//! The in-progress XXH3 algorithm. //! //! Please read [the notes in original implementation][warning] to //! learn about when to use these algorithms. Specifically, the //! version of code this crate reproduces says: //! //! > The algorithm is currently in development, meaning its return //! values might still change in future versions. However, the API //! is stable, and can be used in production, typically for //! generation of ephemeral hashes (produced and consumed in same //! session). //! //! [warning]: https://github.com/Cyan4973/xxHash#new-hash-algorithms use alloc::vec::Vec; use core::convert::TryInto; use core::hash::Hasher; use core::mem; use core::ops::{Deref, DerefMut}; use core::slice; #[cfg(target_arch = "x86")] use core::arch::x86::*; #[cfg(target_arch = "x86_64")] use core::arch::x86_64::*; use cfg_if::cfg_if; use static_assertions::{const_assert, const_assert_eq}; #[cfg(feature = "serialize")] use serde::{Deserialize, Serialize}; use crate::sixty_four::{ PRIME_1 as PRIME64_1, PRIME_2 as PRIME64_2, PRIME_3 as PRIME64_3, PRIME_4 as PRIME64_4, PRIME_5 as PRIME64_5, }; use crate::thirty_two::{PRIME_1 as PRIME32_1, PRIME_2 as PRIME32_2, PRIME_3 as PRIME32_3}; #[cfg(feature = "std")] pub use crate::std_support::xxh3::{RandomHashBuilder128, RandomHashBuilder64}; #[inline(always)] pub fn hash64(data: &[u8]) -> u64 { hash64_with_seed(data, 0) } #[inline(always)] pub fn hash64_with_seed(data: &[u8], seed: u64) -> u64 { let len = data.len(); if len <= 16 { hash_len_0to16_64bits(data, len, &SECRET, seed) } else if len <= 128 { hash_len_17to128_64bits(data, len, &SECRET, seed) } else if len <= MIDSIZE_MAX { hash_len_129to240_64bits(data, len, &SECRET, seed) } else { hash_long_64bits_with_seed(data, len, seed) } } #[inline(always)] pub fn hash64_with_secret(data: &[u8], secret: &[u8]) -> u64 { debug_assert!(secret.len() >= SECRET_SIZE_MIN); let len = data.len(); if len <= 16 { hash_len_0to16_64bits(data, len, secret, 0) } else if len <= 128 { hash_len_17to128_64bits(data, len, secret, 0) } else if len <= MIDSIZE_MAX { hash_len_129to240_64bits(data, len, secret, 0) } else { hash_long_64bits_with_secret(data, len, secret) } } #[inline(always)] pub fn hash128(data: &[u8]) -> u128 { hash128_with_seed(data, 0) } #[inline(always)] pub fn hash128_with_seed(data: &[u8], seed: u64) -> u128 { let len = data.len(); if len <= 16 { hash_len_0to16_128bits(data, len, &SECRET, seed) } else if len <= 128 { hash_len_17to128_128bits(data, len, &SECRET, seed) } else if len <= MIDSIZE_MAX { hash_len_129to240_128bits(data, len, &SECRET, seed) } else { hash_long_128bits_with_seed(data, len, seed) } } #[inline(always)] pub fn hash128_with_secret(data: &[u8], secret: &[u8]) -> u128 { debug_assert!(secret.len() >= SECRET_SIZE_MIN); let len = data.len(); if len <= 16 { hash_len_0to16_128bits(data, len, secret, 0) } else if len <= 128 { hash_len_17to128_128bits(data, len, secret, 0) } else if len <= MIDSIZE_MAX { hash_len_129to240_128bits(data, len, secret, 0) } else { hash_long_128bits_with_secret(data, len, secret) } } /// Calculates the 64-bit hash. #[cfg_attr(feature = "serialize", derive(Deserialize, Serialize))] #[derive(Clone, Default)] pub struct Hash64(State); impl Hash64 { pub fn with_seed(seed: u64) -> Self { Self(State::with_seed(seed)) } pub fn with_secret>>(secret: S) -> Self { Self(State::with_secret(secret)) } } impl Hasher for Hash64 { #[inline(always)] fn finish(&self) -> u64 { self.0.digest64() } #[inline(always)] fn write(&mut self, bytes: &[u8]) { self.0.update(bytes, AccWidth::Acc64Bits) } } /// Calculates the 128-bit hash. #[cfg_attr(feature = "serialize", derive(Deserialize, Serialize))] #[derive(Clone, Default)] pub struct Hash128(State); impl Hash128 { pub fn with_seed(seed: u64) -> Self { Self(State::with_seed(seed)) } pub fn with_secret>>(secret: S) -> Self { Self(State::with_secret(secret)) } } impl Hasher for Hash128 { #[inline(always)] fn finish(&self) -> u64 { self.0.digest128() as u64 } #[inline(always)] fn write(&mut self, bytes: &[u8]) { self.0.update(bytes, AccWidth::Acc128Bits) } } pub trait HasherExt: Hasher { fn finish_ext(&self) -> u128; } impl HasherExt for Hash128 { #[inline(always)] fn finish_ext(&self) -> u128 { self.0.digest128() } } /* ========================================== * XXH3 default settings * ========================================== */ const SECRET_DEFAULT_SIZE: usize = 192; const SECRET_SIZE_MIN: usize = 136; const SECRET: Secret = Secret([ 0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c, 0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f, 0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21, 0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c, 0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3, 0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8, 0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d, 0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64, 0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb, 0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e, 0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce, 0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e, ]); #[repr(align(64))] #[derive(Clone)] struct Secret([u8; SECRET_DEFAULT_SIZE]); const_assert_eq!(mem::size_of::() % 16, 0); impl Default for Secret { #[inline(always)] fn default() -> Self { SECRET } } impl Deref for Secret { type Target = [u8]; #[inline(always)] fn deref(&self) -> &Self::Target { &self.0[..] } } cfg_if! { if #[cfg(feature = "serialize")] { impl Serialize for Secret { fn serialize(&self, serializer: S) -> Result where S: serde::Serializer, { serializer.serialize_bytes(self) } } impl<'de> Deserialize<'de> for Secret { fn deserialize(deserializer: D) -> Result where D: serde::Deserializer<'de>, { deserializer.deserialize_bytes(SecretVisitor) } } struct SecretVisitor; impl<'de> serde::de::Visitor<'de> for SecretVisitor { type Value = Secret; fn expecting(&self, formatter: &mut core::fmt::Formatter) -> core::fmt::Result { formatter.write_str("secret with a bytes array") } fn visit_bytes(self, v: &[u8]) -> Result where E: serde::de::Error, { if v.len() == SECRET_DEFAULT_SIZE { let mut secret = [0; SECRET_DEFAULT_SIZE]; secret.copy_from_slice(v); Ok(Secret(secret)) } else { Err(E::custom("incomplete secret data")) } } } } } impl Secret { #[inline(always)] pub fn with_seed(seed: u64) -> Self { let mut secret = [0; SECRET_DEFAULT_SIZE]; for off in (0..SECRET_DEFAULT_SIZE).step_by(16) { secret[off..].write_u64_le(SECRET[off..].read_u64_le().wrapping_add(seed)); secret[off + 8..].write_u64_le(SECRET[off + 8..].read_u64_le().wrapping_sub(seed)); } Secret(secret) } } cfg_if! { if #[cfg(target_feature = "avx2")] { #[repr(align(32))] #[cfg_attr(feature = "serialize", derive(Deserialize, Serialize))] #[derive(Clone)] struct Acc([u64; ACC_NB]); } else if #[cfg(target_feature = "sse2")] { #[repr(align(16))] #[cfg_attr(feature = "serialize", derive(Deserialize, Serialize))] #[derive(Clone)] struct Acc([u64; ACC_NB]); } else { #[repr(align(8))] #[cfg_attr(feature = "serialize", derive(Deserialize, Serialize))] #[derive(Clone)] struct Acc([u64; ACC_NB]); } } const ACC_SIZE: usize = mem::size_of::(); const_assert_eq!(ACC_SIZE, 64); impl Default for Acc { #[inline(always)] fn default() -> Self { Acc([ u64::from(PRIME32_3), PRIME64_1, PRIME64_2, PRIME64_3, PRIME64_4, u64::from(PRIME32_2), PRIME64_5, u64::from(PRIME32_1), ]) } } impl Deref for Acc { type Target = [u64]; #[inline(always)] fn deref(&self) -> &Self::Target { &self.0 } } impl DerefMut for Acc { #[inline(always)] fn deref_mut(&mut self) -> &mut Self::Target { &mut self.0 } } trait Buf { fn read_u32_le(&self) -> u32; fn read_u64_le(&self) -> u64; } trait BufMut { fn write_u32_le(&mut self, n: u32); fn write_u64_le(&mut self, n: u64); } impl Buf for [u8] { #[inline(always)] fn read_u32_le(&self) -> u32 { let buf = &self[..mem::size_of::()]; u32::from_le_bytes(buf.try_into().unwrap()) } #[inline(always)] fn read_u64_le(&self) -> u64 { let buf = &self[..mem::size_of::()]; u64::from_le_bytes(buf.try_into().unwrap()) } } impl BufMut for [u8] { #[inline(always)] fn write_u32_le(&mut self, n: u32) { self[..mem::size_of::()].copy_from_slice(&n.to_le_bytes()[..]); } #[inline(always)] fn write_u64_le(&mut self, n: u64) { self[..mem::size_of::()].copy_from_slice(&n.to_le_bytes()[..]); } } /* ========================================== * Short keys * ========================================== */ #[inline(always)] fn hash_len_0to16_64bits(data: &[u8], len: usize, key: &[u8], seed: u64) -> u64 { debug_assert!(len <= 16); if len > 8 { hash_len_9to16_64bits(data, len, key, seed) } else if len >= 4 { hash_len_4to8_64bits(data, len, key, seed) } else if len > 0 { hash_len_1to3_64bits(data, len, key, seed) } else { 0 } } #[inline(always)] fn hash_len_9to16_64bits(data: &[u8], len: usize, key: &[u8], seed: u64) -> u64 { debug_assert!((9..=16).contains(&len)); let ll1 = data.read_u64_le() ^ key.read_u64_le().wrapping_add(seed); let ll2 = data[len - 8..].read_u64_le() ^ key[8..].read_u64_le().wrapping_sub(seed); let acc = (len as u64) .wrapping_add(ll1) .wrapping_add(ll2) .wrapping_add(mul128_fold64(ll1, ll2)); avalanche(acc) } #[inline(always)] fn hash_len_4to8_64bits(data: &[u8], len: usize, key: &[u8], seed: u64) -> u64 { debug_assert!((4..=8).contains(&len)); let in1 = u64::from(data.read_u32_le()); let in2 = u64::from(data[len - 4..].read_u32_le()); let in64 = in1.wrapping_add(in2 << 32); let keyed = in64 ^ key.read_u64_le().wrapping_add(seed); let mix64 = (len as u64).wrapping_add((keyed ^ (keyed >> 51)).wrapping_mul(u64::from(PRIME32_1))); avalanche((mix64 ^ (mix64 >> 47)).wrapping_mul(PRIME64_2)) } #[inline(always)] fn hash_len_1to3_64bits(data: &[u8], len: usize, key: &[u8], seed: u64) -> u64 { debug_assert!((1..=3).contains(&len)); let c1 = u32::from(data[0]); let c2 = u32::from(data[len >> 1]); let c3 = u32::from(data[len - 1]); let combined = c1 + (c2 << 8) + (c3 << 16) + ((len as u32) << 24); let keyed = u64::from(combined) ^ u64::from(key.read_u32_le()).wrapping_add(seed); let mixed = keyed.wrapping_mul(PRIME64_1); avalanche(mixed) } #[inline(always)] fn hash_len_17to128_64bits(data: &[u8], len: usize, secret: &[u8], seed: u64) -> u64 { debug_assert!((17..=128).contains(&len)); debug_assert!(secret.len() >= SECRET_SIZE_MIN); let mut acc = PRIME64_1.wrapping_mul(len as u64); if len > 32 { if len > 64 { if len > 96 { acc = acc .wrapping_add(mix_16bytes(&data[48..], &secret[96..], seed)) .wrapping_add(mix_16bytes(&data[len - 64..], &secret[112..], seed)); } acc = acc .wrapping_add(mix_16bytes(&data[32..], &secret[64..], seed)) .wrapping_add(mix_16bytes(&data[len - 48..], &secret[80..], seed)); } acc = acc .wrapping_add(mix_16bytes(&data[16..], &secret[32..], seed)) .wrapping_add(mix_16bytes(&data[len - 32..], &secret[48..], seed)); } acc = acc .wrapping_add(mix_16bytes(data, secret, seed)) .wrapping_add(mix_16bytes(&data[len - 16..], &secret[16..], seed)); avalanche(acc) } const MIDSIZE_MAX: usize = 240; const MIDSIZE_STARTOFFSET: usize = 3; const MIDSIZE_LASTOFFSET: usize = 17; #[inline(always)] fn hash_len_129to240_64bits(data: &[u8], len: usize, secret: &[u8], seed: u64) -> u64 { debug_assert!((129..=MIDSIZE_MAX).contains(&len)); debug_assert!(secret.len() >= SECRET_SIZE_MIN); let acc = (len as u64).wrapping_mul(PRIME64_1); let acc = (0..8).fold(acc, |acc, i| { acc.wrapping_add(mix_16bytes(&data[16 * i..], &secret[16 * i..], seed)) }); let acc = avalanche(acc); let nb_rounds = len / 16; debug_assert!(nb_rounds >= 8); let acc = (8..nb_rounds).fold(acc, |acc, i| { acc.wrapping_add(mix_16bytes( &data[16 * i..], &secret[16 * (i - 8) + MIDSIZE_STARTOFFSET..], seed, )) }); avalanche(acc.wrapping_add(mix_16bytes( &data[len - 16..], &secret[SECRET_SIZE_MIN - MIDSIZE_LASTOFFSET..], seed, ))) } /* ========================================== * Long keys * ========================================== */ const STRIPE_LEN: usize = 64; const SECRET_CONSUME_RATE: usize = 8; // nb of secret bytes consumed at each accumulation const SECRET_MERGEACCS_START: usize = 11; // do not align on 8, so that secret is different from accumulator const SECRET_LASTACC_START: usize = 7; // do not align on 8, so that secret is different from scrambler const ACC_NB: usize = STRIPE_LEN / mem::size_of::(); #[derive(Debug, Clone, Copy, PartialEq)] pub(crate) enum AccWidth { Acc64Bits, Acc128Bits, } #[inline(always)] fn hash_long_64bits_with_default_secret(data: &[u8], len: usize) -> u64 { hash_long_internal(data, len, &SECRET) } #[inline(always)] fn hash_long_64bits_with_secret(data: &[u8], len: usize, secret: &[u8]) -> u64 { hash_long_internal(data, len, secret) } /// Generate a custom key, based on alteration of default kSecret with the seed, /// and then use this key for long mode hashing. /// /// This operation is decently fast but nonetheless costs a little bit of time. /// Try to avoid it whenever possible (typically when `seed.is_none()`). #[inline(always)] fn hash_long_64bits_with_seed(data: &[u8], len: usize, seed: u64) -> u64 { if seed == 0 { hash_long_64bits_with_default_secret(data, len) } else { let secret = Secret::with_seed(seed); hash_long_internal(data, len, &secret) } } #[inline(always)] fn hash_long_internal(data: &[u8], len: usize, secret: &[u8]) -> u64 { let mut acc = Acc::default(); hash_long_internal_loop(&mut acc, data, len, secret, AccWidth::Acc64Bits); merge_accs( &acc, &secret[SECRET_MERGEACCS_START..], (len as u64).wrapping_mul(PRIME64_1), ) } #[inline(always)] fn hash_long_internal_loop( acc: &mut [u64], data: &[u8], len: usize, secret: &[u8], acc_width: AccWidth, ) { let secret_len = secret.len(); let nb_rounds = (secret_len - STRIPE_LEN) / SECRET_CONSUME_RATE; let block_len = STRIPE_LEN * nb_rounds; debug_assert!(secret_len >= SECRET_SIZE_MIN); let mut chunks = data.chunks_exact(block_len); for chunk in &mut chunks { accumulate(acc, chunk, secret, nb_rounds, acc_width); unsafe { scramble_acc(acc, &secret[secret_len - STRIPE_LEN..]); } } /* last partial block */ debug_assert!(len > STRIPE_LEN); let nb_stripes = (len % block_len) / STRIPE_LEN; debug_assert!(nb_stripes < (secret_len / SECRET_CONSUME_RATE)); accumulate(acc, chunks.remainder(), secret, nb_stripes, acc_width); /* last stripe */ if (len & (STRIPE_LEN - 1)) != 0 { unsafe { accumulate512( acc, &data[len - STRIPE_LEN..], &secret[secret_len - STRIPE_LEN - SECRET_LASTACC_START..], acc_width, ); } } } #[inline(always)] fn accumulate(acc: &mut [u64], data: &[u8], secret: &[u8], nb_stripes: usize, acc_width: AccWidth) { for n in 0..nb_stripes { unsafe { accumulate512( acc, &data[n * STRIPE_LEN..], &secret[n * SECRET_CONSUME_RATE..], acc_width, ); } } } #[inline(always)] const fn _mm_shuffle(z: u32, y: u32, x: u32, w: u32) -> i32 { ((z << 6) | (y << 4) | (x << 2) | w) as i32 } #[cfg(target_feature = "avx2")] mod avx2 { use super::*; #[target_feature(enable = "avx2")] pub(crate) unsafe fn accumulate512( acc: &mut [u64], data: &[u8], keys: &[u8], acc_width: AccWidth, ) { let xacc = acc.as_mut_ptr() as *mut __m256i; let xdata = data.as_ptr() as *const __m256i; let xkey = keys.as_ptr() as *const __m256i; for i in 0..STRIPE_LEN / mem::size_of::<__m256i>() { let d = _mm256_loadu_si256(xdata.add(i)); let k = _mm256_loadu_si256(xkey.add(i)); let dk = _mm256_xor_si256(d, k); // uint32 dk[8] = {d0+k0, d1+k1, d2+k2, d3+k3, ...} let mul = _mm256_mul_epu32(dk, _mm256_shuffle_epi32(dk, 0x31)); // uint64 res[4] = {dk0*dk1, dk2*dk3, ...} xacc.add(i).write(if acc_width == AccWidth::Acc128Bits { let dswap = _mm256_shuffle_epi32(d, _mm_shuffle(1, 0, 3, 2)); let add = _mm256_add_epi64(xacc.add(i).read(), dswap); _mm256_add_epi64(mul, add) } else { let add = _mm256_add_epi64(xacc.add(i).read(), d); _mm256_add_epi64(mul, add) }) } } #[target_feature(enable = "avx2")] pub unsafe fn scramble_acc(acc: &mut [u64], key: &[u8]) { let xacc = acc.as_mut_ptr() as *mut __m256i; let xkey = key.as_ptr() as *const __m256i; let prime32 = _mm256_set1_epi32(PRIME32_1 as i32); for i in 0..STRIPE_LEN / mem::size_of::<__m256i>() { let data = xacc.add(i).read(); let shifted = _mm256_srli_epi64(data, 47); let data = _mm256_xor_si256(data, shifted); let k = _mm256_loadu_si256(xkey.add(i)); let dk = _mm256_xor_si256(data, k); /* U32 dk[4] = {d0+k0, d1+k1, d2+k2, d3+k3} */ let dk1 = _mm256_mul_epu32(dk, prime32); let d2 = _mm256_shuffle_epi32(dk, 0x31); let dk2 = _mm256_mul_epu32(d2, prime32); let dk2h = _mm256_slli_epi64(dk2, 32); xacc.add(i).write(_mm256_add_epi64(dk1, dk2h)); } } } #[cfg(all(target_feature = "sse2", not(target_feature = "avx2")))] mod sse2 { use super::*; #[target_feature(enable = "sse2")] #[allow(clippy::cast_ptr_alignment)] pub(crate) unsafe fn accumulate512( acc: &mut [u64], data: &[u8], keys: &[u8], acc_width: AccWidth, ) { let xacc = acc.as_mut_ptr() as *mut __m128i; let xdata = data.as_ptr() as *const __m128i; let xkey = keys.as_ptr() as *const __m128i; for i in 0..STRIPE_LEN / mem::size_of::<__m128i>() { let d = _mm_loadu_si128(xdata.add(i)); let k = _mm_loadu_si128(xkey.add(i)); let dk = _mm_xor_si128(d, k); // uint32 dk[4] = {d0+k0, d1+k1, d2+k2, d3+k3} */ let mul = _mm_mul_epu32(dk, _mm_shuffle_epi32(dk, 0x31)); // uint64 res[4] = {dk0*dk1, dk2*dk3, ...} */ xacc.add(i).write(if acc_width == AccWidth::Acc128Bits { let dswap = _mm_shuffle_epi32(d, _mm_shuffle(1, 0, 3, 2)); let add = _mm_add_epi64(xacc.add(i).read(), dswap); _mm_add_epi64(mul, add) } else { let add = _mm_add_epi64(xacc.add(i).read(), d); _mm_add_epi64(mul, add) }) } } #[target_feature(enable = "sse2")] #[allow(clippy::cast_ptr_alignment)] pub unsafe fn scramble_acc(acc: &mut [u64], key: &[u8]) { let xacc = acc.as_mut_ptr() as *mut __m128i; let xkey = key.as_ptr() as *const __m128i; let prime32 = _mm_set1_epi32(PRIME32_1 as i32); for i in 0..STRIPE_LEN / mem::size_of::<__m128i>() { let data = xacc.add(i).read(); let shifted = _mm_srli_epi64(data, 47); let data = _mm_xor_si128(data, shifted); let k = _mm_loadu_si128(xkey.add(i)); let dk = _mm_xor_si128(data, k); let dk1 = _mm_mul_epu32(dk, prime32); let d2 = _mm_shuffle_epi32(dk, 0x31); let dk2 = _mm_mul_epu32(d2, prime32); let dk2h = _mm_slli_epi64(dk2, 32); xacc.add(i).write(_mm_add_epi64(dk1, dk2h)); } } } #[cfg(not(any(target_feature = "avx2", target_feature = "sse2")))] mod generic { use super::*; #[inline(always)] pub(crate) unsafe fn accumulate512( acc: &mut [u64], data: &[u8], key: &[u8], acc_width: AccWidth, ) { for i in (0..ACC_NB).step_by(2) { let in1 = data[8 * i..].read_u64_le(); let in2 = data[8 * (i + 1)..].read_u64_le(); let key1 = key[8 * i..].read_u64_le(); let key2 = key[8 * (i + 1)..].read_u64_le(); let data_key1 = key1 ^ in1; let data_key2 = key2 ^ in2; acc[i] = acc[i].wrapping_add(mul32_to64(data_key1, data_key1 >> 32)); acc[i + 1] = acc[i + 1].wrapping_add(mul32_to64(data_key2, data_key2 >> 32)); if acc_width == AccWidth::Acc128Bits { acc[i] = acc[i].wrapping_add(in2); acc[i + 1] = acc[i + 1].wrapping_add(in1); } else { acc[i] = acc[i].wrapping_add(in1); acc[i + 1] = acc[i + 1].wrapping_add(in2); } } } #[inline(always)] fn mul32_to64(a: u64, b: u64) -> u64 { (a & 0xFFFFFFFF).wrapping_mul(b & 0xFFFFFFFF) } #[inline(always)] pub unsafe fn scramble_acc(acc: &mut [u64], key: &[u8]) { for i in 0..ACC_NB { let key64 = key[8 * i..].read_u64_le(); let mut acc64 = acc[i]; acc64 ^= acc64 >> 47; acc64 ^= key64; acc64 = acc64.wrapping_mul(u64::from(PRIME32_1)); acc[i] = acc64; } } } cfg_if! { if #[cfg(target_feature = "avx2")] { use avx2::{accumulate512, scramble_acc}; } else if #[cfg(target_feature = "sse2")] { use sse2::{accumulate512, scramble_acc}; } else { use generic::{accumulate512, scramble_acc}; } } #[inline(always)] fn merge_accs(acc: &[u64], secret: &[u8], start: u64) -> u64 { avalanche( start .wrapping_add(mix2accs(acc, secret)) .wrapping_add(mix2accs(&acc[2..], &secret[16..])) .wrapping_add(mix2accs(&acc[4..], &secret[32..])) .wrapping_add(mix2accs(&acc[6..], &secret[48..])), ) } #[inline(always)] fn mix2accs(acc: &[u64], secret: &[u8]) -> u64 { mul128_fold64( acc[0] ^ secret.read_u64_le(), acc[1] ^ secret[8..].read_u64_le(), ) } #[inline(always)] fn mix_16bytes(data: &[u8], key: &[u8], seed: u64) -> u64 { let ll1 = data.read_u64_le(); let ll2 = data[8..].read_u64_le(); mul128_fold64( ll1 ^ key.read_u64_le().wrapping_add(seed), ll2 ^ key[8..].read_u64_le().wrapping_sub(seed), ) } #[inline(always)] fn mul128_fold64(ll1: u64, ll2: u64) -> u64 { let lll = u128::from(ll1).wrapping_mul(u128::from(ll2)); (lll as u64) ^ ((lll >> 64) as u64) } #[inline(always)] fn avalanche(mut h64: u64) -> u64 { h64 ^= h64 >> 37; h64 = h64.wrapping_mul(PRIME64_3); h64 ^ (h64 >> 32) } /* === XXH3 streaming === */ const INTERNAL_BUFFER_SIZE: usize = 256; const INTERNAL_BUFFER_STRIPES: usize = INTERNAL_BUFFER_SIZE / STRIPE_LEN; const_assert!(INTERNAL_BUFFER_SIZE >= MIDSIZE_MAX); const_assert_eq!(INTERNAL_BUFFER_SIZE % STRIPE_LEN, 0); #[repr(align(64))] #[cfg_attr(feature = "serialize", derive(Deserialize, Serialize))] #[derive(Clone)] struct State { acc: Acc, secret: With, buf: Vec, seed: u64, total_len: usize, nb_stripes_so_far: usize, } #[cfg_attr(feature = "serialize", derive(Deserialize, Serialize))] #[derive(Clone)] enum With { Default(Secret), Custom(Secret), Ref(Vec), } impl Deref for With { type Target = [u8]; fn deref(&self) -> &Self::Target { match self { With::Default(secret) | With::Custom(secret) => &secret.0[..], With::Ref(secret) => secret, } } } impl Default for State { fn default() -> Self { Self::new(0, With::Default(Secret::default())) } } impl State { fn new(seed: u64, secret: With) -> Self { State { acc: Acc::default(), secret, buf: Vec::with_capacity(INTERNAL_BUFFER_SIZE), seed, total_len: 0, nb_stripes_so_far: 0, } } fn with_seed(seed: u64) -> Self { Self::new(seed, With::Custom(Secret::with_seed(seed))) } fn with_secret>>(secret: S) -> State { let secret = secret.into(); debug_assert!(secret.len() >= SECRET_SIZE_MIN); Self::new(0, With::Ref(secret)) } #[inline(always)] fn secret_limit(&self) -> usize { self.secret.len() - STRIPE_LEN } #[inline(always)] fn nb_stripes_per_block(&self) -> usize { self.secret_limit() / SECRET_CONSUME_RATE } #[inline(always)] fn update(&mut self, mut input: &[u8], acc_width: AccWidth) { let len = input.len(); if len == 0 { return; } self.total_len += len; if self.buf.len() + len <= self.buf.capacity() { self.buf.extend_from_slice(input); return; } let nb_stripes_per_block = self.nb_stripes_per_block(); let secret_limit = self.secret_limit(); if !self.buf.is_empty() { // some data within internal buffer: fill then consume it let (load, rest) = input.split_at(self.buf.capacity() - self.buf.len()); self.buf.extend_from_slice(load); input = rest; self.nb_stripes_so_far = consume_stripes( &mut self.acc, self.nb_stripes_so_far, nb_stripes_per_block, &self.buf, INTERNAL_BUFFER_STRIPES, &self.secret, secret_limit, acc_width, ); self.buf.clear(); } // consume input by full buffer quantities let mut chunks = input.chunks_exact(INTERNAL_BUFFER_SIZE); for chunk in &mut chunks { self.nb_stripes_so_far = consume_stripes( &mut self.acc, self.nb_stripes_so_far, nb_stripes_per_block, chunk, INTERNAL_BUFFER_STRIPES, &self.secret, secret_limit, acc_width, ); } // some remaining input data : buffer it self.buf.extend_from_slice(chunks.remainder()) } #[inline(always)] fn digest_long(&self, acc_width: AccWidth) -> Acc { let mut acc = self.acc.clone(); let secret_limit = self.secret_limit(); if self.buf.len() >= STRIPE_LEN { // digest locally, state remains unaltered, and can continue ingesting more data afterwards let total_nb_stripes = self.buf.len() / STRIPE_LEN; let _nb_stripes_so_far = consume_stripes( &mut acc, self.nb_stripes_so_far, self.nb_stripes_per_block(), &self.buf, total_nb_stripes, &self.secret, secret_limit, acc_width, ); if (self.buf.len() % STRIPE_LEN) != 0 { unsafe { accumulate512( &mut acc, &self.buf[self.buf.len() - STRIPE_LEN..], &self.secret[secret_limit - SECRET_LASTACC_START..], acc_width, ); } } } else if !self.buf.is_empty() { // one last stripe let mut last_stripe = [0u8; STRIPE_LEN]; let catchup_size = STRIPE_LEN - self.buf.len(); last_stripe[..catchup_size].copy_from_slice(unsafe { slice::from_raw_parts( self.buf.as_ptr().add(self.buf.capacity() - catchup_size), catchup_size, ) }); last_stripe[catchup_size..].copy_from_slice(&self.buf); unsafe { accumulate512( &mut acc, &last_stripe[..], &self.secret[secret_limit - SECRET_LASTACC_START..], acc_width, ); } } acc } #[inline(always)] fn digest64(&self) -> u64 { if self.total_len > MIDSIZE_MAX { let acc = self.digest_long(AccWidth::Acc64Bits); merge_accs( &acc, &self.secret[SECRET_MERGEACCS_START..], (self.total_len as u64).wrapping_mul(PRIME64_1), ) } else if self.seed != 0 { hash64_with_seed(&self.buf, self.seed) } else { hash64_with_secret(&self.buf, &self.secret[..self.secret_limit() + STRIPE_LEN]) } } #[inline(always)] fn digest128(&self) -> u128 { let secret_limit = self.secret_limit(); if self.total_len > MIDSIZE_MAX { let acc = self.digest_long(AccWidth::Acc128Bits); debug_assert!(secret_limit + STRIPE_LEN >= ACC_SIZE + SECRET_MERGEACCS_START); let total_len = self.total_len as u64; let low64 = merge_accs( &acc, &self.secret[SECRET_MERGEACCS_START..], total_len.wrapping_mul(PRIME64_1), ); let high64 = merge_accs( &acc, &self.secret[secret_limit + STRIPE_LEN - ACC_SIZE - SECRET_MERGEACCS_START..], !total_len.wrapping_mul(PRIME64_2), ); u128::from(low64) + (u128::from(high64) << 64) } else if self.seed != 0 { hash128_with_seed(&self.buf, self.seed) } else { hash128_with_secret(&self.buf, &self.secret[..secret_limit + STRIPE_LEN]) } } } #[inline(always)] #[allow(clippy::too_many_arguments)] fn consume_stripes( acc: &mut [u64], nb_stripes_so_far: usize, nb_stripes_per_block: usize, data: &[u8], total_stripes: usize, secret: &[u8], secret_limit: usize, acc_width: AccWidth, ) -> usize { debug_assert!(nb_stripes_so_far < nb_stripes_per_block); if nb_stripes_per_block - nb_stripes_so_far <= total_stripes { let nb_stripes = nb_stripes_per_block - nb_stripes_so_far; accumulate( acc, data, &secret[nb_stripes_so_far * SECRET_CONSUME_RATE..], nb_stripes, acc_width, ); unsafe { scramble_acc(acc, &secret[secret_limit..]); } accumulate( acc, &data[nb_stripes * STRIPE_LEN..], secret, total_stripes - nb_stripes, acc_width, ); total_stripes - nb_stripes } else { accumulate( acc, data, &secret[nb_stripes_so_far * SECRET_CONSUME_RATE..], total_stripes, acc_width, ); nb_stripes_so_far + total_stripes } } /* ========================================== * XXH3 128 bits (=> XXH128) * ========================================== */ #[inline(always)] fn hash_len_0to16_128bits(data: &[u8], len: usize, secret: &[u8], seed: u64) -> u128 { debug_assert!(len <= 16); if len > 8 { hash_len_9to16_128bits(data, len, secret, seed) } else if len >= 4 { hash_len_4to8_128bits(data, len, secret, seed) } else if len > 0 { hash_len_1to3_128bits(data, len, secret, seed) } else { 0 } } #[inline(always)] fn hash_len_1to3_128bits(data: &[u8], len: usize, key: &[u8], seed: u64) -> u128 { debug_assert!((1..=3).contains(&len)); let c1 = u32::from(data[0]); let c2 = u32::from(data[len >> 1]); let c3 = u32::from(data[len - 1]); let combinedl = c1 + (c2 << 8) + (c3 << 16) + ((len as u32) << 24); let combinedh = combinedl.swap_bytes(); let keyedl = u64::from(combinedl) ^ u64::from(key.read_u32_le()).wrapping_add(seed); let keyedh = u64::from(combinedh) ^ u64::from(key[4..].read_u32_le()).wrapping_sub(seed); let mixedl = keyedl.wrapping_mul(PRIME64_1); let mixedh = keyedh.wrapping_mul(PRIME64_2); u128::from(avalanche(mixedl)) + (u128::from(avalanche(mixedh)) << 64) } #[inline(always)] fn hash_len_4to8_128bits(data: &[u8], len: usize, key: &[u8], seed: u64) -> u128 { debug_assert!((4..=8).contains(&len)); let in1 = u64::from(data.read_u32_le()); let in2 = u64::from(data[len - 4..].read_u32_le()); let in64l = in1.wrapping_add(in2 << 32); let in64h = in64l.swap_bytes(); let keyedl = in64l ^ key.read_u64_le().wrapping_add(seed); let keyedh = in64h ^ key[8..].read_u64_le().wrapping_sub(seed); let mix64l1 = (len as u64).wrapping_add((keyedl ^ (keyedl >> 51)).wrapping_mul(u64::from(PRIME32_1))); let mix64l2 = (mix64l1 ^ (mix64l1 >> 47)).wrapping_mul(PRIME64_2); let mix64h1 = (keyedh ^ (keyedh >> 47)) .wrapping_mul(PRIME64_1) .wrapping_sub(len as u64); let mix64h2 = (mix64h1 ^ (mix64h1 >> 43)).wrapping_mul(PRIME64_4); u128::from(avalanche(mix64l2)) + (u128::from(avalanche(mix64h2)) << 64) } #[inline(always)] fn hash_len_9to16_128bits(data: &[u8], len: usize, key: &[u8], seed: u64) -> u128 { debug_assert!((9..=16).contains(&len)); let ll1 = data.read_u64_le() ^ key.read_u64_le().wrapping_add(seed); let ll2 = data[len - 8..].read_u64_le() ^ key[8..].read_u64_le().wrapping_sub(seed); let inlow = ll1 ^ ll2; let m128 = u128::from(inlow).wrapping_mul(u128::from(PRIME64_1)); let high64 = ((m128 >> 64) as u64).wrapping_add(ll2.wrapping_mul(PRIME64_1)); let low64 = (m128 as u64) ^ (high64 >> 32); let h128 = u128::from(low64).wrapping_mul(u128::from(PRIME64_2)); let high64 = ((h128 >> 64) as u64).wrapping_add(high64.wrapping_mul(PRIME64_2)); let low64 = h128 as u64; u128::from(avalanche(low64)) + (u128::from(avalanche(high64)) << 64) } #[inline(always)] fn hash_len_17to128_128bits(data: &[u8], len: usize, secret: &[u8], seed: u64) -> u128 { debug_assert!((17..=128).contains(&len)); debug_assert!(secret.len() >= SECRET_SIZE_MIN); let mut acc1 = PRIME64_1.wrapping_mul(len as u64); let mut acc2 = 0u64; if len > 32 { if len > 64 { if len > 96 { acc1 = acc1.wrapping_add(mix_16bytes(&data[48..], &secret[96..], seed)); acc2 = acc2.wrapping_add(mix_16bytes(&data[len - 64..], &secret[112..], seed)); } acc1 = acc1.wrapping_add(mix_16bytes(&data[32..], &secret[64..], seed)); acc2 = acc2.wrapping_add(mix_16bytes(&data[len - 48..], &secret[80..], seed)); } acc1 = acc1.wrapping_add(mix_16bytes(&data[16..], &secret[32..], seed)); acc2 = acc2.wrapping_add(mix_16bytes(&data[len - 32..], &secret[48..], seed)); } acc1 = acc1.wrapping_add(mix_16bytes(data, secret, seed)); acc2 = acc2.wrapping_add(mix_16bytes(&data[len - 16..], &secret[16..], seed)); let low64 = acc1.wrapping_add(acc2); let high64 = acc1 .wrapping_mul(PRIME64_1) .wrapping_add(acc2.wrapping_mul(PRIME64_4)) .wrapping_add((len as u64).wrapping_sub(seed).wrapping_mul(PRIME64_2)); u128::from(avalanche(low64)) + (u128::from(0u64.wrapping_sub(avalanche(high64))) << 64) } #[inline(always)] fn hash_len_129to240_128bits(data: &[u8], len: usize, secret: &[u8], seed: u64) -> u128 { debug_assert!((129..=MIDSIZE_MAX).contains(&len)); debug_assert!(secret.len() >= SECRET_SIZE_MIN); let acc1 = (len as u64).wrapping_mul(PRIME64_1); let acc2 = 0u64; let (acc1, acc2) = (0..4).fold((acc1, acc2), |(acc1, acc2), i| { ( acc1.wrapping_add(mix_16bytes(&data[32 * i..], &secret[32 * i..], seed)), acc2.wrapping_add(mix_16bytes( &data[32 * i + 16..], &secret[32 * i + 16..], 0u64.wrapping_sub(seed), )), ) }); let acc1 = avalanche(acc1); let acc2 = avalanche(acc2); let nb_rounds = len / 32; debug_assert!(nb_rounds >= 4); let (acc1, acc2) = (4..nb_rounds).fold((acc1, acc2), |(acc1, acc2), i| { ( acc1.wrapping_add(mix_16bytes( &data[32 * i..], &secret[32 * (i - 4) + MIDSIZE_STARTOFFSET..], seed, )), acc2.wrapping_add(mix_16bytes( &data[32 * i + 16..], &secret[32 * (i - 4) + 16 + MIDSIZE_STARTOFFSET..], 0u64.wrapping_sub(seed), )), ) }); // last bytes let acc1 = acc1.wrapping_add(mix_16bytes( &data[len - 16..], &secret[SECRET_SIZE_MIN - MIDSIZE_LASTOFFSET..], seed, )); let acc2 = acc2.wrapping_add(mix_16bytes( &data[len - 32..], &secret[SECRET_SIZE_MIN - MIDSIZE_LASTOFFSET - 16..], 0u64.wrapping_sub(seed), )); let low64 = acc1.wrapping_add(acc2); let high64 = acc1 .wrapping_mul(PRIME64_1) .wrapping_add(acc2.wrapping_mul(PRIME64_4)) .wrapping_add((len as u64).wrapping_sub(seed).wrapping_mul(PRIME64_2)); u128::from(avalanche(low64)) + (u128::from(0u64.wrapping_sub(avalanche(high64))) << 64) } #[inline] fn hash_long_128bits_with_default_secret(data: &[u8], len: usize) -> u128 { hash_long_128bits_internal(data, len, &SECRET) } #[inline] fn hash_long_128bits_with_secret(data: &[u8], len: usize, secret: &[u8]) -> u128 { hash_long_128bits_internal(data, len, secret) } #[inline] fn hash_long_128bits_with_seed(data: &[u8], len: usize, seed: u64) -> u128 { if seed == 0 { hash_long_128bits_with_default_secret(data, len) } else { let secret = Secret::with_seed(seed); hash_long_128bits_internal(data, len, &secret) } } #[inline(always)] fn hash_long_128bits_internal(data: &[u8], len: usize, secret: &[u8]) -> u128 { let mut acc = Acc::default(); hash_long_internal_loop(&mut acc, data, len, secret, AccWidth::Acc128Bits); debug_assert!(secret.len() >= acc.len() + SECRET_MERGEACCS_START); let low64 = merge_accs( &acc, &secret[SECRET_MERGEACCS_START..], (len as u64).wrapping_mul(PRIME64_1), ); let high64 = merge_accs( &acc, &secret[secret.len() - ACC_SIZE - SECRET_MERGEACCS_START..], !(len as u64).wrapping_mul(PRIME64_2), ); u128::from(low64) + (u128::from(high64) << 64) } /* === XXH3 128-bit streaming === */ /* all the functions are actually the same as for 64-bit streaming variant, just the reset one is different (different initial acc values for 0,5,6,7), and near the end of the digest function */ #[cfg(test)] mod tests { use alloc::vec; use super::*; const PRIME: u64 = 2654435761; const PRIME64: u64 = 11400714785074694797; const SANITY_BUFFER_SIZE: usize = 2243; fn sanity_buffer() -> [u8; SANITY_BUFFER_SIZE] { let mut buf = [0; SANITY_BUFFER_SIZE]; let mut byte_gen: u64 = PRIME; for b in buf.iter_mut() { *b = (byte_gen >> 56) as u8; byte_gen = byte_gen.wrapping_mul(PRIME64); } buf } #[test] fn hash_64bits_sanity_check() { let buf = sanity_buffer(); let test_cases = vec![ (&[][..], 0, 0), /* zero-length hash is always 0 */ (&[][..], PRIME64, 0), (&buf[..1], 0, 0x7198D737CFE7F386), /* 1 - 3 */ (&buf[..1], PRIME64, 0xB70252DB7161C2BD), /* 1 - 3 */ (&buf[..6], 0, 0x22CBF5F3E1F6257C), /* 4 - 8 */ (&buf[..6], PRIME64, 0x6398631C12AB94CE), /* 4 - 8 */ (&buf[..12], 0, 0xD5361CCEEBB5A0CC), /* 9 - 16 */ (&buf[..12], PRIME64, 0xC4C125E75A808C3D), /* 9 - 16 */ (&buf[..24], 0, 0x46796F3F78B20F6B), /* 17 - 32 */ (&buf[..24], PRIME64, 0x60171A7CD0A44C10), /* 17 - 32 */ (&buf[..48], 0, 0xD8D4D3590D136E11), /* 33 - 64 */ (&buf[..48], PRIME64, 0x05441F2AEC2A1296), /* 33 - 64 */ (&buf[..80], 0, 0xA1DC8ADB3145B86A), /* 65 - 96 */ (&buf[..80], PRIME64, 0xC9D55256965B7093), /* 65 - 96 */ (&buf[..112], 0, 0xE43E5717A61D3759), /* 97 -128 */ (&buf[..112], PRIME64, 0x5A5F89A3FECE44A5), /* 97 -128 */ (&buf[..195], 0, 0x6F747739CBAC22A5), /* 129-240 */ (&buf[..195], PRIME64, 0x33368E23C7F95810), /* 129-240 */ (&buf[..403], 0, 0x4834389B15D981E8), /* one block, last stripe is overlapping */ (&buf[..403], PRIME64, 0x85CE5DFFC7B07C87), /* one block, last stripe is overlapping */ (&buf[..512], 0, 0x6A1B982631F059A8), /* one block, finishing at stripe boundary */ (&buf[..512], PRIME64, 0x10086868CF0ADC99), /* one block, finishing at stripe boundary */ (&buf[..2048], 0, 0xEFEFD4449323CDD4), /* 2 blocks, finishing at block boundary */ (&buf[..2048], PRIME64, 0x01C85E405ECA3F6E), /* 2 blocks, finishing at block boundary */ (&buf[..2240], 0, 0x998C0437486672C7), /* 3 blocks, finishing at stripe boundary */ (&buf[..2240], PRIME64, 0x4ED38056B87ABC7F), /* 3 blocks, finishing at stripe boundary */ (&buf[..2243], 0, 0xA559D20581D742D3), /* 3 blocks, last stripe is overlapping */ (&buf[..2243], PRIME64, 0x96E051AB57F21FC8), /* 3 blocks, last stripe is overlapping */ ]; for (buf, seed, result) in test_cases { { let hash = hash64_with_seed(buf, seed); assert_eq!( hash, result, "hash64_with_seed(&buf[..{}], seed={}) failed, got 0x{:X}, expected 0x{:X}", buf.len(), seed, hash, result ); } // streaming API test // single ingestio { let mut hasher = Hash64::with_seed(seed); hasher.write(buf); let hash = hasher.finish(); assert_eq!( hash, result, "Hash64::update(&buf[..{}]) with seed={} failed, got 0x{:X}, expected 0x{:X}", buf.len(), seed, hash, result ); } if buf.len() > 3 { // 2 ingestions let mut hasher = Hash64::with_seed(seed); hasher.write(&buf[..3]); hasher.write(&buf[3..]); let hash = hasher.finish(); assert_eq!( hash, result, "Hash64::update(&buf[..3], &buf[3..{}]) with seed={} failed, got 0x{:X}, expected 0x{:X}", buf.len(), seed, hash, result ); } // byte by byte ingestion { let mut hasher = Hash64::with_seed(seed); for chunk in buf.chunks(1) { hasher.write(chunk); } let hash = hasher.finish(); assert_eq!( hash, result, "Hash64::update(&buf[..{}].chunks(1)) with seed={} failed, got 0x{:X}, expected 0x{:X}", buf.len(), seed, hash, result ); } } } #[test] fn hash_64bits_with_secret_sanity_check() { let buf = sanity_buffer(); let secret = &buf[7..7 + SECRET_SIZE_MIN + 11]; let test_cases = vec![ (&[][..], secret, 0), /* zero-length hash is always 0 */ (&buf[..1], secret, 0x7F69735D618DB3F0), /* 1 - 3 */ (&buf[..6], secret, 0xBFCC7CB1B3554DCE), /* 6 - 8 */ (&buf[..12], secret, 0x8C50DC90AC9206FC), /* 9 - 16 */ (&buf[..24], secret, 0x1CD2C2EE9B9A0928), /* 17 - 32 */ (&buf[..48], secret, 0xA785256D9D65D514), /* 33 - 64 */ (&buf[..80], secret, 0x6F3053360D21BBB7), /* 65 - 96 */ (&buf[..112], secret, 0x560E82D25684154C), /* 97 -128 */ (&buf[..195], secret, 0xBA5BDDBC5A767B11), /* 129-240 */ (&buf[..403], secret, 0xFC3911BBA656DB58), /* one block, last stripe is overlapping */ (&buf[..512], secret, 0x306137DD875741F1), /* one block, finishing at stripe boundary */ (&buf[..2048], secret, 0x2836B83880AD3C0C), /* > one block, at least one scrambling */ (&buf[..2243], secret, 0x3446E248A00CB44A), /* > one block, at least one scrambling, last stripe unaligned */ ]; for (buf, secret, result) in test_cases { { let hash = hash64_with_secret(buf, secret); assert_eq!( hash, result, "hash64_with_secret(&buf[..{}], secret) failed, got 0x{:X}, expected 0x{:X}", buf.len(), hash, result ); } // streaming API test // single ingestio { let mut hasher = Hash64::with_secret(secret); hasher.write(buf); let hash = hasher.finish(); assert_eq!( hash, result, "Hash64::update(&buf[..{}]) with secret failed, got 0x{:X}, expected 0x{:X}", buf.len(), hash, result ); } // byte by byte ingestion { let mut hasher = Hash64::with_secret(secret); for chunk in buf.chunks(1) { hasher.write(chunk); } let hash = hasher.finish(); assert_eq!( hash, result, "Hash64::update(&buf[..{}].chunks(1)) with secret failed, got 0x{:X}, expected 0x{:X}", buf.len(), hash, result ); } } } #[test] fn hash_128bits_sanity_check() { let buf = sanity_buffer(); let test_cases = vec![ (&[][..], 0, 0u64, 0u64), /* zero-length hash is { seed, -seed } by default */ (&[][..], PRIME, 0, 0), (&buf[..1], 0, 0x7198D737CFE7F386, 0x3EE70EA338F3F1E8), /* 1-3 */ (&buf[..1], PRIME, 0x8E05996EC27C0F46, 0x90DFC659A8BDCC0C), /* 1-3 */ (&buf[..6], 0, 0x22CBF5F3E1F6257C, 0xD4E6C2B94FFC3BFA), /* 4-8 */ (&buf[..6], PRIME, 0x97B28D3079F8541F, 0xEFC0B954298E6555), /* 4-8 */ (&buf[..12], 0, 0x0E0CD01F05AC2F0D, 0x2B55C95951070D4B), /* 9-16 */ (&buf[..12], PRIME, 0xA9DE561CA04CDF37, 0x609E31FDC00A43C9), /* 9-16 */ (&buf[..24], 0, 0x46796F3F78B20F6B, 0x58FF55C3926C13FA), /* 17-32 */ (&buf[..24], PRIME, 0x30D5C4E9EB415C55, 0x8868344B3A4645D0), /* 17-32 */ (&buf[..48], 0, 0xD8D4D3590D136E11, 0x5527A42843020A62), /* 33-64 */ (&buf[..48], PRIME, 0x1D8834E1A5407A1C, 0x44375B9FB060F541), /* 33-64 */ (&buf[..81], 0, 0x4B9B448ED8DFD3DD, 0xE805A6D1A43D70E5), /* 65-96 */ (&buf[..81], PRIME, 0xD2D6B075945617BA, 0xE58BE5736F6E7550), /* 65-96 */ (&buf[..103], 0, 0xC5A9F97B29EFA44E, 0x254DB7BE881E125C), /* 97-128 */ (&buf[..103], PRIME, 0xFA2086367CDB177F, 0x0AEDEA68C988B0C0), /* 97-128 */ (&buf[..192], 0, 0xC3142FDDD9102A3F, 0x06F1747E77185F97), /* 129-240 */ (&buf[..192], PRIME, 0xA89F07B35987540F, 0xCF1B35FB2C557F54), /* 129-240 */ (&buf[..222], 0, 0xA61AC4EB3295F86B, 0x33FA7B7598C28A07), /* 129-240 */ (&buf[..222], PRIME, 0x54135EB88AD8B75E, 0xBC45CE6AE50BCF53), /* 129-240 */ (&buf[..403], 0, 0xB0C48E6D18E9D084, 0xB16FC17E992FF45D), /* one block, last stripe is overlapping */ (&buf[..403], PRIME64, 0x0A1D320C9520871D, 0xCE11CB376EC93252), /* one block, last stripe is overlapping */ (&buf[..512], 0, 0xA03428558AC97327, 0x4ECF51281BA406F7), /* one block, finishing at stripe boundary */ (&buf[..512], PRIME64, 0xAF67A482D6C893F2, 0x1382D92F25B84D90), /* one block, finishing at stripe boundary */ (&buf[..2048], 0, 0x21901B416B3B9863, 0x212AF8E6326F01E0), /* two blocks, finishing at block boundary */ (&buf[..2048], PRIME, 0xBDBB2282577DADEC, 0xF78CDDC2C9A9A692), /* two blocks, finishing at block boundary */ (&buf[..2240], 0, 0x00AD52FA9385B6FE, 0xC705BAD3356CE302), /* two blocks, ends at stripe boundary */ (&buf[..2240], PRIME, 0x10FD0072EC68BFAA, 0xE1312F3458817F15), /* two blocks, ends at stripe boundary */ (&buf[..2237], 0, 0x970C91411533862C, 0x4BBD06FF7BFF0AB1), /* two blocks, ends at stripe boundary */ (&buf[..2237], PRIME, 0xD80282846D814431, 0x14EBB157B84D9785), /* two blocks, ends at stripe boundary */ ]; for (buf, seed, lo, hi) in test_cases { let result = u128::from(lo) + (u128::from(hi) << 64); { let hash = hash128_with_seed(buf, seed); assert_eq!( hash, result, "hash128_with_seed(&buf[..{}], seed={}) failed, got 0x{:X}, expected 0x{:X}", buf.len(), seed, hash, result ); } // streaming API test // single ingestio { let mut hasher = Hash128::with_seed(seed); hasher.write(buf); let hash = hasher.finish_ext(); assert_eq!( hash, result, "Hash128::update(&buf[..{}]) with seed={} failed, got 0x{:X}, expected 0x{:X}", buf.len(), seed, hash, result ); } if buf.len() > 3 { // 2 ingestions let mut hasher = Hash128::with_seed(seed); hasher.write(&buf[..3]); hasher.write(&buf[3..]); let hash = hasher.finish_ext(); assert_eq!( hash, result, "Hash64::update(&buf[..3], &buf[3..{}]) with seed={} failed, got 0x{:X}, expected 0x{:X}", buf.len(), seed, hash, result ); } // byte by byte ingestion { let mut hasher = Hash128::with_seed(seed); for chunk in buf.chunks(1) { hasher.write(chunk); } let hash = hasher.finish_ext(); assert_eq!( hash, result, "Hash64::update(&buf[..{}].chunks(1)) with seed={} failed, got 0x{:X}, expected 0x{:X}", buf.len(), seed, hash, result ); } } } }