1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
|
// run-pass
// no-prefer-dynamic
// ignore-wasm32-bare no libc
// ignore-windows
// ignore-sgx no libc
// ignore-emscripten no processes
// ignore-sgx no processes
// ignore-fuchsia no fork
#![feature(rustc_private)]
#![feature(never_type)]
#![feature(panic_always_abort)]
extern crate libc;
use std::alloc::{GlobalAlloc, Layout};
use std::fmt;
use std::panic::{self, panic_any};
use std::os::unix::process::{CommandExt, ExitStatusExt};
use std::process::{self, Command, ExitStatus};
use std::sync::atomic::{AtomicU32, Ordering};
use libc::c_int;
/// This stunt allocator allows us to spot heap allocations in the child.
struct PidChecking<A> {
parent: A,
require_pid: AtomicU32,
}
#[global_allocator]
static ALLOCATOR: PidChecking<std::alloc::System> = PidChecking {
parent: std::alloc::System,
require_pid: AtomicU32::new(0),
};
impl<A> PidChecking<A> {
fn engage(&self) {
let parent_pid = process::id();
eprintln!("engaging allocator trap, parent pid={}", parent_pid);
self.require_pid.store(parent_pid, Ordering::Release);
}
fn check(&self) {
let require_pid = self.require_pid.load(Ordering::Acquire);
if require_pid != 0 {
let actual_pid = process::id();
if require_pid != actual_pid {
unsafe {
libc::raise(libc::SIGUSR1);
}
}
}
}
}
unsafe impl<A:GlobalAlloc> GlobalAlloc for PidChecking<A> {
unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
self.check();
self.parent.alloc(layout)
}
unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
self.check();
self.parent.dealloc(ptr, layout)
}
unsafe fn alloc_zeroed(&self, layout: Layout) -> *mut u8 {
self.check();
self.parent.alloc_zeroed(layout)
}
unsafe fn realloc(&self, ptr: *mut u8, layout: Layout, new_size: usize) -> *mut u8 {
self.check();
self.parent.realloc(ptr, layout, new_size)
}
}
fn expect_aborted(status: ExitStatus) {
dbg!(status);
let signal = status.signal().expect("expected child process to die of signal");
#[cfg(not(target_os = "android"))]
assert!(signal == libc::SIGABRT || signal == libc::SIGILL || signal == libc::SIGTRAP);
#[cfg(target_os = "android")]
{
// Android signals an abort() call with SIGSEGV at address 0xdeadbaad
// See e.g. https://groups.google.com/g/android-ndk/c/laW1CJc7Icc
assert!(signal == libc::SIGSEGV);
// Additional checks performed:
// 1. Find last tombstone (similar to coredump but in text format) from the
// same executable (path) as we are (must be because of usage of fork):
// This ensures that we look into the correct tombstone.
// 2. Cause of crash is a SIGSEGV with address 0xdeadbaad.
// 3. libc::abort call is in one of top two functions on callstack.
// The last two steps distinguish between a normal SIGSEGV and one caused
// by libc::abort.
let this_exe = std::env::current_exe().unwrap().into_os_string().into_string().unwrap();
let exe_string = format!(">>> {this_exe} <<<");
let tombstone = (0..100)
.map(|n| format!("/data/tombstones/tombstone_{n:02}"))
.filter(|f| std::path::Path::new(&f).exists())
.map(|f| std::fs::read_to_string(&f).expect("Cannot read tombstone file"))
.filter(|f| f.contains(&exe_string))
.last()
.expect("no tombstone found");
println!("Content of tombstone:\n{tombstone}");
assert!(
tombstone.contains("signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr deadbaad")
);
let abort_on_top = tombstone
.lines()
.skip_while(|l| !l.contains("backtrace:"))
.skip(1)
.take_while(|l| l.starts_with(" #"))
.take(2)
.any(|f| f.contains("/system/lib/libc.so (abort"));
assert!(abort_on_top);
}
}
fn main() {
ALLOCATOR.engage();
fn run(do_panic: &dyn Fn()) -> ExitStatus {
let child = unsafe { libc::fork() };
assert!(child >= 0);
if child == 0 {
panic::always_abort();
do_panic();
process::exit(0);
}
let mut status: c_int = 0;
let got = unsafe { libc::waitpid(child, &mut status, 0) };
assert_eq!(got, child);
let status = ExitStatus::from_raw(status.into());
status
}
fn one(do_panic: &dyn Fn()) {
let status = run(do_panic);
expect_aborted(status);
}
one(&|| panic!());
one(&|| panic!("some message"));
one(&|| panic!("message with argument: {}", 42));
#[derive(Debug)]
struct Wotsit { }
one(&|| panic_any(Wotsit { }));
let mut c = Command::new("echo");
unsafe {
c.pre_exec(|| panic!("{}", "crash now!"));
}
let st = c.status().expect("failed to get command status");
expect_aborted(st);
struct DisplayWithHeap;
impl fmt::Display for DisplayWithHeap {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
let s = vec![0; 100];
let s = std::hint::black_box(s);
write!(f, "{:?}", s)
}
}
// Some panics in the stdlib that we want not to allocate, as
// otherwise these facilities become impossible to use in the
// child after fork, which is really quite awkward.
one(&|| { None::<DisplayWithHeap>.unwrap(); });
one(&|| { None::<DisplayWithHeap>.expect("unwrapped a none"); });
one(&|| { std::str::from_utf8(b"\xff").unwrap(); });
one(&|| {
let x = [0, 1, 2, 3];
let y = x[std::hint::black_box(4)];
let _z = std::hint::black_box(y);
});
// Finally, check that our stunt allocator can actually catch an allocation after fork.
// ie, that our test is effective.
let status = run(&|| panic!("allocating to display... {}", DisplayWithHeap));
dbg!(status);
assert_eq!(status.signal(), Some(libc::SIGUSR1));
}
|