// This file is part of ICU4X. For terms of use, please see the file // called LICENSE at the top level of the ICU4X source tree // (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ). use crate::ule::*; use crate::varzerovec::VarZeroVecFormat; use crate::{VarZeroSlice, VarZeroVec, ZeroSlice, ZeroVec}; use alloc::borrow::{Cow, ToOwned}; use alloc::boxed::Box; use alloc::string::String; use alloc::vec::Vec; use core::mem; /// Allows types to be encoded as VarULEs. This is highly useful for implementing VarULE on /// custom DSTs where the type cannot be obtained as a reference to some other type. /// /// [`Self::encode_var_ule_as_slices()`] should be implemented by providing an encoded slice for each field /// of the VarULE type to the callback, in order. For an implementation to be safe, the slices /// to the callback must, when concatenated, be a valid instance of the VarULE type. /// /// See the [custom VarULEdocumentation](crate::ule::custom) for examples. /// /// [`Self::encode_var_ule_as_slices()`] is only used to provide default implementations for [`Self::encode_var_ule_write()`] /// and [`Self::encode_var_ule_len()`]. If you override the default implementations it is totally valid to /// replace [`Self::encode_var_ule_as_slices()`]'s body with `unreachable!()`. This can be done for cases where /// it is not possible to implement [`Self::encode_var_ule_as_slices()`] but the other methods still work. /// /// A typical implementation will take each field in the order found in the [`VarULE`] type, /// convert it to ULE, call [`ULE::as_byte_slice()`] on them, and pass the slices to `cb` in order. /// A trailing [`ZeroVec`](crate::ZeroVec) or [`VarZeroVec`](crate::VarZeroVec) can have their underlying /// byte representation passed through. /// /// In case the compiler is not optimizing [`Self::encode_var_ule_len()`], it can be overridden. A typical /// implementation will add up the sizes of each field on the [`VarULE`] type and then add in the byte length of the /// dynamically-sized part. /// /// # Safety /// /// The safety invariants of [`Self::encode_var_ule_as_slices()`] are: /// - It must call `cb` (only once) /// - The slices passed to `cb`, if concatenated, should be a valid instance of the `T` [`VarULE`] type /// (i.e. if fed to [`VarULE::validate_byte_slice()`] they must produce a successful result) /// - It must return the return value of `cb` to the caller /// /// One or more of [`Self::encode_var_ule_len()`] and [`Self::encode_var_ule_write()`] may be provided. /// If both are, then `zerovec` code is guaranteed to not call [`Self::encode_var_ule_as_slices()`], and it may be replaced /// with `unreachable!()`. /// /// The safety invariants of [`Self::encode_var_ule_len()`] are: /// - It must return the length of the corresponding VarULE type /// /// The safety invariants of [`Self::encode_var_ule_write()`] are: /// - The slice written to `dst` must be a valid instance of the `T` [`VarULE`] type pub unsafe trait EncodeAsVarULE { /// Calls `cb` with a piecewise list of byte slices that when concatenated /// produce the memory pattern of the corresponding instance of `T`. /// /// Do not call this function directly; instead use the other two. Some implementors /// may define this function to panic. fn encode_var_ule_as_slices(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R; /// Return the length, in bytes, of the corresponding [`VarULE`] type fn encode_var_ule_len(&self) -> usize { self.encode_var_ule_as_slices(|slices| slices.iter().map(|s| s.len()).sum()) } /// Write the corresponding [`VarULE`] type to the `dst` buffer. `dst` should /// be the size of [`Self::encode_var_ule_len()`] fn encode_var_ule_write(&self, mut dst: &mut [u8]) { debug_assert_eq!(self.encode_var_ule_len(), dst.len()); self.encode_var_ule_as_slices(move |slices| { #[allow(clippy::indexing_slicing)] // by debug_assert for slice in slices { dst[..slice.len()].copy_from_slice(slice); dst = &mut dst[slice.len()..]; } }); } } /// Given an [`EncodeAsVarULE`] type `S`, encode it into a `Box` /// /// This is primarily useful for generating `Deserialize` impls for VarULE types pub fn encode_varule_to_box, T: VarULE + ?Sized>(x: &S) -> Box { let mut vec: Vec = Vec::new(); // zero-fill the vector to avoid uninitialized data UB vec.resize(x.encode_var_ule_len(), 0); x.encode_var_ule_write(&mut vec); let boxed = vec.into_boxed_slice(); unsafe { // Safety: `ptr` is a box, and `T` is a VarULE which guarantees it has the same memory layout as `[u8]` // and can be recouped via from_byte_slice_unchecked() let ptr: *mut T = T::from_byte_slice_unchecked(&boxed) as *const T as *mut T; mem::forget(boxed); // Safety: we can construct an owned version since we have mem::forgotten the older owner Box::from_raw(ptr) } } unsafe impl EncodeAsVarULE for T { fn encode_var_ule_as_slices(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R { cb(&[T::as_byte_slice(self)]) } } unsafe impl EncodeAsVarULE for &'_ T { fn encode_var_ule_as_slices(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R { cb(&[T::as_byte_slice(self)]) } } unsafe impl EncodeAsVarULE for Cow<'_, T> where T: ToOwned, { fn encode_var_ule_as_slices(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R { cb(&[T::as_byte_slice(self.as_ref())]) } } unsafe impl EncodeAsVarULE for Box { fn encode_var_ule_as_slices(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R { cb(&[T::as_byte_slice(self)]) } } unsafe impl EncodeAsVarULE for String { fn encode_var_ule_as_slices(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R { cb(&[self.as_bytes()]) } } // Note: This impl could technically use `T: AsULE`, but we want users to prefer `ZeroSlice` // for cases where T is not a ULE. Therefore, we can use the more efficient `memcpy` impl here. unsafe impl EncodeAsVarULE<[T]> for Vec where T: ULE, { fn encode_var_ule_as_slices(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R { cb(&[<[T] as VarULE>::as_byte_slice(self)]) } } unsafe impl EncodeAsVarULE> for &'_ [T] where T: AsULE + 'static, { fn encode_var_ule_as_slices(&self, _: impl FnOnce(&[&[u8]]) -> R) -> R { // unnecessary if the other two are implemented unreachable!() } #[inline] fn encode_var_ule_len(&self) -> usize { self.len() * core::mem::size_of::() } fn encode_var_ule_write(&self, dst: &mut [u8]) { #[allow(non_snake_case)] let S = core::mem::size_of::(); debug_assert_eq!(self.len() * S, dst.len()); for (item, ref mut chunk) in self.iter().zip(dst.chunks_mut(S)) { let ule = item.to_unaligned(); chunk.copy_from_slice(ULE::as_byte_slice(core::slice::from_ref(&ule))); } } } unsafe impl EncodeAsVarULE> for Vec where T: AsULE + 'static, { fn encode_var_ule_as_slices(&self, _: impl FnOnce(&[&[u8]]) -> R) -> R { // unnecessary if the other two are implemented unreachable!() } #[inline] fn encode_var_ule_len(&self) -> usize { self.as_slice().encode_var_ule_len() } #[inline] fn encode_var_ule_write(&self, dst: &mut [u8]) { self.as_slice().encode_var_ule_write(dst) } } unsafe impl EncodeAsVarULE> for ZeroVec<'_, T> where T: AsULE + 'static, { fn encode_var_ule_as_slices(&self, _: impl FnOnce(&[&[u8]]) -> R) -> R { // unnecessary if the other two are implemented unreachable!() } #[inline] fn encode_var_ule_len(&self) -> usize { self.as_bytes().len() } fn encode_var_ule_write(&self, dst: &mut [u8]) { debug_assert_eq!(self.as_bytes().len(), dst.len()); dst.copy_from_slice(self.as_bytes()); } } unsafe impl EncodeAsVarULE> for &'_ [E] where T: VarULE + ?Sized, E: EncodeAsVarULE, F: VarZeroVecFormat, { fn encode_var_ule_as_slices(&self, _: impl FnOnce(&[&[u8]]) -> R) -> R { // unnecessary if the other two are implemented unimplemented!() } #[allow(clippy::unwrap_used)] // TODO(#1410): Rethink length errors in VZV. fn encode_var_ule_len(&self) -> usize { crate::varzerovec::components::compute_serializable_len::(self).unwrap() as usize } fn encode_var_ule_write(&self, dst: &mut [u8]) { crate::varzerovec::components::write_serializable_bytes::(self, dst) } } unsafe impl EncodeAsVarULE> for Vec where T: VarULE + ?Sized, E: EncodeAsVarULE, F: VarZeroVecFormat, { fn encode_var_ule_as_slices(&self, _: impl FnOnce(&[&[u8]]) -> R) -> R { // unnecessary if the other two are implemented unreachable!() } #[inline] fn encode_var_ule_len(&self) -> usize { <_ as EncodeAsVarULE>>::encode_var_ule_len(&self.as_slice()) } #[inline] fn encode_var_ule_write(&self, dst: &mut [u8]) { <_ as EncodeAsVarULE>>::encode_var_ule_write(&self.as_slice(), dst) } } unsafe impl EncodeAsVarULE> for VarZeroVec<'_, T, F> where T: VarULE + ?Sized, F: VarZeroVecFormat, { fn encode_var_ule_as_slices(&self, _: impl FnOnce(&[&[u8]]) -> R) -> R { // unnecessary if the other two are implemented unreachable!() } #[inline] fn encode_var_ule_len(&self) -> usize { self.as_bytes().len() } #[inline] fn encode_var_ule_write(&self, dst: &mut [u8]) { debug_assert_eq!(self.as_bytes().len(), dst.len()); dst.copy_from_slice(self.as_bytes()); } } #[cfg(test)] mod test { use super::*; const STRING_ARRAY: [&str; 2] = ["hello", "world"]; const STRING_SLICE: &[&str] = &STRING_ARRAY; const U8_ARRAY: [u8; 8] = [0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07]; const U8_2D_ARRAY: [&[u8]; 2] = [&U8_ARRAY, &U8_ARRAY]; const U8_2D_SLICE: &[&[u8]] = &[&U8_ARRAY, &U8_ARRAY]; const U8_3D_ARRAY: [&[&[u8]]; 2] = [U8_2D_SLICE, U8_2D_SLICE]; const U8_3D_SLICE: &[&[&[u8]]] = &[U8_2D_SLICE, U8_2D_SLICE]; const U32_ARRAY: [u32; 4] = [0x00010203, 0x04050607, 0x08090A0B, 0x0C0D0E0F]; const U32_2D_ARRAY: [&[u32]; 2] = [&U32_ARRAY, &U32_ARRAY]; const U32_2D_SLICE: &[&[u32]] = &[&U32_ARRAY, &U32_ARRAY]; const U32_3D_ARRAY: [&[&[u32]]; 2] = [U32_2D_SLICE, U32_2D_SLICE]; const U32_3D_SLICE: &[&[&[u32]]] = &[U32_2D_SLICE, U32_2D_SLICE]; #[test] fn test_vzv_from() { type VZV<'a, T> = VarZeroVec<'a, T>; type ZS = ZeroSlice; type VZS = VarZeroSlice; let u8_zerovec: ZeroVec = ZeroVec::from_slice_or_alloc(&U8_ARRAY); let u8_2d_zerovec: [ZeroVec; 2] = [u8_zerovec.clone(), u8_zerovec.clone()]; let u8_2d_vec: Vec> = vec![U8_ARRAY.into(), U8_ARRAY.into()]; let u8_3d_vec: Vec>> = vec![u8_2d_vec.clone(), u8_2d_vec.clone()]; let u32_zerovec: ZeroVec = ZeroVec::from_slice_or_alloc(&U32_ARRAY); let u32_2d_zerovec: [ZeroVec; 2] = [u32_zerovec.clone(), u32_zerovec.clone()]; let u32_2d_vec: Vec> = vec![U32_ARRAY.into(), U32_ARRAY.into()]; let u32_3d_vec: Vec>> = vec![u32_2d_vec.clone(), u32_2d_vec.clone()]; let a: VZV = VarZeroVec::from(&STRING_ARRAY); let b: VZV = VarZeroVec::from(STRING_SLICE); let c: VZV = VarZeroVec::from(&Vec::from(STRING_SLICE)); assert_eq!(a, STRING_SLICE); assert_eq!(a, b); assert_eq!(a, c); let a: VZV<[u8]> = VarZeroVec::from(&U8_2D_ARRAY); let b: VZV<[u8]> = VarZeroVec::from(U8_2D_SLICE); let c: VZV<[u8]> = VarZeroVec::from(&u8_2d_vec); assert_eq!(a, U8_2D_SLICE); assert_eq!(a, b); assert_eq!(a, c); let u8_3d_vzv_brackets = &[a.clone(), a.clone()]; let a: VZV> = VarZeroVec::from(&U8_2D_ARRAY); let b: VZV> = VarZeroVec::from(U8_2D_SLICE); let c: VZV> = VarZeroVec::from(&u8_2d_vec); let d: VZV> = VarZeroVec::from(&u8_2d_zerovec); assert_eq!(a, U8_2D_SLICE); assert_eq!(a, b); assert_eq!(a, c); assert_eq!(a, d); let u8_3d_vzv_zeroslice = &[a.clone(), a.clone()]; let a: VZV> = VarZeroVec::from(&U8_3D_ARRAY); let b: VZV> = VarZeroVec::from(U8_3D_SLICE); let c: VZV> = VarZeroVec::from(&u8_3d_vec); let d: VZV> = VarZeroVec::from(u8_3d_vzv_brackets); assert_eq!( a.iter() .map(|x| x.iter().map(|y| y.to_vec()).collect::>>()) .collect::>>>(), u8_3d_vec ); assert_eq!(a, b); assert_eq!(a, c); assert_eq!(a, d); let a: VZV>> = VarZeroVec::from(&U8_3D_ARRAY); let b: VZV>> = VarZeroVec::from(U8_3D_SLICE); let c: VZV>> = VarZeroVec::from(&u8_3d_vec); let d: VZV>> = VarZeroVec::from(u8_3d_vzv_zeroslice); assert_eq!( a.iter() .map(|x| x .iter() .map(|y| y.iter().collect::>()) .collect::>>()) .collect::>>>(), u8_3d_vec ); assert_eq!(a, b); assert_eq!(a, c); assert_eq!(a, d); let a: VZV> = VarZeroVec::from(&U32_2D_ARRAY); let b: VZV> = VarZeroVec::from(U32_2D_SLICE); let c: VZV> = VarZeroVec::from(&u32_2d_vec); let d: VZV> = VarZeroVec::from(&u32_2d_zerovec); assert_eq!(a, u32_2d_zerovec); assert_eq!(a, b); assert_eq!(a, c); assert_eq!(a, d); let u32_3d_vzv = &[a.clone(), a.clone()]; let a: VZV>> = VarZeroVec::from(&U32_3D_ARRAY); let b: VZV>> = VarZeroVec::from(U32_3D_SLICE); let c: VZV>> = VarZeroVec::from(&u32_3d_vec); let d: VZV>> = VarZeroVec::from(u32_3d_vzv); assert_eq!( a.iter() .map(|x| x .iter() .map(|y| y.iter().collect::>()) .collect::>>()) .collect::>>>(), u32_3d_vec ); assert_eq!(a, b); assert_eq!(a, c); assert_eq!(a, d); } }