1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
|
use crate::base::ExtCtxt;
use crate::errors::{
CountRepetitionMisplaced, MetaVarExprUnrecognizedVar, MetaVarsDifSeqMatchers, MustRepeatOnce,
NoSyntaxVarsExprRepeat, VarStillRepeating,
};
use crate::mbe::macro_parser::{MatchedNonterminal, MatchedSeq, MatchedTokenTree, NamedMatch};
use crate::mbe::{self, MetaVarExpr};
use rustc_ast::mut_visit::{self, MutVisitor};
use rustc_ast::token::{self, Delimiter, Token, TokenKind};
use rustc_ast::tokenstream::{DelimSpan, Spacing, TokenStream, TokenTree};
use rustc_data_structures::fx::FxHashMap;
use rustc_errors::{pluralize, PResult};
use rustc_errors::{DiagnosticBuilder, ErrorGuaranteed};
use rustc_span::hygiene::{LocalExpnId, Transparency};
use rustc_span::symbol::{sym, Ident, MacroRulesNormalizedIdent};
use rustc_span::Span;
use smallvec::{smallvec, SmallVec};
use std::mem;
// A Marker adds the given mark to the syntax context.
struct Marker(LocalExpnId, Transparency);
impl MutVisitor for Marker {
const VISIT_TOKENS: bool = true;
fn visit_span(&mut self, span: &mut Span) {
*span = span.apply_mark(self.0.to_expn_id(), self.1)
}
}
/// An iterator over the token trees in a delimited token tree (`{ ... }`) or a sequence (`$(...)`).
enum Frame<'a> {
Delimited { tts: &'a [mbe::TokenTree], idx: usize, delim: Delimiter, span: DelimSpan },
Sequence { tts: &'a [mbe::TokenTree], idx: usize, sep: Option<Token> },
}
impl<'a> Frame<'a> {
/// Construct a new frame around the delimited set of tokens.
fn new(src: &'a mbe::Delimited, span: DelimSpan) -> Frame<'a> {
Frame::Delimited { tts: &src.tts, idx: 0, delim: src.delim, span }
}
}
impl<'a> Iterator for Frame<'a> {
type Item = &'a mbe::TokenTree;
fn next(&mut self) -> Option<&'a mbe::TokenTree> {
match self {
Frame::Delimited { tts, ref mut idx, .. }
| Frame::Sequence { tts, ref mut idx, .. } => {
let res = tts.get(*idx);
*idx += 1;
res
}
}
}
}
/// This can do Macro-By-Example transcription.
/// - `interp` is a map of meta-variables to the tokens (non-terminals) they matched in the
/// invocation. We are assuming we already know there is a match.
/// - `src` is the RHS of the MBE, that is, the "example" we are filling in.
///
/// For example,
///
/// ```rust
/// macro_rules! foo {
/// ($id:ident) => { println!("{}", stringify!($id)); }
/// }
///
/// foo!(bar);
/// ```
///
/// `interp` would contain `$id => bar` and `src` would contain `println!("{}", stringify!($id));`.
///
/// `transcribe` would return a `TokenStream` containing `println!("{}", stringify!(bar));`.
///
/// Along the way, we do some additional error checking.
pub(super) fn transcribe<'a>(
cx: &ExtCtxt<'a>,
interp: &FxHashMap<MacroRulesNormalizedIdent, NamedMatch>,
src: &mbe::Delimited,
src_span: DelimSpan,
transparency: Transparency,
) -> PResult<'a, TokenStream> {
// Nothing for us to transcribe...
if src.tts.is_empty() {
return Ok(TokenStream::default());
}
// We descend into the RHS (`src`), expanding things as we go. This stack contains the things
// we have yet to expand/are still expanding. We start the stack off with the whole RHS.
let mut stack: SmallVec<[Frame<'_>; 1]> = smallvec![Frame::new(&src, src_span)];
// As we descend in the RHS, we will need to be able to match nested sequences of matchers.
// `repeats` keeps track of where we are in matching at each level, with the last element being
// the most deeply nested sequence. This is used as a stack.
let mut repeats = Vec::new();
// `result` contains resulting token stream from the TokenTree we just finished processing. At
// the end, this will contain the full result of transcription, but at arbitrary points during
// `transcribe`, `result` will contain subsets of the final result.
//
// Specifically, as we descend into each TokenTree, we will push the existing results onto the
// `result_stack` and clear `results`. We will then produce the results of transcribing the
// TokenTree into `results`. Then, as we unwind back out of the `TokenTree`, we will pop the
// `result_stack` and append `results` too it to produce the new `results` up to that point.
//
// Thus, if we try to pop the `result_stack` and it is empty, we have reached the top-level
// again, and we are done transcribing.
let mut result: Vec<TokenTree> = Vec::new();
let mut result_stack = Vec::new();
let mut marker = Marker(cx.current_expansion.id, transparency);
loop {
// Look at the last frame on the stack.
// If it still has a TokenTree we have not looked at yet, use that tree.
let Some(tree) = stack.last_mut().unwrap().next() else {
// This else-case never produces a value for `tree` (it `continue`s or `return`s).
// Otherwise, if we have just reached the end of a sequence and we can keep repeating,
// go back to the beginning of the sequence.
if let Frame::Sequence { idx, sep, .. } = stack.last_mut().unwrap() {
let (repeat_idx, repeat_len) = repeats.last_mut().unwrap();
*repeat_idx += 1;
if repeat_idx < repeat_len {
*idx = 0;
if let Some(sep) = sep {
result.push(TokenTree::Token(sep.clone(), Spacing::Alone));
}
continue;
}
}
// We are done with the top of the stack. Pop it. Depending on what it was, we do
// different things. Note that the outermost item must be the delimited, wrapped RHS
// that was passed in originally to `transcribe`.
match stack.pop().unwrap() {
// Done with a sequence. Pop from repeats.
Frame::Sequence { .. } => {
repeats.pop();
}
// We are done processing a Delimited. If this is the top-level delimited, we are
// done. Otherwise, we unwind the result_stack to append what we have produced to
// any previous results.
Frame::Delimited { delim, span, .. } => {
if result_stack.is_empty() {
// No results left to compute! We are back at the top-level.
return Ok(TokenStream::new(result));
}
// Step back into the parent Delimited.
let tree = TokenTree::Delimited(span, delim, TokenStream::new(result));
result = result_stack.pop().unwrap();
result.push(tree);
}
}
continue;
};
// At this point, we know we are in the middle of a TokenTree (the last one on `stack`).
// `tree` contains the next `TokenTree` to be processed.
match tree {
// We are descending into a sequence. We first make sure that the matchers in the RHS
// and the matches in `interp` have the same shape. Otherwise, either the caller or the
// macro writer has made a mistake.
seq @ mbe::TokenTree::Sequence(_, delimited) => {
match lockstep_iter_size(&seq, interp, &repeats) {
LockstepIterSize::Unconstrained => {
return Err(cx.create_err(NoSyntaxVarsExprRepeat { span: seq.span() }));
}
LockstepIterSize::Contradiction(msg) => {
// FIXME: this really ought to be caught at macro definition time... It
// happens when two meta-variables are used in the same repetition in a
// sequence, but they come from different sequence matchers and repeat
// different amounts.
return Err(cx.create_err(MetaVarsDifSeqMatchers { span: seq.span(), msg }));
}
LockstepIterSize::Constraint(len, _) => {
// We do this to avoid an extra clone above. We know that this is a
// sequence already.
let mbe::TokenTree::Sequence(sp, seq) = seq else {
unreachable!()
};
// Is the repetition empty?
if len == 0 {
if seq.kleene.op == mbe::KleeneOp::OneOrMore {
// FIXME: this really ought to be caught at macro definition
// time... It happens when the Kleene operator in the matcher and
// the body for the same meta-variable do not match.
return Err(cx.create_err(MustRepeatOnce { span: sp.entire() }));
}
} else {
// 0 is the initial counter (we have done 0 repetitions so far). `len`
// is the total number of repetitions we should generate.
repeats.push((0, len));
// The first time we encounter the sequence we push it to the stack. It
// then gets reused (see the beginning of the loop) until we are done
// repeating.
stack.push(Frame::Sequence {
idx: 0,
sep: seq.separator.clone(),
tts: &delimited.tts,
});
}
}
}
}
// Replace the meta-var with the matched token tree from the invocation.
mbe::TokenTree::MetaVar(mut sp, mut original_ident) => {
// Find the matched nonterminal from the macro invocation, and use it to replace
// the meta-var.
let ident = MacroRulesNormalizedIdent::new(original_ident);
if let Some(cur_matched) = lookup_cur_matched(ident, interp, &repeats) {
match cur_matched {
MatchedTokenTree(ref tt) => {
// `tt`s are emitted into the output stream directly as "raw tokens",
// without wrapping them into groups.
let token = tt.clone();
result.push(token);
}
MatchedNonterminal(ref nt) => {
// Other variables are emitted into the output stream as groups with
// `Delimiter::Invisible` to maintain parsing priorities.
// `Interpolated` is currently used for such groups in rustc parser.
marker.visit_span(&mut sp);
let token = TokenTree::token_alone(token::Interpolated(nt.clone()), sp);
result.push(token);
}
MatchedSeq(..) => {
// We were unable to descend far enough. This is an error.
return Err(cx.create_err(VarStillRepeating { span: sp, ident }));
}
}
} else {
// If we aren't able to match the meta-var, we push it back into the result but
// with modified syntax context. (I believe this supports nested macros).
marker.visit_span(&mut sp);
marker.visit_ident(&mut original_ident);
result.push(TokenTree::token_alone(token::Dollar, sp));
result.push(TokenTree::Token(
Token::from_ast_ident(original_ident),
Spacing::Alone,
));
}
}
// Replace meta-variable expressions with the result of their expansion.
mbe::TokenTree::MetaVarExpr(sp, expr) => {
transcribe_metavar_expr(cx, expr, interp, &mut marker, &repeats, &mut result, &sp)?;
}
// If we are entering a new delimiter, we push its contents to the `stack` to be
// processed, and we push all of the currently produced results to the `result_stack`.
// We will produce all of the results of the inside of the `Delimited` and then we will
// jump back out of the Delimited, pop the result_stack and add the new results back to
// the previous results (from outside the Delimited).
mbe::TokenTree::Delimited(mut span, delimited) => {
mut_visit::visit_delim_span(&mut span, &mut marker);
stack.push(Frame::Delimited {
tts: &delimited.tts,
delim: delimited.delim,
idx: 0,
span,
});
result_stack.push(mem::take(&mut result));
}
// Nothing much to do here. Just push the token to the result, being careful to
// preserve syntax context.
mbe::TokenTree::Token(token) => {
let mut token = token.clone();
mut_visit::visit_token(&mut token, &mut marker);
let tt = TokenTree::Token(token, Spacing::Alone);
result.push(tt);
}
// There should be no meta-var declarations in the invocation of a macro.
mbe::TokenTree::MetaVarDecl(..) => panic!("unexpected `TokenTree::MetaVarDecl"),
}
}
}
/// Lookup the meta-var named `ident` and return the matched token tree from the invocation using
/// the set of matches `interpolations`.
///
/// See the definition of `repeats` in the `transcribe` function. `repeats` is used to descend
/// into the right place in nested matchers. If we attempt to descend too far, the macro writer has
/// made a mistake, and we return `None`.
fn lookup_cur_matched<'a>(
ident: MacroRulesNormalizedIdent,
interpolations: &'a FxHashMap<MacroRulesNormalizedIdent, NamedMatch>,
repeats: &[(usize, usize)],
) -> Option<&'a NamedMatch> {
interpolations.get(&ident).map(|matched| {
let mut matched = matched;
for &(idx, _) in repeats {
match matched {
MatchedTokenTree(_) | MatchedNonterminal(_) => break,
MatchedSeq(ref ads) => matched = ads.get(idx).unwrap(),
}
}
matched
})
}
/// An accumulator over a TokenTree to be used with `fold`. During transcription, we need to make
/// sure that the size of each sequence and all of its nested sequences are the same as the sizes
/// of all the matched (nested) sequences in the macro invocation. If they don't match, somebody
/// has made a mistake (either the macro writer or caller).
#[derive(Clone)]
enum LockstepIterSize {
/// No constraints on length of matcher. This is true for any TokenTree variants except a
/// `MetaVar` with an actual `MatchedSeq` (as opposed to a `MatchedNonterminal`).
Unconstrained,
/// A `MetaVar` with an actual `MatchedSeq`. The length of the match and the name of the
/// meta-var are returned.
Constraint(usize, MacroRulesNormalizedIdent),
/// Two `Constraint`s on the same sequence had different lengths. This is an error.
Contradiction(String),
}
impl LockstepIterSize {
/// Find incompatibilities in matcher/invocation sizes.
/// - `Unconstrained` is compatible with everything.
/// - `Contradiction` is incompatible with everything.
/// - `Constraint(len)` is only compatible with other constraints of the same length.
fn with(self, other: LockstepIterSize) -> LockstepIterSize {
match self {
LockstepIterSize::Unconstrained => other,
LockstepIterSize::Contradiction(_) => self,
LockstepIterSize::Constraint(l_len, ref l_id) => match other {
LockstepIterSize::Unconstrained => self,
LockstepIterSize::Contradiction(_) => other,
LockstepIterSize::Constraint(r_len, _) if l_len == r_len => self,
LockstepIterSize::Constraint(r_len, r_id) => {
let msg = format!(
"meta-variable `{}` repeats {} time{}, but `{}` repeats {} time{}",
l_id,
l_len,
pluralize!(l_len),
r_id,
r_len,
pluralize!(r_len),
);
LockstepIterSize::Contradiction(msg)
}
},
}
}
}
/// Given a `tree`, make sure that all sequences have the same length as the matches for the
/// appropriate meta-vars in `interpolations`.
///
/// Note that if `repeats` does not match the exact correct depth of a meta-var,
/// `lookup_cur_matched` will return `None`, which is why this still works even in the presence of
/// multiple nested matcher sequences.
///
/// Example: `$($($x $y)+*);+` -- we need to make sure that `x` and `y` repeat the same amount as
/// each other at the given depth when the macro was invoked. If they don't it might mean they were
/// declared at unequal depths or there was a compile bug. For example, if we have 3 repetitions of
/// the outer sequence and 4 repetitions of the inner sequence for `x`, we should have the same for
/// `y`; otherwise, we can't transcribe them both at the given depth.
fn lockstep_iter_size(
tree: &mbe::TokenTree,
interpolations: &FxHashMap<MacroRulesNormalizedIdent, NamedMatch>,
repeats: &[(usize, usize)],
) -> LockstepIterSize {
use mbe::TokenTree;
match *tree {
TokenTree::Delimited(_, ref delimited) => {
delimited.tts.iter().fold(LockstepIterSize::Unconstrained, |size, tt| {
size.with(lockstep_iter_size(tt, interpolations, repeats))
})
}
TokenTree::Sequence(_, ref seq) => {
seq.tts.iter().fold(LockstepIterSize::Unconstrained, |size, tt| {
size.with(lockstep_iter_size(tt, interpolations, repeats))
})
}
TokenTree::MetaVar(_, name) | TokenTree::MetaVarDecl(_, name, _) => {
let name = MacroRulesNormalizedIdent::new(name);
match lookup_cur_matched(name, interpolations, repeats) {
Some(matched) => match matched {
MatchedTokenTree(_) | MatchedNonterminal(_) => LockstepIterSize::Unconstrained,
MatchedSeq(ref ads) => LockstepIterSize::Constraint(ads.len(), name),
},
_ => LockstepIterSize::Unconstrained,
}
}
TokenTree::MetaVarExpr(_, ref expr) => {
let default_rslt = LockstepIterSize::Unconstrained;
let Some(ident) = expr.ident() else { return default_rslt; };
let name = MacroRulesNormalizedIdent::new(ident);
match lookup_cur_matched(name, interpolations, repeats) {
Some(MatchedSeq(ref ads)) => {
default_rslt.with(LockstepIterSize::Constraint(ads.len(), name))
}
_ => default_rslt,
}
}
TokenTree::Token(..) => LockstepIterSize::Unconstrained,
}
}
/// Used solely by the `count` meta-variable expression, counts the outer-most repetitions at a
/// given optional nested depth.
///
/// For example, a macro parameter of `$( { $( $foo:ident ),* } )*` called with `{ a, b } { c }`:
///
/// * `[ $( ${count(foo)} ),* ]` will return [2, 1] with a, b = 2 and c = 1
/// * `[ $( ${count(foo, 0)} ),* ]` will be the same as `[ $( ${count(foo)} ),* ]`
/// * `[ $( ${count(foo, 1)} ),* ]` will return an error because `${count(foo, 1)}` is
/// declared inside a single repetition and the index `1` implies two nested repetitions.
fn count_repetitions<'a>(
cx: &ExtCtxt<'a>,
depth_opt: Option<usize>,
mut matched: &NamedMatch,
repeats: &[(usize, usize)],
sp: &DelimSpan,
) -> PResult<'a, usize> {
// Recursively count the number of matches in `matched` at given depth
// (or at the top-level of `matched` if no depth is given).
fn count<'a>(
cx: &ExtCtxt<'a>,
declared_lhs_depth: usize,
depth_opt: Option<usize>,
matched: &NamedMatch,
sp: &DelimSpan,
) -> PResult<'a, usize> {
match matched {
MatchedTokenTree(_) | MatchedNonterminal(_) => {
if declared_lhs_depth == 0 {
return Err(cx.create_err(CountRepetitionMisplaced { span: sp.entire() }));
}
match depth_opt {
None => Ok(1),
Some(_) => Err(out_of_bounds_err(cx, declared_lhs_depth, sp.entire(), "count")),
}
}
MatchedSeq(ref named_matches) => {
let new_declared_lhs_depth = declared_lhs_depth + 1;
match depth_opt {
None => named_matches
.iter()
.map(|elem| count(cx, new_declared_lhs_depth, None, elem, sp))
.sum(),
Some(0) => Ok(named_matches.len()),
Some(depth) => named_matches
.iter()
.map(|elem| count(cx, new_declared_lhs_depth, Some(depth - 1), elem, sp))
.sum(),
}
}
}
}
// `repeats` records all of the nested levels at which we are currently
// matching meta-variables. The meta-var-expr `count($x)` only counts
// matches that occur in this "subtree" of the `NamedMatch` where we
// are currently transcribing, so we need to descend to that subtree
// before we start counting. `matched` contains the various levels of the
// tree as we descend, and its final value is the subtree we are currently at.
for &(idx, _) in repeats {
if let MatchedSeq(ref ads) = matched {
matched = &ads[idx];
}
}
count(cx, 0, depth_opt, matched, sp)
}
/// Returns a `NamedMatch` item declared on the LHS given an arbitrary [Ident]
fn matched_from_ident<'ctx, 'interp, 'rslt>(
cx: &ExtCtxt<'ctx>,
ident: Ident,
interp: &'interp FxHashMap<MacroRulesNormalizedIdent, NamedMatch>,
) -> PResult<'ctx, &'rslt NamedMatch>
where
'interp: 'rslt,
{
let span = ident.span;
let key = MacroRulesNormalizedIdent::new(ident);
interp.get(&key).ok_or_else(|| cx.create_err(MetaVarExprUnrecognizedVar { span, key }))
}
/// Used by meta-variable expressions when an user input is out of the actual declared bounds. For
/// example, index(999999) in an repetition of only three elements.
fn out_of_bounds_err<'a>(
cx: &ExtCtxt<'a>,
max: usize,
span: Span,
ty: &str,
) -> DiagnosticBuilder<'a, ErrorGuaranteed> {
let msg = if max == 0 {
format!(
"meta-variable expression `{ty}` with depth parameter \
must be called inside of a macro repetition"
)
} else {
format!(
"depth parameter on meta-variable expression `{ty}` \
must be less than {max}"
)
};
cx.struct_span_err(span, &msg)
}
fn transcribe_metavar_expr<'a>(
cx: &ExtCtxt<'a>,
expr: &MetaVarExpr,
interp: &FxHashMap<MacroRulesNormalizedIdent, NamedMatch>,
marker: &mut Marker,
repeats: &[(usize, usize)],
result: &mut Vec<TokenTree>,
sp: &DelimSpan,
) -> PResult<'a, ()> {
let mut visited_span = || {
let mut span = sp.entire();
marker.visit_span(&mut span);
span
};
match *expr {
MetaVarExpr::Count(original_ident, depth_opt) => {
let matched = matched_from_ident(cx, original_ident, interp)?;
let count = count_repetitions(cx, depth_opt, matched, &repeats, sp)?;
let tt = TokenTree::token_alone(
TokenKind::lit(token::Integer, sym::integer(count), None),
visited_span(),
);
result.push(tt);
}
MetaVarExpr::Ignore(original_ident) => {
// Used to ensure that `original_ident` is present in the LHS
let _ = matched_from_ident(cx, original_ident, interp)?;
}
MetaVarExpr::Index(depth) => match repeats.iter().nth_back(depth) {
Some((index, _)) => {
result.push(TokenTree::token_alone(
TokenKind::lit(token::Integer, sym::integer(*index), None),
visited_span(),
));
}
None => return Err(out_of_bounds_err(cx, repeats.len(), sp.entire(), "index")),
},
MetaVarExpr::Length(depth) => match repeats.iter().nth_back(depth) {
Some((_, length)) => {
result.push(TokenTree::token_alone(
TokenKind::lit(token::Integer, sym::integer(*length), None),
visited_span(),
));
}
None => return Err(out_of_bounds_err(cx, repeats.len(), sp.entire(), "length")),
},
}
Ok(())
}
|