summaryrefslogtreecommitdiffstats
path: root/src/test/ui/threads-sendsync/mpsc_stress.rs
blob: c2e1912deb7aa21828c22b30805e7db532e887e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
// run-pass
// compile-flags:--test
// ignore-emscripten

use std::sync::mpsc::channel;
use std::sync::mpsc::TryRecvError;
use std::sync::mpsc::RecvError;
use std::sync::mpsc::RecvTimeoutError;
use std::sync::Arc;
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering;

use std::thread;
use std::time::Duration;


/// Simple thread synchronization utility
struct Barrier {
    // Not using mutex/condvar for precision
    shared: Arc<AtomicUsize>,
    count: usize,
}

impl Barrier {
    fn new(count: usize) -> Vec<Barrier> {
        let shared = Arc::new(AtomicUsize::new(0));
        (0..count).map(|_| Barrier { shared: shared.clone(), count: count }).collect()
    }

    fn new2() -> (Barrier, Barrier) {
        let mut v = Barrier::new(2);
        (v.pop().unwrap(), v.pop().unwrap())
    }

    /// Returns when `count` threads enter `wait`
    fn wait(self) {
        self.shared.fetch_add(1, Ordering::SeqCst);
        while self.shared.load(Ordering::SeqCst) != self.count {
            #[cfg(target_env = "sgx")]
            thread::yield_now();
        }
    }
}


fn shared_close_sender_does_not_lose_messages_iter() {
    let (tb, rb) = Barrier::new2();

    let (tx, rx) = channel();
    let _ = tx.clone(); // convert to shared

    thread::spawn(move || {
        tb.wait();
        thread::sleep(Duration::from_micros(1));
        tx.send(17).expect("send");
        drop(tx);
    });

    let i = rx.into_iter();
    rb.wait();
    // Make sure it doesn't return disconnected before returning an element
    assert_eq!(vec![17], i.collect::<Vec<_>>());
}

#[test]
fn shared_close_sender_does_not_lose_messages() {
    with_minimum_timer_resolution(|| {
        for _ in 0..10000 {
            shared_close_sender_does_not_lose_messages_iter();
        }
    });
}


// https://github.com/rust-lang/rust/issues/39364
fn concurrent_recv_timeout_and_upgrade_iter() {
    // 1 us
    let sleep = Duration::new(0, 1_000);

    let (a, b) = Barrier::new2();
    let (tx, rx) = channel();
    let th = thread::spawn(move || {
        a.wait();
        loop {
            match rx.recv_timeout(sleep) {
                Ok(_) => {
                    break;
                },
                Err(_) => {},
            }
        }
    });
    b.wait();
    thread::sleep(sleep);
    tx.clone().send(()).expect("send");
    th.join().unwrap();
}

#[test]
fn concurrent_recv_timeout_and_upgrade() {
    with_minimum_timer_resolution(|| {
        for _ in 0..10000 {
            concurrent_recv_timeout_and_upgrade_iter();
        }
    });
}


fn concurrent_writes_iter() {
    const THREADS: usize = 4;
    const PER_THR: usize = 100;

    let mut bs = Barrier::new(THREADS + 1);
    let (tx, rx) = channel();

    let mut threads = Vec::new();
    for j in 0..THREADS {
        let tx = tx.clone();
        let b = bs.pop().unwrap();
        threads.push(thread::spawn(move || {
            b.wait();
            for i in 0..PER_THR {
                tx.send(j * 1000 + i).expect("send");
            }
        }));
    }

    let b = bs.pop().unwrap();
    b.wait();

    let mut v: Vec<_> = rx.iter().take(THREADS * PER_THR).collect();
    v.sort();

    for j in 0..THREADS {
        for i in 0..PER_THR {
            assert_eq!(j * 1000 + i, v[j * PER_THR + i]);
        }
    }

    for t in threads {
        t.join().unwrap();
    }

    let one_us = Duration::new(0, 1000);

    assert_eq!(TryRecvError::Empty, rx.try_recv().unwrap_err());
    assert_eq!(RecvTimeoutError::Timeout, rx.recv_timeout(one_us).unwrap_err());

    drop(tx);

    assert_eq!(RecvError, rx.recv().unwrap_err());
    assert_eq!(RecvTimeoutError::Disconnected, rx.recv_timeout(one_us).unwrap_err());
    assert_eq!(TryRecvError::Disconnected, rx.try_recv().unwrap_err());
}

#[test]
fn concurrent_writes() {
    with_minimum_timer_resolution(|| {
        for _ in 0..100 {
            concurrent_writes_iter();
        }
    });
}

#[cfg(windows)]
pub mod timeapi {
    #![allow(non_snake_case)]
    use std::ffi::c_uint;

    pub const TIMERR_NOERROR: c_uint = 0;

    #[link(name = "winmm")]
    extern "system" {
        pub fn timeBeginPeriod(uPeriod: c_uint) -> c_uint;
        pub fn timeEndPeriod(uPeriod: c_uint) -> c_uint;
    }
}

/// Window's minimum sleep time can be as much as 16ms.
// This function evaluates the closure with this resolution
// set as low as possible.
///
/// This takes the above test's duration from 10000*16/1000/60=2.67 minutes to ~16 seconds.
fn with_minimum_timer_resolution(f: impl Fn()) {
    #[cfg(windows)]
    unsafe {
        let ret = timeapi::timeBeginPeriod(1);
        assert_eq!(ret, timeapi::TIMERR_NOERROR);

        f();

        let ret = timeapi::timeEndPeriod(1);
        assert_eq!(ret, timeapi::TIMERR_NOERROR);
    }

    #[cfg(not(windows))]
    {
        f();
    }
}