//! A counter mode (CTR) for AES to work with the encryption used in zip files. //! //! This was implemented since the zip specification requires the mode to not use a nonce and uses a //! different byte order (little endian) than NIST (big endian). //! See [AesCtrZipKeyStream] for more information. use aes::cipher::generic_array::GenericArray; // use aes::{BlockEncrypt, NewBlockCipher}; use aes::cipher::{BlockEncrypt, KeyInit}; use byteorder::WriteBytesExt; use std::{any, fmt}; /// Internal block size of an AES cipher. const AES_BLOCK_SIZE: usize = 16; /// AES-128. #[derive(Debug)] pub struct Aes128; /// AES-192 #[derive(Debug)] pub struct Aes192; /// AES-256. #[derive(Debug)] pub struct Aes256; /// An AES cipher kind. pub trait AesKind { /// Key type. type Key: AsRef<[u8]>; /// Cipher used to decrypt. type Cipher; } impl AesKind for Aes128 { type Key = [u8; 16]; type Cipher = aes::Aes128; } impl AesKind for Aes192 { type Key = [u8; 24]; type Cipher = aes::Aes192; } impl AesKind for Aes256 { type Key = [u8; 32]; type Cipher = aes::Aes256; } /// An AES-CTR key stream generator. /// /// Implements the slightly non-standard AES-CTR variant used by WinZip AES encryption. /// /// Typical AES-CTR implementations combine a nonce with a 64 bit counter. WinZIP AES instead uses /// no nonce and also uses a different byte order (little endian) than NIST (big endian). /// /// The stream implements the `Read` trait; encryption or decryption is performed by XOR-ing the /// bytes from the key stream with the ciphertext/plaintext. pub struct AesCtrZipKeyStream { /// Current AES counter. counter: u128, /// AES cipher instance. cipher: C::Cipher, /// Stores the currently available keystream bytes. buffer: [u8; AES_BLOCK_SIZE], /// Number of bytes already used up from `buffer`. pos: usize, } impl fmt::Debug for AesCtrZipKeyStream where C: AesKind, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!( f, "AesCtrZipKeyStream<{}>(counter: {})", any::type_name::(), self.counter ) } } impl AesCtrZipKeyStream where C: AesKind, C::Cipher: KeyInit, { /// Creates a new zip variant AES-CTR key stream. /// /// # Panics /// /// This panics if `key` doesn't have the correct size for cipher `C`. pub fn new(key: &[u8]) -> AesCtrZipKeyStream { AesCtrZipKeyStream { counter: 1, cipher: C::Cipher::new(GenericArray::from_slice(key)), buffer: [0u8; AES_BLOCK_SIZE], pos: AES_BLOCK_SIZE, } } } impl AesCipher for AesCtrZipKeyStream where C: AesKind, C::Cipher: BlockEncrypt, { /// Decrypt or encrypt `target`. #[inline] fn crypt_in_place(&mut self, mut target: &mut [u8]) { while !target.is_empty() { if self.pos == AES_BLOCK_SIZE { // Note: AES block size is always 16 bytes, same as u128. self.buffer .as_mut() .write_u128::(self.counter) .expect("did not expect u128 le conversion to fail"); self.cipher .encrypt_block(GenericArray::from_mut_slice(&mut self.buffer)); self.counter += 1; self.pos = 0; } let target_len = target.len().min(AES_BLOCK_SIZE - self.pos); xor( &mut target[0..target_len], &self.buffer[self.pos..(self.pos + target_len)], ); target = &mut target[target_len..]; self.pos += target_len; } } } /// This trait allows using generic AES ciphers with different key sizes. pub trait AesCipher { fn crypt_in_place(&mut self, target: &mut [u8]); } /// XORs a slice in place with another slice. #[inline] fn xor(dest: &mut [u8], src: &[u8]) { assert_eq!(dest.len(), src.len()); for (lhs, rhs) in dest.iter_mut().zip(src.iter()) { *lhs ^= *rhs; } } #[cfg(test)] mod tests { use super::{Aes128, Aes192, Aes256, AesCipher, AesCtrZipKeyStream, AesKind}; use aes::cipher::{BlockEncrypt, KeyInit}; /// Checks whether `crypt_in_place` produces the correct plaintext after one use and yields the /// cipertext again after applying it again. fn roundtrip(key: &[u8], ciphertext: &mut [u8], expected_plaintext: &[u8]) where Aes: AesKind, Aes::Cipher: KeyInit + BlockEncrypt, { let mut key_stream = AesCtrZipKeyStream::::new(key); let mut plaintext: Vec = ciphertext.to_vec(); key_stream.crypt_in_place(plaintext.as_mut_slice()); assert_eq!(plaintext, expected_plaintext.to_vec()); // Round-tripping should yield the ciphertext again. let mut key_stream = AesCtrZipKeyStream::::new(key); key_stream.crypt_in_place(&mut plaintext); assert_eq!(plaintext, ciphertext.to_vec()); } #[test] #[should_panic] fn new_with_wrong_key_size() { AesCtrZipKeyStream::::new(&[1, 2, 3, 4, 5]); } // The data used in these tests was generated with p7zip without any compression. // It's not possible to recreate the exact same data, since a random salt is used for encryption. // `7z a -phelloworld -mem=AES256 -mx=0 aes256_40byte.zip 40byte_data.txt` #[test] fn crypt_aes_256_0_byte() { let mut ciphertext = []; let expected_plaintext = &[]; let key = [ 0x0b, 0xec, 0x2e, 0xf2, 0x46, 0xf0, 0x7e, 0x35, 0x16, 0x54, 0xe0, 0x98, 0x10, 0xb3, 0x18, 0x55, 0x24, 0xa3, 0x9e, 0x0e, 0x40, 0xe7, 0x92, 0xad, 0xb2, 0x8a, 0x48, 0xf4, 0x5c, 0xd0, 0xc0, 0x54, ]; roundtrip::(&key, &mut ciphertext, expected_plaintext); } #[test] fn crypt_aes_128_5_byte() { let mut ciphertext = [0x98, 0xa9, 0x8c, 0x26, 0x0e]; let expected_plaintext = b"asdf\n"; let key = [ 0xe0, 0x25, 0x7b, 0x57, 0x97, 0x6a, 0xa4, 0x23, 0xab, 0x94, 0xaa, 0x44, 0xfd, 0x47, 0x4f, 0xa5, ]; roundtrip::(&key, &mut ciphertext, expected_plaintext); } #[test] fn crypt_aes_192_5_byte() { let mut ciphertext = [0x36, 0x55, 0x5c, 0x61, 0x3c]; let expected_plaintext = b"asdf\n"; let key = [ 0xe4, 0x4a, 0x88, 0x52, 0x8f, 0xf7, 0x0b, 0x81, 0x7b, 0x75, 0xf1, 0x74, 0x21, 0x37, 0x8c, 0x90, 0xad, 0xbe, 0x4a, 0x65, 0xa8, 0x96, 0x0e, 0xcc, ]; roundtrip::(&key, &mut ciphertext, expected_plaintext); } #[test] fn crypt_aes_256_5_byte() { let mut ciphertext = [0xc2, 0x47, 0xc0, 0xdc, 0x56]; let expected_plaintext = b"asdf\n"; let key = [ 0x79, 0x5e, 0x17, 0xf2, 0xc6, 0x3d, 0x28, 0x9b, 0x4b, 0x4b, 0xbb, 0xa9, 0xba, 0xc9, 0xa5, 0xee, 0x3a, 0x4f, 0x0f, 0x4b, 0x29, 0xbd, 0xe9, 0xb8, 0x41, 0x9c, 0x41, 0xa5, 0x15, 0xb2, 0x86, 0xab, ]; roundtrip::(&key, &mut ciphertext, expected_plaintext); } #[test] fn crypt_aes_128_40_byte() { let mut ciphertext = [ 0xcf, 0x72, 0x6b, 0xa1, 0xb2, 0x0f, 0xdf, 0xaa, 0x10, 0xad, 0x9c, 0x7f, 0x6d, 0x1c, 0x8d, 0xb5, 0x16, 0x7e, 0xbb, 0x11, 0x69, 0x52, 0x8c, 0x89, 0x80, 0x32, 0xaa, 0x76, 0xa6, 0x18, 0x31, 0x98, 0xee, 0xdd, 0x22, 0x68, 0xb7, 0xe6, 0x77, 0xd2, ]; let expected_plaintext = b"Lorem ipsum dolor sit amet, consectetur\n"; let key = [ 0x43, 0x2b, 0x6d, 0xbe, 0x05, 0x76, 0x6c, 0x9e, 0xde, 0xca, 0x3b, 0xf8, 0xaf, 0x5d, 0x81, 0xb6, ]; roundtrip::(&key, &mut ciphertext, expected_plaintext); } #[test] fn crypt_aes_192_40_byte() { let mut ciphertext = [ 0xa6, 0xfc, 0x52, 0x79, 0x2c, 0x6c, 0xfe, 0x68, 0xb1, 0xa8, 0xb3, 0x07, 0x52, 0x8b, 0x82, 0xa6, 0x87, 0x9c, 0x72, 0x42, 0x3a, 0xf8, 0xc6, 0xa9, 0xc9, 0xfb, 0x61, 0x19, 0x37, 0xb9, 0x56, 0x62, 0xf4, 0xfc, 0x5e, 0x7a, 0xdd, 0x55, 0x0a, 0x48, ]; let expected_plaintext = b"Lorem ipsum dolor sit amet, consectetur\n"; let key = [ 0xac, 0x92, 0x41, 0xba, 0xde, 0xd9, 0x02, 0xfe, 0x40, 0x92, 0x20, 0xf6, 0x56, 0x03, 0xfe, 0xae, 0x1b, 0xba, 0x01, 0x97, 0x97, 0x79, 0xbb, 0xa6, ]; roundtrip::(&key, &mut ciphertext, expected_plaintext); } #[test] fn crypt_aes_256_40_byte() { let mut ciphertext = [ 0xa9, 0x99, 0xbd, 0xea, 0x82, 0x9b, 0x8f, 0x2f, 0xb7, 0x52, 0x2f, 0x6b, 0xd8, 0xf6, 0xab, 0x0e, 0x24, 0x51, 0x9e, 0x18, 0x0f, 0xc0, 0x8f, 0x54, 0x15, 0x80, 0xae, 0xbc, 0xa0, 0x5c, 0x8a, 0x11, 0x8d, 0x14, 0x7e, 0xc5, 0xb4, 0xae, 0xd3, 0x37, ]; let expected_plaintext = b"Lorem ipsum dolor sit amet, consectetur\n"; let key = [ 0x64, 0x7c, 0x7a, 0xde, 0xf0, 0xf2, 0x61, 0x49, 0x1c, 0xf1, 0xf1, 0xe3, 0x37, 0xfc, 0xe1, 0x4d, 0x4a, 0x77, 0xd4, 0xeb, 0x9e, 0x3d, 0x75, 0xce, 0x9a, 0x3e, 0x10, 0x50, 0xc2, 0x07, 0x36, 0xb6, ]; roundtrip::(&key, &mut ciphertext, expected_plaintext); } }