1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
|
//! Constants for the `f32` single-precision floating point type.
//!
//! *[See also the `f32` primitive type](primitive@f32).*
//!
//! Mathematically significant numbers are provided in the `consts` sub-module.
//!
//! For the constants defined directly in this module
//! (as distinct from those defined in the `consts` sub-module),
//! new code should instead use the associated constants
//! defined directly on the `f32` type.
#![stable(feature = "rust1", since = "1.0.0")]
#![allow(missing_docs)]
#[cfg(test)]
mod tests;
#[cfg(not(test))]
use crate::intrinsics;
#[cfg(not(test))]
use crate::sys::cmath;
#[stable(feature = "rust1", since = "1.0.0")]
#[allow(deprecated, deprecated_in_future)]
pub use core::f32::{
consts, DIGITS, EPSILON, INFINITY, MANTISSA_DIGITS, MAX, MAX_10_EXP, MAX_EXP, MIN, MIN_10_EXP,
MIN_EXP, MIN_POSITIVE, NAN, NEG_INFINITY, RADIX,
};
#[cfg(not(test))]
impl f32 {
/// Returns the largest integer less than or equal to `self`.
///
/// # Examples
///
/// ```
/// let f = 3.7_f32;
/// let g = 3.0_f32;
/// let h = -3.7_f32;
///
/// assert_eq!(f.floor(), 3.0);
/// assert_eq!(g.floor(), 3.0);
/// assert_eq!(h.floor(), -4.0);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn floor(self) -> f32 {
unsafe { intrinsics::floorf32(self) }
}
/// Returns the smallest integer greater than or equal to `self`.
///
/// # Examples
///
/// ```
/// let f = 3.01_f32;
/// let g = 4.0_f32;
///
/// assert_eq!(f.ceil(), 4.0);
/// assert_eq!(g.ceil(), 4.0);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn ceil(self) -> f32 {
unsafe { intrinsics::ceilf32(self) }
}
/// Returns the nearest integer to `self`. If a value is half-way between two
/// integers, round away from `0.0`.
///
/// # Examples
///
/// ```
/// let f = 3.3_f32;
/// let g = -3.3_f32;
/// let h = -3.7_f32;
/// let i = 3.5_f32;
/// let j = 4.5_f32;
///
/// assert_eq!(f.round(), 3.0);
/// assert_eq!(g.round(), -3.0);
/// assert_eq!(h.round(), -4.0);
/// assert_eq!(i.round(), 4.0);
/// assert_eq!(j.round(), 5.0);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn round(self) -> f32 {
unsafe { intrinsics::roundf32(self) }
}
/// Returns the nearest integer to a number. Rounds half-way cases to the number
/// with an even least significant digit.
///
/// # Examples
///
/// ```
/// #![feature(round_ties_even)]
///
/// let f = 3.3_f32;
/// let g = -3.3_f32;
/// let h = 3.5_f32;
/// let i = 4.5_f32;
///
/// assert_eq!(f.round_ties_even(), 3.0);
/// assert_eq!(g.round_ties_even(), -3.0);
/// assert_eq!(h.round_ties_even(), 4.0);
/// assert_eq!(i.round_ties_even(), 4.0);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[unstable(feature = "round_ties_even", issue = "96710")]
#[inline]
pub fn round_ties_even(self) -> f32 {
unsafe { intrinsics::rintf32(self) }
}
/// Returns the integer part of `self`.
/// This means that non-integer numbers are always truncated towards zero.
///
/// # Examples
///
/// ```
/// let f = 3.7_f32;
/// let g = 3.0_f32;
/// let h = -3.7_f32;
///
/// assert_eq!(f.trunc(), 3.0);
/// assert_eq!(g.trunc(), 3.0);
/// assert_eq!(h.trunc(), -3.0);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn trunc(self) -> f32 {
unsafe { intrinsics::truncf32(self) }
}
/// Returns the fractional part of `self`.
///
/// # Examples
///
/// ```
/// let x = 3.6_f32;
/// let y = -3.6_f32;
/// let abs_difference_x = (x.fract() - 0.6).abs();
/// let abs_difference_y = (y.fract() - (-0.6)).abs();
///
/// assert!(abs_difference_x <= f32::EPSILON);
/// assert!(abs_difference_y <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn fract(self) -> f32 {
self - self.trunc()
}
/// Computes the absolute value of `self`.
///
/// # Examples
///
/// ```
/// let x = 3.5_f32;
/// let y = -3.5_f32;
///
/// let abs_difference_x = (x.abs() - x).abs();
/// let abs_difference_y = (y.abs() - (-y)).abs();
///
/// assert!(abs_difference_x <= f32::EPSILON);
/// assert!(abs_difference_y <= f32::EPSILON);
///
/// assert!(f32::NAN.abs().is_nan());
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn abs(self) -> f32 {
unsafe { intrinsics::fabsf32(self) }
}
/// Returns a number that represents the sign of `self`.
///
/// - `1.0` if the number is positive, `+0.0` or `INFINITY`
/// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
/// - NaN if the number is NaN
///
/// # Examples
///
/// ```
/// let f = 3.5_f32;
///
/// assert_eq!(f.signum(), 1.0);
/// assert_eq!(f32::NEG_INFINITY.signum(), -1.0);
///
/// assert!(f32::NAN.signum().is_nan());
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn signum(self) -> f32 {
if self.is_nan() { Self::NAN } else { 1.0_f32.copysign(self) }
}
/// Returns a number composed of the magnitude of `self` and the sign of
/// `sign`.
///
/// Equal to `self` if the sign of `self` and `sign` are the same, otherwise
/// equal to `-self`. If `self` is a NaN, then a NaN with the sign bit of
/// `sign` is returned. Note, however, that conserving the sign bit on NaN
/// across arithmetical operations is not generally guaranteed.
/// See [explanation of NaN as a special value](primitive@f32) for more info.
///
/// # Examples
///
/// ```
/// let f = 3.5_f32;
///
/// assert_eq!(f.copysign(0.42), 3.5_f32);
/// assert_eq!(f.copysign(-0.42), -3.5_f32);
/// assert_eq!((-f).copysign(0.42), 3.5_f32);
/// assert_eq!((-f).copysign(-0.42), -3.5_f32);
///
/// assert!(f32::NAN.copysign(1.0).is_nan());
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[inline]
#[stable(feature = "copysign", since = "1.35.0")]
pub fn copysign(self, sign: f32) -> f32 {
unsafe { intrinsics::copysignf32(self, sign) }
}
/// Fused multiply-add. Computes `(self * a) + b` with only one rounding
/// error, yielding a more accurate result than an unfused multiply-add.
///
/// Using `mul_add` *may* be more performant than an unfused multiply-add if
/// the target architecture has a dedicated `fma` CPU instruction. However,
/// this is not always true, and will be heavily dependant on designing
/// algorithms with specific target hardware in mind.
///
/// # Examples
///
/// ```
/// let m = 10.0_f32;
/// let x = 4.0_f32;
/// let b = 60.0_f32;
///
/// // 100.0
/// let abs_difference = (m.mul_add(x, b) - ((m * x) + b)).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn mul_add(self, a: f32, b: f32) -> f32 {
unsafe { intrinsics::fmaf32(self, a, b) }
}
/// Calculates Euclidean division, the matching method for `rem_euclid`.
///
/// This computes the integer `n` such that
/// `self = n * rhs + self.rem_euclid(rhs)`.
/// In other words, the result is `self / rhs` rounded to the integer `n`
/// such that `self >= n * rhs`.
///
/// # Examples
///
/// ```
/// let a: f32 = 7.0;
/// let b = 4.0;
/// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0
/// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0
/// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0
/// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[inline]
#[stable(feature = "euclidean_division", since = "1.38.0")]
pub fn div_euclid(self, rhs: f32) -> f32 {
let q = (self / rhs).trunc();
if self % rhs < 0.0 {
return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
}
q
}
/// Calculates the least nonnegative remainder of `self (mod rhs)`.
///
/// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in
/// most cases. However, due to a floating point round-off error it can
/// result in `r == rhs.abs()`, violating the mathematical definition, if
/// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`.
/// This result is not an element of the function's codomain, but it is the
/// closest floating point number in the real numbers and thus fulfills the
/// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)`
/// approximately.
///
/// # Examples
///
/// ```
/// let a: f32 = 7.0;
/// let b = 4.0;
/// assert_eq!(a.rem_euclid(b), 3.0);
/// assert_eq!((-a).rem_euclid(b), 1.0);
/// assert_eq!(a.rem_euclid(-b), 3.0);
/// assert_eq!((-a).rem_euclid(-b), 1.0);
/// // limitation due to round-off error
/// assert!((-f32::EPSILON).rem_euclid(3.0) != 0.0);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[inline]
#[stable(feature = "euclidean_division", since = "1.38.0")]
pub fn rem_euclid(self, rhs: f32) -> f32 {
let r = self % rhs;
if r < 0.0 { r + rhs.abs() } else { r }
}
/// Raises a number to an integer power.
///
/// Using this function is generally faster than using `powf`.
/// It might have a different sequence of rounding operations than `powf`,
/// so the results are not guaranteed to agree.
///
/// # Examples
///
/// ```
/// let x = 2.0_f32;
/// let abs_difference = (x.powi(2) - (x * x)).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn powi(self, n: i32) -> f32 {
unsafe { intrinsics::powif32(self, n) }
}
/// Raises a number to a floating point power.
///
/// # Examples
///
/// ```
/// let x = 2.0_f32;
/// let abs_difference = (x.powf(2.0) - (x * x)).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn powf(self, n: f32) -> f32 {
unsafe { intrinsics::powf32(self, n) }
}
/// Returns the square root of a number.
///
/// Returns NaN if `self` is a negative number other than `-0.0`.
///
/// # Examples
///
/// ```
/// let positive = 4.0_f32;
/// let negative = -4.0_f32;
/// let negative_zero = -0.0_f32;
///
/// let abs_difference = (positive.sqrt() - 2.0).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// assert!(negative.sqrt().is_nan());
/// assert!(negative_zero.sqrt() == negative_zero);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn sqrt(self) -> f32 {
unsafe { intrinsics::sqrtf32(self) }
}
/// Returns `e^(self)`, (the exponential function).
///
/// # Examples
///
/// ```
/// let one = 1.0f32;
/// // e^1
/// let e = one.exp();
///
/// // ln(e) - 1 == 0
/// let abs_difference = (e.ln() - 1.0).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn exp(self) -> f32 {
unsafe { intrinsics::expf32(self) }
}
/// Returns `2^(self)`.
///
/// # Examples
///
/// ```
/// let f = 2.0f32;
///
/// // 2^2 - 4 == 0
/// let abs_difference = (f.exp2() - 4.0).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn exp2(self) -> f32 {
unsafe { intrinsics::exp2f32(self) }
}
/// Returns the natural logarithm of the number.
///
/// # Examples
///
/// ```
/// let one = 1.0f32;
/// // e^1
/// let e = one.exp();
///
/// // ln(e) - 1 == 0
/// let abs_difference = (e.ln() - 1.0).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn ln(self) -> f32 {
unsafe { intrinsics::logf32(self) }
}
/// Returns the logarithm of the number with respect to an arbitrary base.
///
/// The result might not be correctly rounded owing to implementation details;
/// `self.log2()` can produce more accurate results for base 2, and
/// `self.log10()` can produce more accurate results for base 10.
///
/// # Examples
///
/// ```
/// let five = 5.0f32;
///
/// // log5(5) - 1 == 0
/// let abs_difference = (five.log(5.0) - 1.0).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn log(self, base: f32) -> f32 {
self.ln() / base.ln()
}
/// Returns the base 2 logarithm of the number.
///
/// # Examples
///
/// ```
/// let two = 2.0f32;
///
/// // log2(2) - 1 == 0
/// let abs_difference = (two.log2() - 1.0).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn log2(self) -> f32 {
#[cfg(target_os = "android")]
return crate::sys::android::log2f32(self);
#[cfg(not(target_os = "android"))]
return unsafe { intrinsics::log2f32(self) };
}
/// Returns the base 10 logarithm of the number.
///
/// # Examples
///
/// ```
/// let ten = 10.0f32;
///
/// // log10(10) - 1 == 0
/// let abs_difference = (ten.log10() - 1.0).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn log10(self) -> f32 {
unsafe { intrinsics::log10f32(self) }
}
/// The positive difference of two numbers.
///
/// * If `self <= other`: `0:0`
/// * Else: `self - other`
///
/// # Examples
///
/// ```
/// let x = 3.0f32;
/// let y = -3.0f32;
///
/// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
/// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();
///
/// assert!(abs_difference_x <= f32::EPSILON);
/// assert!(abs_difference_y <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
#[deprecated(
since = "1.10.0",
note = "you probably meant `(self - other).abs()`: \
this operation is `(self - other).max(0.0)` \
except that `abs_sub` also propagates NaNs (also \
known as `fdimf` in C). If you truly need the positive \
difference, consider using that expression or the C function \
`fdimf`, depending on how you wish to handle NaN (please consider \
filing an issue describing your use-case too)."
)]
pub fn abs_sub(self, other: f32) -> f32 {
unsafe { cmath::fdimf(self, other) }
}
/// Returns the cube root of a number.
///
/// # Examples
///
/// ```
/// let x = 8.0f32;
///
/// // x^(1/3) - 2 == 0
/// let abs_difference = (x.cbrt() - 2.0).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn cbrt(self) -> f32 {
unsafe { cmath::cbrtf(self) }
}
/// Compute the distance between the origin and a point (`x`, `y`) on the
/// Euclidean plane. Equivalently, compute the length of the hypotenuse of a
/// right-angle triangle with other sides having length `x.abs()` and
/// `y.abs()`.
///
/// # Examples
///
/// ```
/// let x = 2.0f32;
/// let y = 3.0f32;
///
/// // sqrt(x^2 + y^2)
/// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn hypot(self, other: f32) -> f32 {
unsafe { cmath::hypotf(self, other) }
}
/// Computes the sine of a number (in radians).
///
/// # Examples
///
/// ```
/// let x = std::f32::consts::FRAC_PI_2;
///
/// let abs_difference = (x.sin() - 1.0).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn sin(self) -> f32 {
unsafe { intrinsics::sinf32(self) }
}
/// Computes the cosine of a number (in radians).
///
/// # Examples
///
/// ```
/// let x = 2.0 * std::f32::consts::PI;
///
/// let abs_difference = (x.cos() - 1.0).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn cos(self) -> f32 {
unsafe { intrinsics::cosf32(self) }
}
/// Computes the tangent of a number (in radians).
///
/// # Examples
///
/// ```
/// let x = std::f32::consts::FRAC_PI_4;
/// let abs_difference = (x.tan() - 1.0).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn tan(self) -> f32 {
unsafe { cmath::tanf(self) }
}
/// Computes the arcsine of a number. Return value is in radians in
/// the range [-pi/2, pi/2] or NaN if the number is outside the range
/// [-1, 1].
///
/// # Examples
///
/// ```
/// let f = std::f32::consts::FRAC_PI_2;
///
/// // asin(sin(pi/2))
/// let abs_difference = (f.sin().asin() - std::f32::consts::FRAC_PI_2).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn asin(self) -> f32 {
unsafe { cmath::asinf(self) }
}
/// Computes the arccosine of a number. Return value is in radians in
/// the range [0, pi] or NaN if the number is outside the range
/// [-1, 1].
///
/// # Examples
///
/// ```
/// let f = std::f32::consts::FRAC_PI_4;
///
/// // acos(cos(pi/4))
/// let abs_difference = (f.cos().acos() - std::f32::consts::FRAC_PI_4).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn acos(self) -> f32 {
unsafe { cmath::acosf(self) }
}
/// Computes the arctangent of a number. Return value is in radians in the
/// range [-pi/2, pi/2];
///
/// # Examples
///
/// ```
/// let f = 1.0f32;
///
/// // atan(tan(1))
/// let abs_difference = (f.tan().atan() - 1.0).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn atan(self) -> f32 {
unsafe { cmath::atanf(self) }
}
/// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`) in radians.
///
/// * `x = 0`, `y = 0`: `0`
/// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
/// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
/// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
///
/// # Examples
///
/// ```
/// // Positive angles measured counter-clockwise
/// // from positive x axis
/// // -pi/4 radians (45 deg clockwise)
/// let x1 = 3.0f32;
/// let y1 = -3.0f32;
///
/// // 3pi/4 radians (135 deg counter-clockwise)
/// let x2 = -3.0f32;
/// let y2 = 3.0f32;
///
/// let abs_difference_1 = (y1.atan2(x1) - (-std::f32::consts::FRAC_PI_4)).abs();
/// let abs_difference_2 = (y2.atan2(x2) - (3.0 * std::f32::consts::FRAC_PI_4)).abs();
///
/// assert!(abs_difference_1 <= f32::EPSILON);
/// assert!(abs_difference_2 <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn atan2(self, other: f32) -> f32 {
unsafe { cmath::atan2f(self, other) }
}
/// Simultaneously computes the sine and cosine of the number, `x`. Returns
/// `(sin(x), cos(x))`.
///
/// # Examples
///
/// ```
/// let x = std::f32::consts::FRAC_PI_4;
/// let f = x.sin_cos();
///
/// let abs_difference_0 = (f.0 - x.sin()).abs();
/// let abs_difference_1 = (f.1 - x.cos()).abs();
///
/// assert!(abs_difference_0 <= f32::EPSILON);
/// assert!(abs_difference_1 <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn sin_cos(self) -> (f32, f32) {
(self.sin(), self.cos())
}
/// Returns `e^(self) - 1` in a way that is accurate even if the
/// number is close to zero.
///
/// # Examples
///
/// ```
/// let x = 1e-8_f32;
///
/// // for very small x, e^x is approximately 1 + x + x^2 / 2
/// let approx = x + x * x / 2.0;
/// let abs_difference = (x.exp_m1() - approx).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn exp_m1(self) -> f32 {
unsafe { cmath::expm1f(self) }
}
/// Returns `ln(1+n)` (natural logarithm) more accurately than if
/// the operations were performed separately.
///
/// # Examples
///
/// ```
/// let x = 1e-8_f32;
///
/// // for very small x, ln(1 + x) is approximately x - x^2 / 2
/// let approx = x - x * x / 2.0;
/// let abs_difference = (x.ln_1p() - approx).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn ln_1p(self) -> f32 {
unsafe { cmath::log1pf(self) }
}
/// Hyperbolic sine function.
///
/// # Examples
///
/// ```
/// let e = std::f32::consts::E;
/// let x = 1.0f32;
///
/// let f = x.sinh();
/// // Solving sinh() at 1 gives `(e^2-1)/(2e)`
/// let g = ((e * e) - 1.0) / (2.0 * e);
/// let abs_difference = (f - g).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn sinh(self) -> f32 {
unsafe { cmath::sinhf(self) }
}
/// Hyperbolic cosine function.
///
/// # Examples
///
/// ```
/// let e = std::f32::consts::E;
/// let x = 1.0f32;
/// let f = x.cosh();
/// // Solving cosh() at 1 gives this result
/// let g = ((e * e) + 1.0) / (2.0 * e);
/// let abs_difference = (f - g).abs();
///
/// // Same result
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn cosh(self) -> f32 {
unsafe { cmath::coshf(self) }
}
/// Hyperbolic tangent function.
///
/// # Examples
///
/// ```
/// let e = std::f32::consts::E;
/// let x = 1.0f32;
///
/// let f = x.tanh();
/// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
/// let g = (1.0 - e.powi(-2)) / (1.0 + e.powi(-2));
/// let abs_difference = (f - g).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn tanh(self) -> f32 {
unsafe { cmath::tanhf(self) }
}
/// Inverse hyperbolic sine function.
///
/// # Examples
///
/// ```
/// let x = 1.0f32;
/// let f = x.sinh().asinh();
///
/// let abs_difference = (f - x).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn asinh(self) -> f32 {
let ax = self.abs();
let ix = 1.0 / ax;
(ax + (ax / (Self::hypot(1.0, ix) + ix))).ln_1p().copysign(self)
}
/// Inverse hyperbolic cosine function.
///
/// # Examples
///
/// ```
/// let x = 1.0f32;
/// let f = x.cosh().acosh();
///
/// let abs_difference = (f - x).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn acosh(self) -> f32 {
if self < 1.0 {
Self::NAN
} else {
(self + ((self - 1.0).sqrt() * (self + 1.0).sqrt())).ln()
}
}
/// Inverse hyperbolic tangent function.
///
/// # Examples
///
/// ```
/// let e = std::f32::consts::E;
/// let f = e.tanh().atanh();
///
/// let abs_difference = (f - e).abs();
///
/// assert!(abs_difference <= 1e-5);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn atanh(self) -> f32 {
0.5 * ((2.0 * self) / (1.0 - self)).ln_1p()
}
}
|