = interval(Duration::from_millis(1000)); tokio::pin!(iv); m2.lock_owned().await; iv.as_mut().tick().await; iv.as_mut().tick().await; }) .await .unwrap_err(); } // This should succeed as there is no lock left for the mutex. timeout(Duration::from_millis(1u64), async move { m1.lock_owned().await; }) .await .expect("Mutex is locked"); } /// This test is similar to `aborted_future_1` but this time the /// aborted future is waiting for the lock. #[tokio::test] #[cfg(feature = "full")] async fn aborted_future_2() { use std::time::Duration; use tokio::time::timeout; let m1: Arc> = Arc::new(Mutex::new(0)); { // Lock mutex let _lock = m1.clone().lock_owned().await; { let m2 = m1.clone(); // Try to lock mutex in a future that is aborted prematurely timeout(Duration::from_millis(1u64), async move { m2.lock_owned().await; }) .await .unwrap_err(); } } // This should succeed as there is no lock left for the mutex. timeout(Duration::from_millis(1u64), async move { m1.lock_owned().await; }) .await .expect("Mutex is locked"); } #[test] fn try_lock_owned() { let m: Arc> = Arc::new(Mutex::new(0)); { let g1 = m.clone().try_lock_owned(); assert!(g1.is_ok()); let g2 = m.clone().try_lock_owned(); assert!(g2.is_err()); } let g3 = m.try_lock_owned(); assert!(g3.is_ok()); } #[maybe_tokio_test] async fn debug_format() { let s = "debug"; let m = Arc::new(Mutex::new(s.to_string())); assert_eq!(format!("{:?}", s), format!("{:?}", m.lock_owned().await)); }