1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
|
use core::iter::{FusedIterator, TrustedLen, TrustedRandomAccess, TrustedRandomAccessNoCoerce};
use core::ops::Try;
use core::{fmt, mem, slice};
/// An iterator over the elements of a `VecDeque`.
///
/// This `struct` is created by the [`iter`] method on [`super::VecDeque`]. See its
/// documentation for more.
///
/// [`iter`]: super::VecDeque::iter
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Iter<'a, T: 'a> {
i1: slice::Iter<'a, T>,
i2: slice::Iter<'a, T>,
}
impl<'a, T> Iter<'a, T> {
pub(super) fn new(i1: slice::Iter<'a, T>, i2: slice::Iter<'a, T>) -> Self {
Self { i1, i2 }
}
}
#[stable(feature = "collection_debug", since = "1.17.0")]
impl<T: fmt::Debug> fmt::Debug for Iter<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("Iter").field(&self.i1.as_slice()).field(&self.i2.as_slice()).finish()
}
}
// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Clone for Iter<'_, T> {
fn clone(&self) -> Self {
Iter { i1: self.i1.clone(), i2: self.i2.clone() }
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> Iterator for Iter<'a, T> {
type Item = &'a T;
#[inline]
fn next(&mut self) -> Option<&'a T> {
match self.i1.next() {
Some(val) => Some(val),
None => {
// most of the time, the iterator will either always
// call next(), or always call next_back(). By swapping
// the iterators once the first one is empty, we ensure
// that the first branch is taken as often as possible,
// without sacrificing correctness, as i1 is empty anyways
mem::swap(&mut self.i1, &mut self.i2);
self.i1.next()
}
}
}
fn advance_by(&mut self, n: usize) -> Result<(), usize> {
let m = match self.i1.advance_by(n) {
Ok(_) => return Ok(()),
Err(m) => m,
};
mem::swap(&mut self.i1, &mut self.i2);
self.i1.advance_by(n - m).map_err(|o| o + m)
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let len = self.len();
(len, Some(len))
}
fn fold<Acc, F>(self, accum: Acc, mut f: F) -> Acc
where
F: FnMut(Acc, Self::Item) -> Acc,
{
let accum = self.i1.fold(accum, &mut f);
self.i2.fold(accum, &mut f)
}
fn try_fold<B, F, R>(&mut self, init: B, mut f: F) -> R
where
F: FnMut(B, Self::Item) -> R,
R: Try<Output = B>,
{
let acc = self.i1.try_fold(init, &mut f)?;
self.i2.try_fold(acc, &mut f)
}
#[inline]
fn last(mut self) -> Option<&'a T> {
self.next_back()
}
#[inline]
unsafe fn __iterator_get_unchecked(&mut self, idx: usize) -> Self::Item {
// Safety: The TrustedRandomAccess contract requires that callers only pass an index
// that is in bounds.
unsafe {
let i1_len = self.i1.len();
if idx < i1_len {
self.i1.__iterator_get_unchecked(idx)
} else {
self.i2.__iterator_get_unchecked(idx - i1_len)
}
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
#[inline]
fn next_back(&mut self) -> Option<&'a T> {
match self.i2.next_back() {
Some(val) => Some(val),
None => {
// most of the time, the iterator will either always
// call next(), or always call next_back(). By swapping
// the iterators once the second one is empty, we ensure
// that the first branch is taken as often as possible,
// without sacrificing correctness, as i2 is empty anyways
mem::swap(&mut self.i1, &mut self.i2);
self.i2.next_back()
}
}
}
fn advance_back_by(&mut self, n: usize) -> Result<(), usize> {
let m = match self.i2.advance_back_by(n) {
Ok(_) => return Ok(()),
Err(m) => m,
};
mem::swap(&mut self.i1, &mut self.i2);
self.i2.advance_back_by(n - m).map_err(|o| m + o)
}
fn rfold<Acc, F>(self, accum: Acc, mut f: F) -> Acc
where
F: FnMut(Acc, Self::Item) -> Acc,
{
let accum = self.i2.rfold(accum, &mut f);
self.i1.rfold(accum, &mut f)
}
fn try_rfold<B, F, R>(&mut self, init: B, mut f: F) -> R
where
F: FnMut(B, Self::Item) -> R,
R: Try<Output = B>,
{
let acc = self.i2.try_rfold(init, &mut f)?;
self.i1.try_rfold(acc, &mut f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> ExactSizeIterator for Iter<'_, T> {
fn len(&self) -> usize {
self.i1.len() + self.i2.len()
}
fn is_empty(&self) -> bool {
self.i1.is_empty() && self.i2.is_empty()
}
}
#[stable(feature = "fused", since = "1.26.0")]
impl<T> FusedIterator for Iter<'_, T> {}
#[unstable(feature = "trusted_len", issue = "37572")]
unsafe impl<T> TrustedLen for Iter<'_, T> {}
#[doc(hidden)]
#[unstable(feature = "trusted_random_access", issue = "none")]
unsafe impl<T> TrustedRandomAccess for Iter<'_, T> {}
#[doc(hidden)]
#[unstable(feature = "trusted_random_access", issue = "none")]
unsafe impl<T> TrustedRandomAccessNoCoerce for Iter<'_, T> {
const MAY_HAVE_SIDE_EFFECT: bool = false;
}
|