summaryrefslogtreecommitdiffstats
path: root/library/backtrace/src/print/fuchsia.rs
blob: cb872697df049a3cebf2df1aa9367851dbb567dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
use core::fmt::{self, Write};
use core::mem::{size_of, transmute};
use core::slice::from_raw_parts;
use libc::c_char;

extern "C" {
    // dl_iterate_phdr takes a callback that will receive a dl_phdr_info pointer
    // for every DSO that has been linked into the process. dl_iterate_phdr also
    // ensures that the dynamic linker is locked from start to finish of the
    // iteration. If the callback returns a non-zero value the iteration is
    // terminated early. 'data' will be passed as the third argument to the
    // callback on each call. 'size' gives the size of the dl_phdr_info.
    #[allow(improper_ctypes)]
    fn dl_iterate_phdr(
        f: extern "C" fn(info: &dl_phdr_info, size: usize, data: &mut DsoPrinter<'_, '_>) -> i32,
        data: &mut DsoPrinter<'_, '_>,
    ) -> i32;
}

// We need to parse out the build ID and some basic program header data
// which means that we need a bit of stuff from the ELF spec as well.

const PT_LOAD: u32 = 1;
const PT_NOTE: u32 = 4;

// Now we have to replicate, bit for bit, the structure of the dl_phdr_info
// type used by fuchsia's current dynamic linker. Chromium also has this ABI
// boundary as well as crashpad. Eventually we'd like to move these cases to
// use elf-search but we'd need to provide that in the SDK and that has not
// yet been done. Thus we (and they) are stuck having to use this method
// which incurs a tight coupling with the fuchsia libc.

#[allow(non_camel_case_types)]
#[repr(C)]
struct dl_phdr_info {
    addr: *const u8,
    name: *const c_char,
    phdr: *const Elf_Phdr,
    phnum: u16,
    adds: u64,
    subs: u64,
    tls_modid: usize,
    tls_data: *const u8,
}

impl dl_phdr_info {
    fn program_headers(&self) -> PhdrIter<'_> {
        PhdrIter {
            phdrs: self.phdr_slice(),
            base: self.addr,
        }
    }
    // We have no way of knowing of checking if e_phoff and e_phnum are valid.
    // libc should ensure this for us however so it's safe to form a slice here.
    fn phdr_slice(&self) -> &[Elf_Phdr] {
        unsafe { from_raw_parts(self.phdr, self.phnum as usize) }
    }
}

struct PhdrIter<'a> {
    phdrs: &'a [Elf_Phdr],
    base: *const u8,
}

impl<'a> Iterator for PhdrIter<'a> {
    type Item = Phdr<'a>;
    fn next(&mut self) -> Option<Self::Item> {
        self.phdrs.split_first().map(|(phdr, new_phdrs)| {
            self.phdrs = new_phdrs;
            Phdr {
                phdr,
                base: self.base,
            }
        })
    }
}

// Elf_Phdr represents a 64-bit ELF program header in the endianness of the target
// architecture.
#[allow(non_camel_case_types)]
#[derive(Clone, Debug)]
#[repr(C)]
struct Elf_Phdr {
    p_type: u32,
    p_flags: u32,
    p_offset: u64,
    p_vaddr: u64,
    p_paddr: u64,
    p_filesz: u64,
    p_memsz: u64,
    p_align: u64,
}

// Phdr represents a valid ELF program header and its contents.
struct Phdr<'a> {
    phdr: &'a Elf_Phdr,
    base: *const u8,
}

impl<'a> Phdr<'a> {
    // We have no way of checking if p_addr or p_memsz are valid. Fuchsia's libc
    // parses the notes first however so by virtue of being here these headers
    // must be valid. NoteIter does not require the underlying data to be valid
    // but it does require the bounds to be valid. We trust that libc has ensured
    // that this is the case for us here.
    fn notes(&self) -> NoteIter<'a> {
        unsafe {
            NoteIter::new(
                self.base.add(self.phdr.p_offset as usize),
                self.phdr.p_memsz as usize,
            )
        }
    }
}

// The note type for build IDs.
const NT_GNU_BUILD_ID: u32 = 3;

// Elf_Nhdr represents an ELF note header in the endianness of the target.
#[allow(non_camel_case_types)]
#[repr(C)]
struct Elf_Nhdr {
    n_namesz: u32,
    n_descsz: u32,
    n_type: u32,
}

// Note represents an ELF note (header + contents). The name is left as a u8
// slice because it is not always null terminated and rust makes it easy enough
// to check that the bytes match eitherway.
struct Note<'a> {
    name: &'a [u8],
    desc: &'a [u8],
    tipe: u32,
}

// NoteIter lets you safely iterate over a note segment. It terminates as soon
// as an error occurs or there are no more notes. If you iterate over invalid
// data it will function as though no notes were found.
struct NoteIter<'a> {
    base: &'a [u8],
    error: bool,
}

impl<'a> NoteIter<'a> {
    // It is an invariant of function that the pointer and size given denote a
    // valid range of bytes that can all be read. The contents of these bytes
    // can be anything but the range must be valid for this to be safe.
    unsafe fn new(base: *const u8, size: usize) -> Self {
        NoteIter {
            base: from_raw_parts(base, size),
            error: false,
        }
    }
}

// align_to aligns 'x' to 'to'-byte alignment assuming 'to' is a power of 2.
// This follows a standard pattern in C/C++ ELF parsing code where
// (x + to - 1) & -to is used. Rust does not let you negate usize so I use
// 2's-complement conversion to recreate that.
fn align_to(x: usize, to: usize) -> usize {
    (x + to - 1) & (!to + 1)
}

// take_bytes_align4 consumes num bytes from the slice (if present) and
// additionally ensures that the final slice is properlly aligned. If an
// either the number of bytes requested is too large or the slice can't be
// realigned afterwards due to not enough remaining bytes existing, None is
// returned and the slice is not modified.
fn take_bytes_align4<'a>(num: usize, bytes: &mut &'a [u8]) -> Option<&'a [u8]> {
    if bytes.len() < align_to(num, 4) {
        return None;
    }
    let (out, bytes_new) = bytes.split_at(num);
    *bytes = &bytes_new[align_to(num, 4) - num..];
    Some(out)
}

// This function has no real invariants the caller must uphold other than
// perhaps that 'bytes' should be aligned for performance (and on some
// architectures correctness). The values in the Elf_Nhdr fields might
// be nonsense but this function ensures no such thing.
fn take_nhdr<'a>(bytes: &mut &'a [u8]) -> Option<&'a Elf_Nhdr> {
    if size_of::<Elf_Nhdr>() > bytes.len() {
        return None;
    }
    // This is safe as long as there is enough space and we just confirmed that
    // in the if statement above so this should not be unsafe.
    let out = unsafe { transmute::<*const u8, &'a Elf_Nhdr>(bytes.as_ptr()) };
    // Note that sice_of::<Elf_Nhdr>() is always 4-byte aligned.
    *bytes = &bytes[size_of::<Elf_Nhdr>()..];
    Some(out)
}

impl<'a> Iterator for NoteIter<'a> {
    type Item = Note<'a>;
    fn next(&mut self) -> Option<Self::Item> {
        // Check if we've reached the end.
        if self.base.len() == 0 || self.error {
            return None;
        }
        // We transmute out an nhdr but we carefully consider the resulting
        // struct. We don't trust the namesz or descsz and we make no unsafe
        // decisions based on the type. So even if we get out complete garbage
        // we should still be safe.
        let nhdr = take_nhdr(&mut self.base)?;
        let name = take_bytes_align4(nhdr.n_namesz as usize, &mut self.base)?;
        let desc = take_bytes_align4(nhdr.n_descsz as usize, &mut self.base)?;
        Some(Note {
            name: name,
            desc: desc,
            tipe: nhdr.n_type,
        })
    }
}

struct Perm(u32);

/// Indicates that a segment is executable.
const PERM_X: u32 = 0b00000001;
/// Indicates that a segment is writable.
const PERM_W: u32 = 0b00000010;
/// Indicates that a segment is readable.
const PERM_R: u32 = 0b00000100;

impl core::fmt::Display for Perm {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let v = self.0;
        if v & PERM_R != 0 {
            f.write_char('r')?
        }
        if v & PERM_W != 0 {
            f.write_char('w')?
        }
        if v & PERM_X != 0 {
            f.write_char('x')?
        }
        Ok(())
    }
}

/// Represents an ELF segment at runtime.
struct Segment {
    /// Gives the runtime virtual address of this segment's contents.
    addr: usize,
    /// Gives the memory size of this segment's contents.
    size: usize,
    /// Gives the module virtual address of this segment with the ELF file.
    mod_rel_addr: usize,
    /// Gives the permissions found in the ELF file. These permissions are not
    /// necessarily the permissions present at runtime however.
    flags: Perm,
}

/// Lets one iterate over Segments from a DSO.
struct SegmentIter<'a> {
    phdrs: &'a [Elf_Phdr],
    base: usize,
}

impl Iterator for SegmentIter<'_> {
    type Item = Segment;

    fn next(&mut self) -> Option<Self::Item> {
        self.phdrs.split_first().and_then(|(phdr, new_phdrs)| {
            self.phdrs = new_phdrs;
            if phdr.p_type != PT_LOAD {
                self.next()
            } else {
                Some(Segment {
                    addr: phdr.p_vaddr as usize + self.base,
                    size: phdr.p_memsz as usize,
                    mod_rel_addr: phdr.p_vaddr as usize,
                    flags: Perm(phdr.p_flags),
                })
            }
        })
    }
}

/// Represents an ELF DSO (Dynamic Shared Object). This type references
/// the data stored in the actual DSO rather than making its own copy.
struct Dso<'a> {
    /// The dynamic linker always gives us a name, even if the name is empty.
    /// In the case of the main executable this name will be empty. In the case
    /// of a shared object it will be the soname (see DT_SONAME).
    name: &'a str,
    /// On Fuchsia virtually all binaries have build IDs but this is not a strict
    /// requirement. There's no way to match up DSO information with a real ELF
    /// file afterwards if there is no build_id so we require that every DSO
    /// have one here. DSO's without a build_id are ignored.
    build_id: &'a [u8],

    base: usize,
    phdrs: &'a [Elf_Phdr],
}

impl Dso<'_> {
    /// Returns an iterator over Segments in this DSO.
    fn segments(&self) -> SegmentIter<'_> {
        SegmentIter {
            phdrs: self.phdrs.as_ref(),
            base: self.base,
        }
    }
}

struct HexSlice<'a> {
    bytes: &'a [u8],
}

impl fmt::Display for HexSlice<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        for byte in self.bytes {
            write!(f, "{:02x}", byte)?;
        }
        Ok(())
    }
}

fn get_build_id<'a>(info: &'a dl_phdr_info) -> Option<&'a [u8]> {
    for phdr in info.program_headers() {
        if phdr.phdr.p_type == PT_NOTE {
            for note in phdr.notes() {
                if note.tipe == NT_GNU_BUILD_ID && (note.name == b"GNU\0" || note.name == b"GNU") {
                    return Some(note.desc);
                }
            }
        }
    }
    None
}

/// These errors encode issues that arise while parsing information about
/// each DSO.
enum Error {
    /// NameError means that an error occurred while converting a C style string
    /// into a rust string.
    NameError(core::str::Utf8Error),
    /// BuildIDError means that we didn't find a build ID. This could either be
    /// because the DSO had no build ID or because the segment containing the
    /// build ID was malformed.
    BuildIDError,
}

/// Calls either 'dso' or 'error' for each DSO linked into the process by the
/// dynamic linker.
///
/// # Arguments
///
/// * `visitor` - A DsoPrinter that will have one of eats methods called foreach DSO.
fn for_each_dso(mut visitor: &mut DsoPrinter<'_, '_>) {
    extern "C" fn callback(
        info: &dl_phdr_info,
        _size: usize,
        visitor: &mut DsoPrinter<'_, '_>,
    ) -> i32 {
        // dl_iterate_phdr ensures that info.name will point to a valid
        // location.
        let name_len = unsafe { libc::strlen(info.name) };
        let name_slice: &[u8] =
            unsafe { core::slice::from_raw_parts(info.name as *const u8, name_len) };
        let name = match core::str::from_utf8(name_slice) {
            Ok(name) => name,
            Err(err) => {
                return visitor.error(Error::NameError(err)) as i32;
            }
        };
        let build_id = match get_build_id(info) {
            Some(build_id) => build_id,
            None => {
                return visitor.error(Error::BuildIDError) as i32;
            }
        };
        visitor.dso(Dso {
            name: name,
            build_id: build_id,
            phdrs: info.phdr_slice(),
            base: info.addr as usize,
        }) as i32
    }
    unsafe { dl_iterate_phdr(callback, &mut visitor) };
}

struct DsoPrinter<'a, 'b> {
    writer: &'a mut core::fmt::Formatter<'b>,
    module_count: usize,
    error: core::fmt::Result,
}

impl DsoPrinter<'_, '_> {
    fn dso(&mut self, dso: Dso<'_>) -> bool {
        let mut write = || {
            write!(
                self.writer,
                "{{{{{{module:{:#x}:{}:elf:{}}}}}}}\n",
                self.module_count,
                dso.name,
                HexSlice {
                    bytes: dso.build_id.as_ref()
                }
            )?;
            for seg in dso.segments() {
                write!(
                    self.writer,
                    "{{{{{{mmap:{:#x}:{:#x}:load:{:#x}:{}:{:#x}}}}}}}\n",
                    seg.addr, seg.size, self.module_count, seg.flags, seg.mod_rel_addr
                )?;
            }
            self.module_count += 1;
            Ok(())
        };
        match write() {
            Ok(()) => false,
            Err(err) => {
                self.error = Err(err);
                true
            }
        }
    }
    fn error(&mut self, _error: Error) -> bool {
        false
    }
}

/// This function prints the Fuchsia symbolizer markup for all information contained in a DSO.
pub fn print_dso_context(out: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
    out.write_str("{{{reset:begin}}}\n")?;
    let mut visitor = DsoPrinter {
        writer: out,
        module_count: 0,
        error: Ok(()),
    };
    for_each_dso(&mut visitor);
    visitor.error
}

/// This function prints the Fuchsia symbolizer markup to end the backtrace.
pub fn finish_context(out: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
    out.write_str("{{{reset:end}}}\n")
}