1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
|
use rustc_data_structures::fx::FxHashSet;
use rustc_hir as hir;
use rustc_hir::lang_items::LangItem;
use rustc_middle::ty::{self, Region, RegionVid, TypeFoldable};
use rustc_trait_selection::traits::auto_trait::{self, AutoTraitResult};
use thin_vec::ThinVec;
use std::fmt::Debug;
use super::*;
#[derive(Eq, PartialEq, Hash, Copy, Clone, Debug)]
enum RegionTarget<'tcx> {
Region(Region<'tcx>),
RegionVid(RegionVid),
}
#[derive(Default, Debug, Clone)]
struct RegionDeps<'tcx> {
larger: FxHashSet<RegionTarget<'tcx>>,
smaller: FxHashSet<RegionTarget<'tcx>>,
}
pub(crate) struct AutoTraitFinder<'a, 'tcx> {
pub(crate) cx: &'a mut core::DocContext<'tcx>,
}
impl<'a, 'tcx> AutoTraitFinder<'a, 'tcx>
where
'tcx: 'a, // should be an implied bound; rustc bug #98852.
{
pub(crate) fn new(cx: &'a mut core::DocContext<'tcx>) -> Self {
AutoTraitFinder { cx }
}
fn generate_for_trait(
&mut self,
ty: Ty<'tcx>,
trait_def_id: DefId,
param_env: ty::ParamEnv<'tcx>,
item_def_id: DefId,
f: &auto_trait::AutoTraitFinder<'tcx>,
// If this is set, show only negative trait implementations, not positive ones.
discard_positive_impl: bool,
) -> Option<Item> {
let tcx = self.cx.tcx;
let trait_ref = ty::Binder::dummy(ty::TraitRef::new(tcx, trait_def_id, [ty]));
if !self.cx.generated_synthetics.insert((ty, trait_def_id)) {
debug!("get_auto_trait_impl_for({:?}): already generated, aborting", trait_ref);
return None;
}
let result = f.find_auto_trait_generics(ty, param_env, trait_def_id, |info| {
let region_data = info.region_data;
let names_map = tcx
.generics_of(item_def_id)
.params
.iter()
.filter_map(|param| match param.kind {
ty::GenericParamDefKind::Lifetime => Some(param.name),
_ => None,
})
.map(|name| (name, Lifetime(name)))
.collect();
let lifetime_predicates = Self::handle_lifetimes(®ion_data, &names_map);
let new_generics = self.param_env_to_generics(
item_def_id,
info.full_user_env,
lifetime_predicates,
info.vid_to_region,
);
debug!(
"find_auto_trait_generics(item_def_id={:?}, trait_def_id={:?}): \
finished with {:?}",
item_def_id, trait_def_id, new_generics
);
new_generics
});
let polarity;
let new_generics = match result {
AutoTraitResult::PositiveImpl(new_generics) => {
polarity = ty::ImplPolarity::Positive;
if discard_positive_impl {
return None;
}
new_generics
}
AutoTraitResult::NegativeImpl => {
polarity = ty::ImplPolarity::Negative;
// For negative impls, we use the generic params, but *not* the predicates,
// from the original type. Otherwise, the displayed impl appears to be a
// conditional negative impl, when it's really unconditional.
//
// For example, consider the struct Foo<T: Copy>(*mut T). Using
// the original predicates in our impl would cause us to generate
// `impl !Send for Foo<T: Copy>`, which makes it appear that Foo
// implements Send where T is not copy.
//
// Instead, we generate `impl !Send for Foo<T>`, which better
// expresses the fact that `Foo<T>` never implements `Send`,
// regardless of the choice of `T`.
let raw_generics = clean_ty_generics(
self.cx,
tcx.generics_of(item_def_id),
ty::GenericPredicates::default(),
);
let params = raw_generics.params;
Generics { params, where_predicates: ThinVec::new() }
}
AutoTraitResult::ExplicitImpl => return None,
};
Some(Item {
name: None,
attrs: Default::default(),
item_id: ItemId::Auto { trait_: trait_def_id, for_: item_def_id },
kind: Box::new(ImplItem(Box::new(Impl {
unsafety: hir::Unsafety::Normal,
generics: new_generics,
trait_: Some(clean_trait_ref_with_bindings(self.cx, trait_ref, ThinVec::new())),
for_: clean_middle_ty(ty::Binder::dummy(ty), self.cx, None),
items: Vec::new(),
polarity,
kind: ImplKind::Auto,
}))),
cfg: None,
inline_stmt_id: None,
})
}
pub(crate) fn get_auto_trait_impls(&mut self, item_def_id: DefId) -> Vec<Item> {
let tcx = self.cx.tcx;
let param_env = tcx.param_env(item_def_id);
let ty = tcx.type_of(item_def_id).subst_identity();
let f = auto_trait::AutoTraitFinder::new(tcx);
debug!("get_auto_trait_impls({:?})", ty);
let auto_traits: Vec<_> = self.cx.auto_traits.to_vec();
let mut auto_traits: Vec<Item> = auto_traits
.into_iter()
.filter_map(|trait_def_id| {
self.generate_for_trait(ty, trait_def_id, param_env, item_def_id, &f, false)
})
.collect();
// We are only interested in case the type *doesn't* implement the Sized trait.
if !ty.is_sized(tcx, param_env) {
// In case `#![no_core]` is used, `sized_trait` returns nothing.
if let Some(item) = tcx.lang_items().sized_trait().and_then(|sized_trait_did| {
self.generate_for_trait(ty, sized_trait_did, param_env, item_def_id, &f, true)
}) {
auto_traits.push(item);
}
}
auto_traits
}
fn get_lifetime(region: Region<'_>, names_map: &FxHashMap<Symbol, Lifetime>) -> Lifetime {
region_name(region)
.map(|name| {
names_map.get(&name).unwrap_or_else(|| {
panic!("Missing lifetime with name {:?} for {:?}", name.as_str(), region)
})
})
.unwrap_or(&Lifetime::statik())
.clone()
}
/// This method calculates two things: Lifetime constraints of the form `'a: 'b`,
/// and region constraints of the form `RegionVid: 'a`
///
/// This is essentially a simplified version of lexical_region_resolve. However,
/// handle_lifetimes determines what *needs be* true in order for an impl to hold.
/// lexical_region_resolve, along with much of the rest of the compiler, is concerned
/// with determining if a given set up constraints/predicates *are* met, given some
/// starting conditions (e.g., user-provided code). For this reason, it's easier
/// to perform the calculations we need on our own, rather than trying to make
/// existing inference/solver code do what we want.
fn handle_lifetimes<'cx>(
regions: &RegionConstraintData<'cx>,
names_map: &FxHashMap<Symbol, Lifetime>,
) -> ThinVec<WherePredicate> {
// Our goal is to 'flatten' the list of constraints by eliminating
// all intermediate RegionVids. At the end, all constraints should
// be between Regions (aka region variables). This gives us the information
// we need to create the Generics.
let mut finished: FxHashMap<_, Vec<_>> = Default::default();
let mut vid_map: FxHashMap<RegionTarget<'_>, RegionDeps<'_>> = Default::default();
// Flattening is done in two parts. First, we insert all of the constraints
// into a map. Each RegionTarget (either a RegionVid or a Region) maps
// to its smaller and larger regions. Note that 'larger' regions correspond
// to sub-regions in Rust code (e.g., in 'a: 'b, 'a is the larger region).
for constraint in regions.constraints.keys() {
match *constraint {
Constraint::VarSubVar(r1, r2) => {
{
let deps1 = vid_map.entry(RegionTarget::RegionVid(r1)).or_default();
deps1.larger.insert(RegionTarget::RegionVid(r2));
}
let deps2 = vid_map.entry(RegionTarget::RegionVid(r2)).or_default();
deps2.smaller.insert(RegionTarget::RegionVid(r1));
}
Constraint::RegSubVar(region, vid) => {
let deps = vid_map.entry(RegionTarget::RegionVid(vid)).or_default();
deps.smaller.insert(RegionTarget::Region(region));
}
Constraint::VarSubReg(vid, region) => {
let deps = vid_map.entry(RegionTarget::RegionVid(vid)).or_default();
deps.larger.insert(RegionTarget::Region(region));
}
Constraint::RegSubReg(r1, r2) => {
// The constraint is already in the form that we want, so we're done with it
// Desired order is 'larger, smaller', so flip then
if region_name(r1) != region_name(r2) {
finished
.entry(region_name(r2).expect("no region_name found"))
.or_default()
.push(r1);
}
}
}
}
// Here, we 'flatten' the map one element at a time.
// All of the element's sub and super regions are connected
// to each other. For example, if we have a graph that looks like this:
//
// (A, B) - C - (D, E)
// Where (A, B) are subregions, and (D,E) are super-regions
//
// then after deleting 'C', the graph will look like this:
// ... - A - (D, E ...)
// ... - B - (D, E, ...)
// (A, B, ...) - D - ...
// (A, B, ...) - E - ...
//
// where '...' signifies the existing sub and super regions of an entry
// When two adjacent ty::Regions are encountered, we've computed a final
// constraint, and add it to our list. Since we make sure to never re-add
// deleted items, this process will always finish.
while !vid_map.is_empty() {
let target = *vid_map.keys().next().expect("Keys somehow empty");
let deps = vid_map.remove(&target).expect("Entry somehow missing");
for smaller in deps.smaller.iter() {
for larger in deps.larger.iter() {
match (smaller, larger) {
(&RegionTarget::Region(r1), &RegionTarget::Region(r2)) => {
if region_name(r1) != region_name(r2) {
finished
.entry(region_name(r2).expect("no region name found"))
.or_default()
.push(r1) // Larger, smaller
}
}
(&RegionTarget::RegionVid(_), &RegionTarget::Region(_)) => {
if let Entry::Occupied(v) = vid_map.entry(*smaller) {
let smaller_deps = v.into_mut();
smaller_deps.larger.insert(*larger);
smaller_deps.larger.remove(&target);
}
}
(&RegionTarget::Region(_), &RegionTarget::RegionVid(_)) => {
if let Entry::Occupied(v) = vid_map.entry(*larger) {
let deps = v.into_mut();
deps.smaller.insert(*smaller);
deps.smaller.remove(&target);
}
}
(&RegionTarget::RegionVid(_), &RegionTarget::RegionVid(_)) => {
if let Entry::Occupied(v) = vid_map.entry(*smaller) {
let smaller_deps = v.into_mut();
smaller_deps.larger.insert(*larger);
smaller_deps.larger.remove(&target);
}
if let Entry::Occupied(v) = vid_map.entry(*larger) {
let larger_deps = v.into_mut();
larger_deps.smaller.insert(*smaller);
larger_deps.smaller.remove(&target);
}
}
}
}
}
}
let lifetime_predicates = names_map
.iter()
.flat_map(|(name, lifetime)| {
let empty = Vec::new();
let bounds: FxHashSet<GenericBound> = finished
.get(name)
.unwrap_or(&empty)
.iter()
.map(|region| GenericBound::Outlives(Self::get_lifetime(*region, names_map)))
.collect();
if bounds.is_empty() {
return None;
}
Some(WherePredicate::RegionPredicate {
lifetime: lifetime.clone(),
bounds: bounds.into_iter().collect(),
})
})
.collect();
lifetime_predicates
}
fn extract_for_generics(&self, pred: ty::Predicate<'tcx>) -> FxHashSet<GenericParamDef> {
let bound_predicate = pred.kind();
let tcx = self.cx.tcx;
let regions = match bound_predicate.skip_binder() {
ty::PredicateKind::Clause(ty::Clause::Trait(poly_trait_pred)) => {
tcx.collect_referenced_late_bound_regions(&bound_predicate.rebind(poly_trait_pred))
}
ty::PredicateKind::Clause(ty::Clause::Projection(poly_proj_pred)) => {
tcx.collect_referenced_late_bound_regions(&bound_predicate.rebind(poly_proj_pred))
}
_ => return FxHashSet::default(),
};
regions
.into_iter()
.filter_map(|br| {
match br {
// We only care about named late bound regions, as we need to add them
// to the 'for<>' section
ty::BrNamed(_, name) => Some(GenericParamDef::lifetime(name)),
_ => None,
}
})
.collect()
}
fn make_final_bounds(
&self,
ty_to_bounds: FxHashMap<Type, FxHashSet<GenericBound>>,
ty_to_fn: FxHashMap<Type, (PolyTrait, Option<Type>)>,
lifetime_to_bounds: FxHashMap<Lifetime, FxHashSet<GenericBound>>,
) -> Vec<WherePredicate> {
ty_to_bounds
.into_iter()
.flat_map(|(ty, mut bounds)| {
if let Some((ref poly_trait, ref output)) = ty_to_fn.get(&ty) {
let mut new_path = poly_trait.trait_.clone();
let last_segment = new_path.segments.pop().expect("segments were empty");
let (old_input, old_output) = match last_segment.args {
GenericArgs::AngleBracketed { args, .. } => {
let types = args
.iter()
.filter_map(|arg| match arg {
GenericArg::Type(ty) => Some(ty.clone()),
_ => None,
})
.collect();
(types, None)
}
GenericArgs::Parenthesized { inputs, output } => (inputs, output),
};
let output = output.as_ref().cloned().map(Box::new);
if old_output.is_some() && old_output != output {
panic!("Output mismatch for {:?} {:?} {:?}", ty, old_output, output);
}
let new_params = GenericArgs::Parenthesized { inputs: old_input, output };
new_path
.segments
.push(PathSegment { name: last_segment.name, args: new_params });
bounds.insert(GenericBound::TraitBound(
PolyTrait {
trait_: new_path,
generic_params: poly_trait.generic_params.clone(),
},
hir::TraitBoundModifier::None,
));
}
if bounds.is_empty() {
return None;
}
let mut bounds_vec = bounds.into_iter().collect();
self.sort_where_bounds(&mut bounds_vec);
Some(WherePredicate::BoundPredicate {
ty,
bounds: bounds_vec,
bound_params: Vec::new(),
})
})
.chain(lifetime_to_bounds.into_iter().filter(|(_, bounds)| !bounds.is_empty()).map(
|(lifetime, bounds)| {
let mut bounds_vec = bounds.into_iter().collect();
self.sort_where_bounds(&mut bounds_vec);
WherePredicate::RegionPredicate { lifetime, bounds: bounds_vec }
},
))
.collect()
}
/// Converts the calculated `ParamEnv` and lifetime information to a [`clean::Generics`](Generics), suitable for
/// display on the docs page. Cleaning the `Predicates` produces sub-optimal [`WherePredicate`]s,
/// so we fix them up:
///
/// * Multiple bounds for the same type are coalesced into one: e.g., `T: Copy`, `T: Debug`
/// becomes `T: Copy + Debug`
/// * `Fn` bounds are handled specially - instead of leaving it as `T: Fn(), <T as Fn::Output> =
/// K`, we use the dedicated syntax `T: Fn() -> K`
/// * We explicitly add a `?Sized` bound if we didn't find any `Sized` predicates for a type
fn param_env_to_generics(
&mut self,
item_def_id: DefId,
param_env: ty::ParamEnv<'tcx>,
mut existing_predicates: ThinVec<WherePredicate>,
vid_to_region: FxHashMap<ty::RegionVid, ty::Region<'tcx>>,
) -> Generics {
debug!(
"param_env_to_generics(item_def_id={:?}, param_env={:?}, \
existing_predicates={:?})",
item_def_id, param_env, existing_predicates
);
let tcx = self.cx.tcx;
// The `Sized` trait must be handled specially, since we only display it when
// it is *not* required (i.e., '?Sized')
let sized_trait = tcx.require_lang_item(LangItem::Sized, None);
let mut replacer = RegionReplacer { vid_to_region: &vid_to_region, tcx };
let orig_bounds: FxHashSet<_> = tcx.param_env(item_def_id).caller_bounds().iter().collect();
let clean_where_predicates = param_env
.caller_bounds()
.iter()
.filter(|p| {
!orig_bounds.contains(p)
|| match p.kind().skip_binder() {
ty::PredicateKind::Clause(ty::Clause::Trait(pred)) => {
pred.def_id() == sized_trait
}
_ => false,
}
})
.map(|p| p.fold_with(&mut replacer));
let raw_generics = clean_ty_generics(
self.cx,
tcx.generics_of(item_def_id),
tcx.explicit_predicates_of(item_def_id),
);
let mut generic_params = raw_generics.params;
debug!("param_env_to_generics({:?}): generic_params={:?}", item_def_id, generic_params);
let mut has_sized = FxHashSet::default();
let mut ty_to_bounds: FxHashMap<_, FxHashSet<_>> = Default::default();
let mut lifetime_to_bounds: FxHashMap<_, FxHashSet<_>> = Default::default();
let mut ty_to_traits: FxHashMap<Type, FxHashSet<Path>> = Default::default();
let mut ty_to_fn: FxHashMap<Type, (PolyTrait, Option<Type>)> = Default::default();
// FIXME: This code shares much of the logic found in `clean_ty_generics` and
// `simplify::where_clause`. Consider deduplicating it to avoid diverging
// implementations.
// Further, the code below does not merge (partially re-sugared) bounds like
// `Tr<A = T>` & `Tr<B = U>` and it does not render higher-ranked parameters
// originating from equality predicates.
for p in clean_where_predicates {
let (orig_p, p) = (p, clean_predicate(p, self.cx));
if p.is_none() {
continue;
}
let p = p.unwrap();
match p {
WherePredicate::BoundPredicate { ty, mut bounds, .. } => {
// Writing a projection trait bound of the form
// <T as Trait>::Name : ?Sized
// is illegal, because ?Sized bounds can only
// be written in the (here, nonexistent) definition
// of the type.
// Therefore, we make sure that we never add a ?Sized
// bound for projections
if let Type::QPath { .. } = ty {
has_sized.insert(ty.clone());
}
if bounds.is_empty() {
continue;
}
let mut for_generics = self.extract_for_generics(orig_p);
assert!(bounds.len() == 1);
let mut b = bounds.pop().expect("bounds were empty");
if b.is_sized_bound(self.cx) {
has_sized.insert(ty.clone());
} else if !b
.get_trait_path()
.and_then(|trait_| {
ty_to_traits
.get(&ty)
.map(|bounds| bounds.contains(&strip_path_generics(trait_)))
})
.unwrap_or(false)
{
// If we've already added a projection bound for the same type, don't add
// this, as it would be a duplicate
// Handle any 'Fn/FnOnce/FnMut' bounds specially,
// as we want to combine them with any 'Output' qpaths
// later
let is_fn = match b {
GenericBound::TraitBound(ref mut p, _) => {
// Insert regions into the for_generics hash map first, to ensure
// that we don't end up with duplicate bounds (e.g., for<'b, 'b>)
for_generics.extend(p.generic_params.drain(..));
p.generic_params.extend(for_generics);
self.is_fn_trait(&p.trait_)
}
_ => false,
};
let poly_trait = b.get_poly_trait().expect("Cannot get poly trait");
if is_fn {
ty_to_fn
.entry(ty.clone())
.and_modify(|e| *e = (poly_trait.clone(), e.1.clone()))
.or_insert(((poly_trait.clone()), None));
ty_to_bounds.entry(ty.clone()).or_default();
} else {
ty_to_bounds.entry(ty.clone()).or_default().insert(b.clone());
}
}
}
WherePredicate::RegionPredicate { lifetime, bounds } => {
lifetime_to_bounds.entry(lifetime).or_default().extend(bounds);
}
WherePredicate::EqPredicate { lhs, rhs, bound_params } => {
match *lhs {
Type::QPath(box QPathData {
ref assoc,
ref self_type,
trait_: Some(ref trait_),
..
}) => {
let ty = &*self_type;
let mut new_trait = trait_.clone();
if self.is_fn_trait(trait_) && assoc.name == sym::Output {
ty_to_fn
.entry(ty.clone())
.and_modify(|e| {
*e = (e.0.clone(), Some(rhs.ty().unwrap().clone()))
})
.or_insert((
PolyTrait {
trait_: trait_.clone(),
generic_params: Vec::new(),
},
Some(rhs.ty().unwrap().clone()),
));
continue;
}
let args = &mut new_trait
.segments
.last_mut()
.expect("segments were empty")
.args;
match args {
// Convert something like '<T as Iterator::Item> = u8'
// to 'T: Iterator<Item=u8>'
GenericArgs::AngleBracketed { ref mut bindings, .. } => {
bindings.push(TypeBinding {
assoc: assoc.clone(),
kind: TypeBindingKind::Equality { term: *rhs },
});
}
GenericArgs::Parenthesized { .. } => {
existing_predicates.push(WherePredicate::EqPredicate {
lhs: lhs.clone(),
rhs,
bound_params,
});
continue; // If something other than a Fn ends up
// with parentheses, leave it alone
}
}
let bounds = ty_to_bounds.entry(ty.clone()).or_default();
bounds.insert(GenericBound::TraitBound(
PolyTrait { trait_: new_trait, generic_params: Vec::new() },
hir::TraitBoundModifier::None,
));
// Remove any existing 'plain' bound (e.g., 'T: Iterator`) so
// that we don't see a
// duplicate bound like `T: Iterator + Iterator<Item=u8>`
// on the docs page.
bounds.remove(&GenericBound::TraitBound(
PolyTrait { trait_: trait_.clone(), generic_params: Vec::new() },
hir::TraitBoundModifier::None,
));
// Avoid creating any new duplicate bounds later in the outer
// loop
ty_to_traits.entry(ty.clone()).or_default().insert(trait_.clone());
}
_ => panic!("Unexpected LHS {:?} for {:?}", lhs, item_def_id),
}
}
};
}
let final_bounds = self.make_final_bounds(ty_to_bounds, ty_to_fn, lifetime_to_bounds);
existing_predicates.extend(final_bounds);
for param in generic_params.iter_mut() {
match param.kind {
GenericParamDefKind::Type { ref mut default, ref mut bounds, .. } => {
// We never want something like `impl<T=Foo>`.
default.take();
let generic_ty = Type::Generic(param.name);
if !has_sized.contains(&generic_ty) {
bounds.insert(0, GenericBound::maybe_sized(self.cx));
}
}
GenericParamDefKind::Lifetime { .. } => {}
GenericParamDefKind::Const { ref mut default, .. } => {
// We never want something like `impl<const N: usize = 10>`
default.take();
}
}
}
self.sort_where_predicates(&mut existing_predicates);
Generics { params: generic_params, where_predicates: existing_predicates }
}
/// Ensure that the predicates are in a consistent order. The precise
/// ordering doesn't actually matter, but it's important that
/// a given set of predicates always appears in the same order -
/// both for visual consistency between 'rustdoc' runs, and to
/// make writing tests much easier
#[inline]
fn sort_where_predicates(&self, predicates: &mut [WherePredicate]) {
// We should never have identical bounds - and if we do,
// they're visually identical as well. Therefore, using
// an unstable sort is fine.
self.unstable_debug_sort(predicates);
}
/// Ensure that the bounds are in a consistent order. The precise
/// ordering doesn't actually matter, but it's important that
/// a given set of bounds always appears in the same order -
/// both for visual consistency between 'rustdoc' runs, and to
/// make writing tests much easier
#[inline]
fn sort_where_bounds(&self, bounds: &mut Vec<GenericBound>) {
// We should never have identical bounds - and if we do,
// they're visually identical as well. Therefore, using
// an unstable sort is fine.
self.unstable_debug_sort(bounds);
}
/// This might look horrendously hacky, but it's actually not that bad.
///
/// For performance reasons, we use several different FxHashMaps
/// in the process of computing the final set of where predicates.
/// However, the iteration order of a HashMap is completely unspecified.
/// In fact, the iteration of an FxHashMap can even vary between platforms,
/// since FxHasher has different behavior for 32-bit and 64-bit platforms.
///
/// Obviously, it's extremely undesirable for documentation rendering
/// to be dependent on the platform it's run on. Apart from being confusing
/// to end users, it makes writing tests much more difficult, as predicates
/// can appear in any order in the final result.
///
/// To solve this problem, we sort WherePredicates and GenericBounds
/// by their Debug string. The thing to keep in mind is that we don't really
/// care what the final order is - we're synthesizing an impl or bound
/// ourselves, so any order can be considered equally valid. By sorting the
/// predicates and bounds, however, we ensure that for a given codebase, all
/// auto-trait impls always render in exactly the same way.
///
/// Using the Debug implementation for sorting prevents us from needing to
/// write quite a bit of almost entirely useless code (e.g., how should two
/// Types be sorted relative to each other). It also allows us to solve the
/// problem for both WherePredicates and GenericBounds at the same time. This
/// approach is probably somewhat slower, but the small number of items
/// involved (impls rarely have more than a few bounds) means that it
/// shouldn't matter in practice.
fn unstable_debug_sort<T: Debug>(&self, vec: &mut [T]) {
vec.sort_by_cached_key(|x| format!("{:?}", x))
}
fn is_fn_trait(&self, path: &Path) -> bool {
let tcx = self.cx.tcx;
let did = path.def_id();
did == tcx.require_lang_item(LangItem::Fn, None)
|| did == tcx.require_lang_item(LangItem::FnMut, None)
|| did == tcx.require_lang_item(LangItem::FnOnce, None)
}
}
fn region_name(region: Region<'_>) -> Option<Symbol> {
match *region {
ty::ReEarlyBound(r) => Some(r.name),
_ => None,
}
}
/// Replaces all [`ty::RegionVid`]s in a type with [`ty::Region`]s, using the provided map.
struct RegionReplacer<'a, 'tcx> {
vid_to_region: &'a FxHashMap<ty::RegionVid, ty::Region<'tcx>>,
tcx: TyCtxt<'tcx>,
}
impl<'a, 'tcx> TypeFolder<TyCtxt<'tcx>> for RegionReplacer<'a, 'tcx> {
fn interner(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
match *r {
// These are the regions that can be seen in the AST.
ty::ReVar(vid) => self.vid_to_region.get(&vid).cloned().unwrap_or(r),
ty::ReEarlyBound(_) | ty::ReStatic | ty::ReLateBound(..) | ty::ReError(_) => r,
r => bug!("unexpected region: {r:?}"),
}
}
}
|