1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
|
use crate::forest::Forest;
use crate::normalize_deep::DeepNormalizer;
use crate::slg::{ResolventOps, SlgContext, SlgContextOps};
use crate::stack::{Stack, StackIndex};
use crate::strand::{CanonicalStrand, SelectedSubgoal, Strand};
use crate::table::{AnswerIndex, Table};
use crate::{
Answer, AnswerMode, CompleteAnswer, ExClause, FlounderedSubgoal, Literal, Minimums, TableIndex,
TimeStamp,
};
use chalk_ir::could_match::CouldMatch;
use chalk_ir::interner::Interner;
use chalk_ir::{
AnswerSubst, Canonical, ConstrainedSubst, Constraints, FallibleOrFloundered, Floundered, Goal,
GoalData, InEnvironment, NoSolution, ProgramClause, Substitution, UCanonical, UniverseMap,
};
use chalk_solve::clauses::program_clauses_that_could_match;
use chalk_solve::coinductive_goal::IsCoinductive;
use chalk_solve::infer::ucanonicalize::UCanonicalized;
use chalk_solve::infer::InferenceTable;
use chalk_solve::solve::truncate;
use tracing::{debug, debug_span, info, instrument};
type RootSearchResult<T> = Result<T, RootSearchFail>;
/// The different ways that a *root* search (which potentially pursues
/// many strands) can fail. A root search is one that begins with an
/// empty stack.
#[derive(Debug)]
pub(super) enum RootSearchFail {
/// The table we were trying to solve cannot succeed.
NoMoreSolutions,
/// The table cannot be solved without more type information.
Floundered,
/// We did not find a solution, but we still have things to try.
/// Repeat the request, and we'll give one of those a spin.
///
/// (In a purely depth-first-based solver, like Prolog, this
/// doesn't appear.)
QuantumExceeded,
/// A negative cycle was found. This is fail-fast, so even if there was
/// possibly a solution (ambiguous or not), it may not have been found.
NegativeCycle,
/// The current answer index is not useful. Currently, this is returned
/// because the current answer needs refining.
InvalidAnswer,
}
/// This is returned when we try to select a subgoal for a strand.
#[derive(PartialEq)]
enum SubGoalSelection {
/// A subgoal was successfully selected. It has already been checked
/// to not be floundering. However, it may have an answer already, be
/// coinductive, or create a cycle.
Selected,
/// This strand has no remaining subgoals, but there may still be
/// floundered subgoals.
NotSelected,
}
/// This is returned `on_no_remaining_subgoals`
enum NoRemainingSubgoalsResult {
/// There is an answer available for the root table
RootAnswerAvailable,
/// There was a `RootSearchFail`
RootSearchFail(RootSearchFail),
// This was a success
Success,
}
impl<I: Interner> Forest<I> {
/// Returns an answer with a given index for the given table. This
/// may require activating a strand and following it. It returns
/// `Ok(answer)` if they answer is available and otherwise a
/// `RootSearchFail` result.
pub(super) fn root_answer(
&mut self,
context: &SlgContextOps<I>,
table: TableIndex,
answer_index: AnswerIndex,
) -> RootSearchResult<CompleteAnswer<I>> {
let stack = Stack::default();
let mut state = SolveState {
forest: self,
context,
stack,
};
match state.ensure_root_answer(table, answer_index) {
Ok(()) => {
assert!(state.stack.is_empty());
let answer = state.forest.answer(table, answer_index);
if !answer.subst.value.delayed_subgoals.is_empty() {
return Err(RootSearchFail::InvalidAnswer);
}
Ok(CompleteAnswer {
subst: Canonical {
binders: answer.subst.binders.clone(),
value: ConstrainedSubst {
subst: answer.subst.value.subst.clone(),
constraints: answer.subst.value.constraints.clone(),
},
},
ambiguous: answer.ambiguous,
})
}
Err(err) => Err(err),
}
}
pub(super) fn any_future_answer(
&self,
table: TableIndex,
mut answer_index: AnswerIndex,
mut test: impl FnMut(&Substitution<I>) -> bool,
) -> bool {
// Check any cached answers, starting at `answer_index`.
while let Some(answer) = self.tables[table].answer(answer_index) {
info!("answer cached = {:?}", answer);
if test(&answer.subst.value.subst) {
return true;
}
answer_index.increment();
}
// Check any unsolved strands, which may give further answers.
self.tables[table]
.strands()
.any(|strand| test(&strand.value.ex_clause.subst))
}
pub(crate) fn answer(&self, table: TableIndex, answer: AnswerIndex) -> &Answer<I> {
self.tables[table].answer(answer).unwrap()
}
fn canonicalize_strand_from(
context: &SlgContextOps<I>,
infer: &mut InferenceTable<I>,
strand: &Strand<I>,
) -> CanonicalStrand<I> {
infer
.canonicalize(context.program().interner(), strand.clone())
.quantified
}
/// Given a subgoal, converts the literal into u-canonical form
/// and searches for an existing table. If one is found, it is
/// returned, but otherwise a new table is created (and populated
/// with its initial set of strands).
///
/// Returns `None` if the literal cannot be converted into a table
/// -- for example, this can occur when we have selected a
/// negative literal with free existential variables, in which
/// case the execution is said to "flounder".
///
/// In terms of the NFTD paper, creating a new table corresponds
/// to the *New Subgoal* step as well as the *Program Clause
/// Resolution* steps.
#[instrument(level = "debug", skip(self, context, infer))]
fn get_or_create_table_for_subgoal(
&mut self,
context: &SlgContextOps<I>,
infer: &mut InferenceTable<I>,
subgoal: &Literal<I>,
) -> Option<(TableIndex, UniverseMap)> {
// Subgoal abstraction:
let (ucanonical_subgoal, universe_map) = match subgoal {
Literal::Positive(subgoal) => {
Forest::abstract_positive_literal(context, infer, subgoal.clone())?
}
Literal::Negative(subgoal) => {
Forest::abstract_negative_literal(context, infer, subgoal.clone())?
}
};
debug!(?ucanonical_subgoal, ?universe_map);
let table = self.get_or_create_table_for_ucanonical_goal(context, ucanonical_subgoal);
Some((table, universe_map))
}
/// Given a u-canonical goal, searches for an existing table. If
/// one is found, it is returned, but otherwise a new table is
/// created (and populated with its initial set of strands).
///
/// In terms of the NFTD paper, creating a new table corresponds
/// to the *New Subgoal* step as well as the *Program Clause
/// Resolution* steps.
#[instrument(level = "debug", skip(self, context))]
pub(crate) fn get_or_create_table_for_ucanonical_goal(
&mut self,
context: &SlgContextOps<I>,
goal: UCanonical<InEnvironment<Goal<I>>>,
) -> TableIndex {
if let Some(table) = self.tables.index_of(&goal) {
debug!(?table, "found existing table");
return table;
}
info!(
table = ?self.tables.next_index(),
"creating new table with goal = {:#?}",
goal,
);
let table = Self::build_table(context, self.tables.next_index(), goal);
self.tables.insert(table)
}
/// When a table is first created, this function is invoked to
/// create the initial set of strands. If the table represents a
/// domain goal, these strands are created from the program
/// clauses as well as the clauses found in the environment. If
/// the table represents a non-domain goal, such as `for<T> G`
/// etc, then `simplify_goal` is invoked to create a strand
/// that breaks the goal down.
///
/// In terms of the NFTD paper, this corresponds to the *Program
/// Clause Resolution* step being applied eagerly, as many times
/// as possible.
fn build_table(
context: &SlgContextOps<I>,
table_idx: TableIndex,
goal: UCanonical<InEnvironment<Goal<I>>>,
) -> Table<I> {
let coinductive = goal.is_coinductive(context.program());
let mut table = Table::new(goal.clone(), coinductive);
let goal_data = goal.canonical.value.goal.data(context.program().interner());
match goal_data {
GoalData::DomainGoal(domain_goal) => {
let canon_domain_goal = UCanonical {
canonical: Canonical {
binders: goal.canonical.binders,
value: InEnvironment::new(
&goal.canonical.value.environment,
domain_goal.clone(),
),
},
universes: goal.universes,
};
let db = context.program();
let canon_goal = canon_domain_goal.canonical.value.goal.clone();
let could_match = |c: &ProgramClause<I>| {
c.could_match(db.interner(), db.unification_database(), &canon_goal)
};
match program_clauses_that_could_match(db, &canon_domain_goal) {
Ok(mut clauses) => {
clauses.retain(could_match);
clauses.extend(db.custom_clauses().into_iter().filter(could_match));
let (infer, subst, goal) =
chalk_solve::infer::InferenceTable::from_canonical(
context.program().interner(),
canon_domain_goal.universes,
canon_domain_goal.canonical,
);
clauses.extend(
db.program_clauses_for_env(&goal.environment)
.iter(db.interner())
.cloned()
.filter(could_match),
);
let InEnvironment { environment, goal } = goal;
for clause in clauses {
info!("program clause = {:#?}", clause);
let mut infer = infer.clone();
if let Ok(resolvent) = infer.resolvent_clause(
context.unification_database(),
context.program().interner(),
&environment,
&goal,
&subst,
&clause,
) {
info!("pushing initial strand with ex-clause: {:#?}", &resolvent,);
let strand = Strand {
ex_clause: resolvent,
selected_subgoal: None,
last_pursued_time: TimeStamp::default(),
};
let canonical_strand =
Self::canonicalize_strand_from(context, &mut infer, &strand);
table.enqueue_strand(canonical_strand);
}
}
}
Err(Floundered) => {
debug!(
table = ?table_idx,
"Marking table {:?} as floundered! (failed to create program clauses)",
table_idx
);
table.mark_floundered();
}
}
}
_ => {
let (mut infer, subst, InEnvironment { environment, goal }) =
chalk_solve::infer::InferenceTable::from_canonical(
context.program().interner(),
goal.universes,
goal.canonical,
);
// The goal for this table is not a domain goal, so we instead
// simplify it into a series of *literals*, all of which must be
// true. Thus, in EWFS terms, we are effectively creating a
// single child of the `A :- A` goal that is like `A :- B, C, D`
// where B, C, and D are the simplified subgoals. You can think
// of this as applying built-in "meta program clauses" that
// reduce goals into Domain goals.
match Self::simplify_goal(context, &mut infer, subst, environment, goal) {
FallibleOrFloundered::Ok(ex_clause) => {
info!(
ex_clause = ?DeepNormalizer::normalize_deep(
&mut infer,
context.program().interner(),
ex_clause.clone(),
),
"pushing initial strand"
);
let strand = Strand {
ex_clause,
selected_subgoal: None,
last_pursued_time: TimeStamp::default(),
};
let canonical_strand =
Self::canonicalize_strand_from(context, &mut infer, &strand);
table.enqueue_strand(canonical_strand);
}
FallibleOrFloundered::NoSolution => {}
FallibleOrFloundered::Floundered => table.mark_floundered(),
}
}
}
table
}
/// Given a selected positive subgoal, applies the subgoal
/// abstraction function to yield the canonical form that will be
/// used to pick a table. Typically, this abstraction has no
/// effect, and hence we are simply returning the canonical form
/// of `subgoal`; but if the subgoal is getting too big, we return
/// `None`, which causes the subgoal to flounder.
fn abstract_positive_literal(
context: &SlgContextOps<I>,
infer: &mut InferenceTable<I>,
subgoal: InEnvironment<Goal<I>>,
) -> Option<(UCanonical<InEnvironment<Goal<I>>>, UniverseMap)> {
if truncate::needs_truncation(
context.program().interner(),
infer,
context.max_size(),
&subgoal,
) {
None
} else {
let canonicalized_goal = infer
.canonicalize(context.program().interner(), subgoal)
.quantified;
let UCanonicalized {
quantified,
universes,
} = InferenceTable::u_canonicalize(context.program().interner(), &canonicalized_goal);
Some((quantified, universes))
}
}
/// Given a selected negative subgoal, the subgoal is "inverted"
/// (see `InferenceTable<I, C>::invert`) and then potentially truncated
/// (see `abstract_positive_literal`). The result subgoal is
/// canonicalized. In some cases, this may return `None` and hence
/// fail to yield a useful result, for example if free existential
/// variables appear in `subgoal` (in which case the execution is
/// said to "flounder").
fn abstract_negative_literal(
context: &SlgContextOps<I>,
infer: &mut InferenceTable<I>,
subgoal: InEnvironment<Goal<I>>,
) -> Option<(UCanonical<InEnvironment<Goal<I>>>, UniverseMap)> {
// First, we have to check that the selected negative literal
// is ground, and invert any universally quantified variables.
//
// DIVERGENCE -- In the RR paper, to ensure completeness, they
// permit non-ground negative literals, but only consider
// them to succeed when the target table has no answers at
// all. This is equivalent inverting those free existentials
// into universals, as discussed in the comments of
// `invert`. This is clearly *sound*, but the completeness is
// a subtle point. In particular, it can cause **us** to reach
// false conclusions, because e.g. given a program like
// (selected left-to-right):
//
// not { ?T: Copy }, ?T = Vec<u32>
//
// we would select `not { ?T: Copy }` first. For this goal to
// succeed we would require that -- effectively -- `forall<T>
// { not { T: Copy } }`, which clearly doesn't hold. (In the
// terms of RR, we would require that the table for `?T: Copy`
// has failed before we can continue.)
//
// In the RR paper, this is acceptable because they assume all
// of their input programs are both **normal** (negative
// literals are selected after positive ones) and **safe**
// (all free variables in negative literals occur in positive
// literals). It is plausible for us to guarantee "normal"
// form, we can reorder clauses as we need. I suspect we can
// guarantee safety too, but I have to think about it.
//
// For now, we opt for the safer route of terming such
// executions as floundering, because I think our use of
// negative goals is sufficiently limited we can get away with
// it. The practical effect is that we will judge more
// executions as floundering than we ought to (i.e., where we
// could instead generate an (imprecise) result). As you can
// see a bit later, we also diverge in some other aspects that
// affect completeness when it comes to subgoal abstraction.
let inverted_subgoal = infer.invert(context.program().interner(), subgoal)?;
if truncate::needs_truncation(
context.program().interner(),
infer,
context.max_size(),
&inverted_subgoal,
) {
None
} else {
let canonicalized_goal = infer
.canonicalize(context.program().interner(), inverted_subgoal)
.quantified;
let UCanonicalized {
quantified,
universes,
} = InferenceTable::u_canonicalize(context.program().interner(), &canonicalized_goal);
Some((quantified, universes))
}
}
}
pub(crate) struct SolveState<'forest, I: Interner> {
forest: &'forest mut Forest<I>,
context: &'forest SlgContextOps<'forest, I>,
stack: Stack<I>,
}
impl<'forest, I: Interner> Drop for SolveState<'forest, I> {
fn drop(&mut self) {
if !self.stack.is_empty() {
if let Some(active_strand) = self.stack.top().active_strand.take() {
let table = self.stack.top().table;
self.forest.tables[table].enqueue_strand(active_strand);
}
self.unwind_stack();
}
}
}
impl<'forest, I: Interner> SolveState<'forest, I> {
/// Ensures that answer with the given index is available from the
/// given table. Returns `Ok` if there is an answer.
///
/// This function first attempts to fetch answer that is cached in
/// the table. If none is found, then it will recursively search
/// to find an answer.
#[instrument(level = "info", skip(self))]
fn ensure_root_answer(
&mut self,
initial_table: TableIndex,
initial_answer: AnswerIndex,
) -> RootSearchResult<()> {
info!(
"table goal = {:#?}",
self.forest.tables[initial_table].table_goal
);
// Check if this table has floundered.
if self.forest.tables[initial_table].is_floundered() {
return Err(RootSearchFail::Floundered);
}
// Check for a tabled answer.
if let Some(answer) = self.forest.tables[initial_table].answer(initial_answer) {
info!("answer cached = {:?}", answer);
return Ok(());
}
// If no tabled answer is present, we ought to be requesting
// the next available index.
assert_eq!(
self.forest.tables[initial_table].next_answer_index(),
initial_answer
);
self.stack
.push(initial_table, Minimums::MAX, self.forest.increment_clock());
loop {
let clock = self.stack.top().clock;
// If we had an active strand, continue to pursue it
let table = self.stack.top().table;
let table_answer_mode = self.forest.tables[table].answer_mode;
// We track when we last pursued each strand. If all the strands have been
// pursued at this depth, then that means they all encountered a cycle.
// We also know that if the first strand has been pursued at this depth,
// then all have. Otherwise, an answer to any strand would have provided an
// answer for the table.
let forest = &mut self.forest;
let next_strand = self.stack.top().active_strand.take().or_else(|| {
forest.tables[table].dequeue_next_strand_that(|strand| {
let time_eligble = strand.value.last_pursued_time < clock;
let mode_eligble = match (table_answer_mode, strand.value.ex_clause.ambiguous) {
(AnswerMode::Complete, false) => true,
(AnswerMode::Complete, true) => false,
(AnswerMode::Ambiguous, _) => true,
};
time_eligble && mode_eligble
})
});
match next_strand {
Some(mut canonical_strand) => {
debug!("starting next strand = {:#?}", canonical_strand);
canonical_strand.value.last_pursued_time = clock;
match self.select_subgoal(&mut canonical_strand) {
SubGoalSelection::Selected => {
// A subgoal has been selected. We now check this subgoal
// table for an existing answer or if it's in a cycle.
// If neither of those are the case, a strand is selected
// and the next loop iteration happens.
self.on_subgoal_selected(canonical_strand)?;
continue;
}
SubGoalSelection::NotSelected => {
match self.on_no_remaining_subgoals(canonical_strand) {
NoRemainingSubgoalsResult::RootAnswerAvailable => return Ok(()),
NoRemainingSubgoalsResult::RootSearchFail(e) => return Err(e),
NoRemainingSubgoalsResult::Success => continue,
};
}
}
}
None => {
self.on_no_strands_left()?;
continue;
}
}
}
}
/// This is called when an answer is available for the selected subgoal
/// of the strand. First, if the selected subgoal is a `Positive` subgoal,
/// it first clones the strand pursuing the next answer. Then, it merges the
/// answer into the provided `Strand`.
/// On success, `Ok` is returned and the `Strand` can be continued to process
/// On failure, `Err` is returned and the `Strand` should be discarded
fn merge_answer_into_strand(
&mut self,
infer: &mut InferenceTable<I>,
strand: &mut Strand<I>,
) -> RootSearchResult<()> {
// At this point, we know we have an answer for
// the selected subgoal of the strand.
// Now, we have to unify that answer onto the strand.
// If this answer is ambiguous and we don't want ambiguous answers
// yet, then we act like this is a floundered subgoal.
let ambiguous = {
let selected_subgoal = strand.selected_subgoal.as_ref().unwrap();
let answer = self.forest.answer(
selected_subgoal.subgoal_table,
selected_subgoal.answer_index,
);
answer.ambiguous
};
if let AnswerMode::Complete = self.forest.tables[self.stack.top().table].answer_mode {
if ambiguous {
// FIXME: we could try to be a little bit smarter here. This can
// really be split into cases:
// 1) Cases where no amount of solving will cause this ambiguity to change.
// (e.g. `CannnotProve`)
// 2) Cases where we may be able to get a better answer if we
// solve other subgoals first.
// (e.g. the `non_enumerable_traits_reorder` test)
// We really only need to delay merging an ambiguous answer for
// case 2. Do note, though, that even if we *do* merge the answer
// case 1, we should stop solving this strand when in
// `AnswerMode::Complete` since we wouldn't use this answer yet
// *anyways*.
// The selected subgoal returned an ambiguous answer, but we don't want that.
// So, we treat this subgoal as floundered.
let selected_subgoal = strand.selected_subgoal.take().unwrap();
self.flounder_subgoal(&mut strand.ex_clause, selected_subgoal.subgoal_index);
return Ok(());
}
}
// If this subgoal was a `Positive` one, whichever way this
// particular answer turns out, there may yet be *more* answers,
// if this isn't a trivial substitution.
// Enqueue that alternative for later.
// NOTE: this is separate from the match below because we `take` the selected_subgoal
// below, but here we keep it for the new `Strand`.
let selected_subgoal = strand.selected_subgoal.as_ref().unwrap();
if let Literal::Positive(_) = strand.ex_clause.subgoals[selected_subgoal.subgoal_index] {
let answer = self.forest.answer(
selected_subgoal.subgoal_table,
selected_subgoal.answer_index,
);
if !self.forest.tables[selected_subgoal.subgoal_table]
.table_goal
.is_trivial_substitution(self.context.program().interner(), &answer.subst)
{
let mut next_subgoal = selected_subgoal.clone();
next_subgoal.answer_index.increment();
let next_strand = Strand {
ex_clause: strand.ex_clause.clone(),
selected_subgoal: Some(next_subgoal),
last_pursued_time: strand.last_pursued_time,
};
let table = self.stack.top().table;
let canonical_next_strand =
Forest::canonicalize_strand_from(self.context, infer, &next_strand);
self.forest.tables[table].enqueue_strand(canonical_next_strand);
}
}
// Deselect and remove the selected subgoal, now that we have an answer for it.
let selected_subgoal = strand.selected_subgoal.take().unwrap();
let subgoal = strand
.ex_clause
.subgoals
.remove(selected_subgoal.subgoal_index);
match subgoal {
Literal::Positive(subgoal) => {
let SelectedSubgoal {
subgoal_index: _,
subgoal_table,
answer_index,
ref universe_map,
} = selected_subgoal;
use chalk_solve::infer::ucanonicalize::UniverseMapExt;
let table_goal = universe_map.map_from_canonical(
self.context.program().interner(),
&self.forest.tables[subgoal_table].table_goal.canonical,
);
let answer_subst = universe_map.map_from_canonical(
self.context.program().interner(),
&self.forest.answer(subgoal_table, answer_index).subst,
);
match infer.apply_answer_subst(
self.context.program().interner(),
self.context.unification_database(),
&mut strand.ex_clause,
&subgoal,
&table_goal,
answer_subst,
) {
Ok(()) => {
let ex_clause = &mut strand.ex_clause;
// If the answer had was ambiguous, we have to
// ensure that `ex_clause` is also ambiguous. This is
// the SLG FACTOR operation, though NFTD just makes it
// part of computing the SLG resolvent.
if self.forest.answer(subgoal_table, answer_index).ambiguous {
debug!("Marking Strand as ambiguous because answer to (positive) subgoal was ambiguous");
ex_clause.ambiguous = true;
}
// Increment the answer time for the `ex_clause`. Floundered
// subgoals may be eligble to be pursued again.
ex_clause.answer_time.increment();
// Ok, we've applied the answer to this Strand.
Ok(())
}
// This answer led nowhere. Give up for now, but of course
// there may still be other strands to pursue, so return
// `QuantumExceeded`.
Err(NoSolution) => {
info!("answer not unifiable -> NoSolution");
// This strand as no solution. It is no longer active,
// so it dropped at the end of this scope.
// Now we want to propogate back to the up with `QuantumExceeded`
self.unwind_stack();
Err(RootSearchFail::QuantumExceeded)
}
}
}
Literal::Negative(_) => {
let SelectedSubgoal {
subgoal_index: _,
subgoal_table,
answer_index,
universe_map: _,
} = selected_subgoal;
// We got back an answer. This is bad, because we want
// to disprove the subgoal, but it may be
// "conditional" (maybe true, maybe not).
let answer = self.forest.answer(subgoal_table, answer_index);
// By construction, we do not expect negative subgoals
// to have delayed subgoals. This is because we do not
// need to permit `not { L }` where `L` is a
// coinductive goal. We could improve this if needed,
// but it keeps things simple.
if !answer.subst.value.delayed_subgoals.is_empty() {
panic!("Negative subgoal had delayed_subgoals");
}
if !answer.ambiguous {
// We want to disproval the subgoal, but we
// have an unconditional answer for the subgoal,
// therefore we have failed to disprove it.
info!("found unconditional answer to neg literal -> NoSolution");
// This strand as no solution. By returning an Err,
// the caller should discard this `Strand`.
// Now we want to propogate back to the up with `QuantumExceeded`
self.unwind_stack();
return Err(RootSearchFail::QuantumExceeded);
}
// Otherwise, the answer is ambiguous. We can keep going,
// but we have to mark our strand, too, as ambiguous.
//
// We want to disproval the subgoal, but we
// have an unconditional answer for the subgoal,
// therefore we have failed to disprove it.
debug!(?strand, "Marking Strand as ambiguous because answer to (negative) subgoal was ambiguous");
strand.ex_clause.ambiguous = true;
// Strand is ambigious.
Ok(())
}
}
}
/// This is called when the selected subgoal for a strand has floundered.
/// We have to decide what this means for the strand.
/// - If the strand was positively dependent on the subgoal, we flounder,
/// the subgoal, then return `false`. This strand may be able to be
/// retried later.
/// - If the strand was negatively dependent on the subgoal, then strand
/// has led nowhere of interest and we return `true`. This strand should
/// be discarded.
///
/// In other words, we return whether this strand flounders.
fn propagate_floundered_subgoal(&mut self, strand: &mut CanonicalStrand<I>) -> bool {
// This subgoal selection for the strand is finished, so take it
let selected_subgoal = strand.value.selected_subgoal.take().unwrap();
match strand.value.ex_clause.subgoals[selected_subgoal.subgoal_index] {
Literal::Positive(_) => {
// If this strand depends on this positively, then we can
// come back to it later. So, we mark that subgoal as
// floundered and yield `QuantumExceeded` up the stack
// If this subgoal floundered, push it onto the
// floundered list, along with the time that it
// floundered. We'll try to solve some other subgoals
// and maybe come back to it.
self.flounder_subgoal(&mut strand.value.ex_clause, selected_subgoal.subgoal_index);
false
}
Literal::Negative(_) => {
// Floundering on a negative literal isn't like a
// positive search: we only pursue negative literals
// when we already know precisely the type we are
// looking for. So there's no point waiting for other
// subgoals, we'll never recover more information.
//
// In fact, floundering on negative searches shouldn't
// normally happen, since there are no uninferred
// variables in the goal, but it can with forall
// goals:
//
// forall<T> { not { T: Debug } }
//
// Here, the table we will be searching for answers is
// `?T: Debug`, so it could well flounder.
// This strand has no solution. It is no longer active,
// so it dropped at the end of this scope.
true
}
}
}
/// This is called if the selected subgoal for a `Strand` is
/// a coinductive cycle.
fn on_coinductive_subgoal(
&mut self,
mut canonical_strand: CanonicalStrand<I>,
) -> Result<(), RootSearchFail> {
// This is a co-inductive cycle. That is, this table
// appears somewhere higher on the stack, and has now
// recursively requested an answer for itself. This
// means that we have to delay this subgoal until we
// reach a trivial self-cycle.
// This subgoal selection for the strand is finished, so take it
let selected_subgoal = canonical_strand.value.selected_subgoal.take().unwrap();
match canonical_strand
.value
.ex_clause
.subgoals
.remove(selected_subgoal.subgoal_index)
{
Literal::Positive(subgoal) => {
// We delay this subgoal
let table = self.stack.top().table;
assert!(
self.forest.tables[table].coinductive_goal
&& self.forest.tables[selected_subgoal.subgoal_table].coinductive_goal
);
canonical_strand
.value
.ex_clause
.delayed_subgoals
.push(subgoal);
self.stack.top().active_strand = Some(canonical_strand);
Ok(())
}
Literal::Negative(_) => {
// We don't allow coinduction for negative literals
info!("found coinductive answer to negative literal");
panic!("Coinductive cycle with negative literal");
}
}
}
/// This is called if the selected subgoal for `strand` is
/// a positive, non-coinductive cycle.
///
/// # Parameters
///
/// * `strand` the strand from the top of the stack we are pursuing
/// * `minimums` is the collected minimum clock times
fn on_positive_cycle(
&mut self,
canonical_strand: CanonicalStrand<I>,
minimums: Minimums,
) -> Result<(), RootSearchFail> {
// We can't take this because we might need it later to clear the cycle
let selected_subgoal = canonical_strand.value.selected_subgoal.as_ref().unwrap();
match canonical_strand.value.ex_clause.subgoals[selected_subgoal.subgoal_index] {
Literal::Positive(_) => {
self.stack.top().cyclic_minimums.take_minimums(&minimums);
}
Literal::Negative(_) => {
// We depend on `not(subgoal)`. For us to continue,
// `subgoal` must be completely evaluated. Therefore,
// we depend (negatively) on the minimum link of
// `subgoal` as a whole -- it doesn't matter whether
// it's pos or neg.
let mins = Minimums {
positive: self.stack.top().clock,
negative: minimums.minimum_of_pos_and_neg(),
};
self.stack.top().cyclic_minimums.take_minimums(&mins);
}
}
// Ok, we've taken the minimums from this cycle above. Now,
// we just return the strand to the table. The table only
// pulls strands if they have not been checked at this
// depth.
//
// We also can't mark these and return early from this
// because the stack above us might change.
let table = self.stack.top().table;
self.forest.tables[table].enqueue_strand(canonical_strand);
// The strand isn't active, but the table is, so just continue
Ok(())
}
/// Invoked after we've selected a (new) subgoal for the top-most
/// strand. Attempts to pursue this selected subgoal.
///
/// Returns:
///
/// * `Ok` if we should keep searching.
/// * `Err` if the subgoal failed in some way such that the strand can be abandoned.
fn on_subgoal_selected(
&mut self,
mut canonical_strand: CanonicalStrand<I>,
) -> Result<(), RootSearchFail> {
// This may be a newly selected subgoal or an existing selected subgoal.
let SelectedSubgoal {
subgoal_index: _,
subgoal_table,
answer_index,
universe_map: _,
} = *canonical_strand.value.selected_subgoal.as_ref().unwrap();
debug!(
?subgoal_table,
goal = ?self.forest.tables[subgoal_table].table_goal,
"table selection {:?} with goal: {:?}",
subgoal_table, self.forest.tables[subgoal_table].table_goal
);
// This is checked inside select_subgoal
assert!(!self.forest.tables[subgoal_table].is_floundered());
// Check for a tabled answer.
if let Some(answer) = self.forest.tables[subgoal_table].answer(answer_index) {
info!("answer cached = {:?}", answer);
// There was a previous answer available for this table
// We need to check if we can merge it into the current `Strand`.
let num_universes = self.forest.tables[self.stack.top().table]
.table_goal
.universes;
let (mut infer, _, mut strand) = chalk_solve::infer::InferenceTable::from_canonical(
self.context.program().interner(),
num_universes,
canonical_strand.clone(),
);
match self.merge_answer_into_strand(&mut infer, &mut strand) {
Err(e) => {
debug!(?strand, "could not merge into current strand");
drop(strand);
return Err(e);
}
Ok(_) => {
debug!(?strand, "merged answer into current strand");
canonical_strand =
Forest::canonicalize_strand_from(self.context, &mut infer, &strand);
self.stack.top().active_strand = Some(canonical_strand);
return Ok(());
}
}
}
// If no tabled answer is present, we ought to be requesting
// the next available index.
assert_eq!(
self.forest.tables[subgoal_table].next_answer_index(),
answer_index
);
// Next, check if the table is already active. If so, then we
// have a recursive attempt.
if let Some(cyclic_depth) = self.stack.is_active(subgoal_table) {
info!("cycle detected at depth {:?}", cyclic_depth);
let minimums = Minimums {
positive: self.stack[cyclic_depth].clock,
negative: TimeStamp::MAX,
};
if self.top_of_stack_is_coinductive_from(cyclic_depth) {
debug!("table is coinductive");
return self.on_coinductive_subgoal(canonical_strand);
}
debug!("table encountered a positive cycle");
return self.on_positive_cycle(canonical_strand, minimums);
}
// We don't know anything about the selected subgoal table.
// Set this strand as active and push it onto the stack.
self.stack.top().active_strand = Some(canonical_strand);
let cyclic_minimums = Minimums::MAX;
self.stack.push(
subgoal_table,
cyclic_minimums,
self.forest.increment_clock(),
);
Ok(())
}
/// This is called when there are no remaining subgoals for a strand, so
/// it represents an answer. If the strand is ambiguous and we don't want
/// it yet, we just enqueue it again to pick it up later. Otherwise, we
/// add the answer from the strand onto the table.
fn on_no_remaining_subgoals(
&mut self,
canonical_strand: CanonicalStrand<I>,
) -> NoRemainingSubgoalsResult {
let ambiguous = canonical_strand.value.ex_clause.ambiguous;
if let AnswerMode::Complete = self.forest.tables[self.stack.top().table].answer_mode {
if ambiguous {
// The strand can only return an ambiguous answer, but we don't
// want that right now, so requeue and we'll deal with it later.
self.forest.tables[self.stack.top().table].enqueue_strand(canonical_strand);
return NoRemainingSubgoalsResult::RootSearchFail(RootSearchFail::QuantumExceeded);
}
}
let floundered = !canonical_strand
.value
.ex_clause
.floundered_subgoals
.is_empty();
if floundered {
debug!("all remaining subgoals floundered for the table");
} else {
debug!("no remaining subgoals for the table");
};
match self.pursue_answer(canonical_strand) {
Some(answer_index) => {
debug!("answer is available");
// We found an answer for this strand, and therefore an
// answer for this table. Now, this table was either a
// subgoal for another strand, or was the root table.
let table = self.stack.top().table;
match self.stack.pop_and_take_caller_strand() {
Some(caller_strand) => {
self.stack.top().active_strand = Some(caller_strand);
NoRemainingSubgoalsResult::Success
}
None => {
// That was the root table, so we are done --
// *well*, unless there were delayed
// subgoals. In that case, we want to evaluate
// those delayed subgoals to completion, so we
// have to create a fresh strand that will
// take them as goals. Note that we *still
// need the original answer in place*, because
// we might have to build on it (see the
// Delayed Trivial Self Cycle, Variant 3
// example).
let answer = self.forest.answer(table, answer_index);
if let Some(strand) = self.create_refinement_strand(table, answer) {
self.forest.tables[table].enqueue_strand(strand);
}
NoRemainingSubgoalsResult::RootAnswerAvailable
}
}
}
None => {
debug!("answer is not available (or not new)");
// This strand led nowhere of interest. There might be *other*
// answers on this table, but we don't care right now, we'll
// try again at another time.
// Now we yield with `QuantumExceeded`
self.unwind_stack();
NoRemainingSubgoalsResult::RootSearchFail(RootSearchFail::QuantumExceeded)
}
}
}
/// A "refinement" strand is used in coinduction. When the root
/// table on the stack publishes an answer has delayed subgoals,
/// we create a new strand that will attempt to prove out those
/// delayed subgoals (the root answer here is not *special* except
/// in so far as that there is nothing above it, and hence we know
/// that the delayed subgoals (which resulted in some cycle) must
/// be referring to a table that now has completed).
///
/// Note that it is important for this to be a *refinement* strand
/// -- meaning that the answer with delayed subgoals has been
/// published. This is necessary because sometimes the strand must
/// build on that very answer that it is refining. See Delayed
/// Trivial Self Cycle, Variant 3.
fn create_refinement_strand(
&self,
table: TableIndex,
answer: &Answer<I>,
) -> Option<CanonicalStrand<I>> {
// If there are no delayed subgoals, then there is no need for
// a refinement strand.
if answer.subst.value.delayed_subgoals.is_empty() {
return None;
}
let num_universes = self.forest.tables[table].table_goal.universes;
let (
mut infer,
_,
AnswerSubst {
subst,
constraints,
delayed_subgoals,
},
) = chalk_solve::infer::InferenceTable::from_canonical(
self.context.program().interner(),
num_universes,
answer.subst.clone(),
);
let delayed_subgoals = delayed_subgoals
.into_iter()
.map(Literal::Positive)
.collect();
let strand = Strand {
ex_clause: ExClause {
subst,
ambiguous: answer.ambiguous,
constraints: constraints
.as_slice(self.context.program().interner())
.to_vec(),
subgoals: delayed_subgoals,
delayed_subgoals: Vec::new(),
answer_time: TimeStamp::default(),
floundered_subgoals: Vec::new(),
},
selected_subgoal: None,
last_pursued_time: TimeStamp::default(),
};
Some(Forest::canonicalize_strand_from(
self.context,
&mut infer,
&strand,
))
}
fn on_no_strands_left(&mut self) -> Result<(), RootSearchFail> {
let table = self.stack.top().table;
debug!("no more strands available (or all cycles) for {:?}", table);
// No more strands left to try! This is either because all
// strands have failed, because all strands encountered a
// cycle, or all strands have would give ambiguous answers.
if self.forest.tables[table].strands_mut().count() == 0 {
// All strands for the table T on the top of the stack
// have **failed**. Hence we can pop it off the stack and
// check what this means for the table T' that was just
// below T on the stack (if any).
debug!("no more strands available");
let caller_strand = match self.stack.pop_and_borrow_caller_strand() {
Some(s) => s,
None => {
// T was the root table, so we are done.
debug!("no more solutions");
return Err(RootSearchFail::NoMoreSolutions);
}
};
// This subgoal selection for the strand is finished, so take it
let caller_selected_subgoal = caller_strand.value.selected_subgoal.take().unwrap();
return match caller_strand.value.ex_clause.subgoals
[caller_selected_subgoal.subgoal_index]
{
// T' wanted an answer from T, but none is
// forthcoming. Therefore, the active strand from T'
// has failed and can be discarded.
Literal::Positive(_) => {
debug!("discarding strand because positive literal");
self.stack.top().active_strand.take();
self.unwind_stack();
Err(RootSearchFail::QuantumExceeded)
}
// T' wanted there to be no answer from T, but none is forthcoming.
Literal::Negative(_) => {
debug!("subgoal was proven because negative literal");
// There is no solution for this strand. But, this
// is what we want, so can remove this subgoal and
// keep going.
caller_strand
.value
.ex_clause
.subgoals
.remove(caller_selected_subgoal.subgoal_index);
// This strand is still active, so continue
Ok(())
}
};
}
// We can't consider this table as part of a cycle unless we've handled
// all strands, not just non-ambiguous ones. See chalk#571.
if let AnswerMode::Complete = self.forest.tables[table].answer_mode {
debug!("Allowing ambiguous answers.");
self.forest.tables[table].answer_mode = AnswerMode::Ambiguous;
return Err(RootSearchFail::QuantumExceeded);
}
let clock = self.stack.top().clock;
let cyclic_minimums = self.stack.top().cyclic_minimums;
if cyclic_minimums.positive >= clock && cyclic_minimums.negative >= clock {
debug!("cycle with no new answers");
if cyclic_minimums.negative < TimeStamp::MAX {
// This is a negative cycle.
self.unwind_stack();
return Err(RootSearchFail::NegativeCycle);
}
// If all the things that we recursively depend on have
// positive dependencies on things below us in the stack,
// then no more answers are forthcoming. We can clear all
// the strands for those things recursively.
let table = self.stack.top().table;
let cyclic_strands = self.forest.tables[table].take_strands();
self.clear_strands_after_cycle(cyclic_strands);
// Now we yield with `QuantumExceeded`
self.unwind_stack();
Err(RootSearchFail::QuantumExceeded)
} else {
debug!("table part of a cycle");
// This table resulted in a positive cycle, so we have
// to check what this means for the subgoal containing
// this strand
let caller_strand = match self.stack.pop_and_borrow_caller_strand() {
Some(s) => s,
None => {
panic!("nothing on the stack but cyclic result");
}
};
// We can't take this because we might need it later to clear the cycle
let caller_selected_subgoal = caller_strand.value.selected_subgoal.as_ref().unwrap();
match caller_strand.value.ex_clause.subgoals[caller_selected_subgoal.subgoal_index] {
Literal::Positive(_) => {
self.stack
.top()
.cyclic_minimums
.take_minimums(&cyclic_minimums);
}
Literal::Negative(_) => {
// We depend on `not(subgoal)`. For us to continue,
// `subgoal` must be completely evaluated. Therefore,
// we depend (negatively) on the minimum link of
// `subgoal` as a whole -- it doesn't matter whether
// it's pos or neg.
let mins = Minimums {
positive: self.stack.top().clock,
negative: cyclic_minimums.minimum_of_pos_and_neg(),
};
self.stack.top().cyclic_minimums.take_minimums(&mins);
}
}
// We can't pursue this strand anymore, so push it back onto the table
let active_strand = self.stack.top().active_strand.take().unwrap();
let table = self.stack.top().table;
self.forest.tables[table].enqueue_strand(active_strand);
// The strand isn't active, but the table is, so just continue
Ok(())
}
}
/// Unwinds the entire stack, returning all active strands back to
/// their tables (this time at the end of the queue).
fn unwind_stack(&mut self) {
loop {
match self.stack.pop_and_take_caller_strand() {
Some(active_strand) => {
let table = self.stack.top().table;
self.forest.tables[table].enqueue_strand(active_strand);
}
None => return,
}
}
}
/// Invoked after we have determined that every strand in `table`
/// encounters a cycle; `strands` is the set of strands (which
/// have been moved out of the table). This method then
/// recursively clears the active strands from the tables
/// referenced in `strands`, since all of them must encounter
/// cycles too.
fn clear_strands_after_cycle(&mut self, strands: impl IntoIterator<Item = CanonicalStrand<I>>) {
for strand in strands {
let selected_subgoal = strand.value.selected_subgoal;
let ex_clause = strand.value.ex_clause;
let selected_subgoal = selected_subgoal.unwrap_or_else(|| {
panic!(
"clear_strands_after_cycle invoked on strand in table \
without a selected subgoal: {:?}",
ex_clause,
)
});
let strand_table = selected_subgoal.subgoal_table;
let strands = self.forest.tables[strand_table].take_strands();
self.clear_strands_after_cycle(strands);
}
}
fn select_subgoal(
&mut self,
mut canonical_strand: &mut CanonicalStrand<I>,
) -> SubGoalSelection {
loop {
while canonical_strand.value.selected_subgoal.is_none() {
if canonical_strand.value.ex_clause.subgoals.is_empty() {
if canonical_strand
.value
.ex_clause
.floundered_subgoals
.is_empty()
{
return SubGoalSelection::NotSelected;
}
self.reconsider_floundered_subgoals(&mut canonical_strand.value.ex_clause);
if canonical_strand.value.ex_clause.subgoals.is_empty() {
// All the subgoals of this strand floundered. We may be able
// to get helpful information from this strand still, but it
// will *always* be ambiguous, so mark it as so.
assert!(!canonical_strand
.value
.ex_clause
.floundered_subgoals
.is_empty());
canonical_strand.value.ex_clause.ambiguous = true;
return SubGoalSelection::NotSelected;
}
continue;
}
let subgoal_index =
SlgContext::next_subgoal_index(&canonical_strand.value.ex_clause);
// Get or create table for this subgoal.
let num_universes = self.forest.tables[self.stack.top().table]
.table_goal
.universes;
let (mut infer, _, strand) = chalk_solve::infer::InferenceTable::from_canonical(
self.context.program().interner(),
num_universes,
canonical_strand.clone(),
);
match self.forest.get_or_create_table_for_subgoal(
self.context,
&mut infer,
&strand.ex_clause.subgoals[subgoal_index],
) {
Some((subgoal_table, universe_map)) => {
canonical_strand.value.selected_subgoal = Some(SelectedSubgoal {
subgoal_index,
subgoal_table,
universe_map,
answer_index: AnswerIndex::ZERO,
});
}
None => {
// If we failed to create a table for the subgoal,
// that is because we have a floundered negative
// literal.
self.flounder_subgoal(&mut canonical_strand.value.ex_clause, subgoal_index);
}
}
}
let selected_subgoal_table = canonical_strand
.value
.selected_subgoal
.as_ref()
.unwrap()
.subgoal_table;
if self.forest.tables[selected_subgoal_table].is_floundered() {
if self.propagate_floundered_subgoal(canonical_strand) {
// This strand will never lead anywhere of interest.
return SubGoalSelection::NotSelected;
} else {
// This subgoal has floundered and has been marked.
// We previously would immediately mark the table as
// floundered too, and maybe come back to it. Now, we
// try to see if any other subgoals can be pursued first.
continue;
}
} else {
return SubGoalSelection::Selected;
}
}
}
/// Invoked when a strand represents an **answer**. This means
/// that the strand has no subgoals left. There are two possibilities:
///
/// - the strand may represent an answer we have already found; in
/// that case, we can return `None`, as this
/// strand led nowhere of interest.
/// - the strand may represent a new answer, in which case it is
/// added to the table and `Some(())` is returned.
fn pursue_answer(&mut self, canonical_strand: CanonicalStrand<I>) -> Option<AnswerIndex> {
let table = self.stack.top().table;
let Canonical {
binders,
value: strand,
} = canonical_strand;
let ExClause {
subst,
constraints,
ambiguous,
subgoals,
delayed_subgoals,
answer_time: _,
floundered_subgoals,
} = strand.ex_clause;
// If there are subgoals left, they should be followed
assert!(subgoals.is_empty());
// We can still try to get an ambiguous answer if there are floundered subgoals
let floundered = !floundered_subgoals.is_empty();
// So let's make sure that it *really* is an ambiguous answer (this should be set previously)
assert!(!floundered || ambiguous);
// FIXME: If there are floundered subgoals, we *could* potentially
// actually check if the partial answers to any of these subgoals
// conflict. But this requires that we think about whether they are
// positive or negative subgoals. This duplicates some of the logic
// in `merge_answer_into_strand`, so a bit of refactoring is needed.
// If the answer gets too large, mark the table as floundered.
// This is the *most conservative* course. There are a few alternatives:
// 1) Replace the answer with a truncated version of it. (This was done
// previously, but turned out to be more complicated than we wanted and
// and a source of multiple bugs.)
// 2) Mark this *strand* as floundered. We don't currently have a mechanism
// for this (only floundered subgoals), so implementing this is more
// difficult because we don't want to just *remove* this strand from the
// table, because that might make the table give `NoMoreSolutions`, which
// is *wrong*.
// 3) Do something fancy with delayed subgoals, effectively delayed the
// truncated bits to a different strand (and a more "refined" answer).
// (This one probably needs more thought, but is here for "completeness")
//
// Ultimately, the current decision to flounder the entire table mostly boils
// down to "it works as we expect for the current tests". And, we likely don't
// even *need* the added complexity just for potentially more answers.
if truncate::needs_truncation(
self.context.program().interner(),
&mut InferenceTable::new(),
self.context.max_size(),
&subst,
) {
self.forest.tables[table].mark_floundered();
return None;
}
let table_goal = &self.forest.tables[table].table_goal;
let filtered_delayed_subgoals = delayed_subgoals
.into_iter()
.filter(|delayed_subgoal| {
let canonicalized = InferenceTable::u_canonicalize(
self.context.program().interner(),
&chalk_ir::Canonical {
binders: binders.clone(),
value: delayed_subgoal.clone(),
},
)
.quantified;
*table_goal != canonicalized
})
.collect();
let subst = Canonical {
binders,
value: AnswerSubst {
subst,
constraints: Constraints::from_iter(self.context.program().interner(), constraints),
delayed_subgoals: filtered_delayed_subgoals,
},
};
debug!(?table, ?subst, ?floundered, "found answer");
let answer = Answer { subst, ambiguous };
// A "trivial" answer is one that is 'just true for all cases'
// -- in other words, it gives no information back to the
// caller. For example, `Vec<u32>: Sized` is "just true".
// Such answers are important because they are the most
// general case, and after we provide a trivial answer, no
// further answers are useful -- therefore we can clear any
// further pending strands (this is a "green cut", in
// Prolog parlance).
//
// This optimization is *crucial* for performance: for
// example, `projection_from_env_slow` fails miserably without
// it. The reason is that we wind up (thanks to implied bounds)
// with a clause like this:
//
// ```ignore
// forall<T> { (<T as SliceExt>::Item: Clone) :- WF(T: SliceExt) }
// ```
//
// we then apply that clause to `!1: Clone`, resulting in the
// table goal `!1: Clone :- <?0 as SliceExt>::Item = !1,
// WF(?0: SliceExt)`. This causes us to **enumerate all types
// `?0` that where `Slice<?0>` normalizes to `!1` -- this is
// an infinite set of types, effectively. Interestingly,
// though, we only need one and we are done, because (if you
// look) our goal (`!1: Clone`) doesn't have any output
// parameters.
//
// This is actually a kind of general case. Due to Rust's rule
// about constrained impl type parameters, generally speaking
// when we have some free inference variable (like `?0`)
// within our clause, it must appear in the head of the
// clause. This means that the values we create for it will
// propagate up to the caller, and they will quickly surmise
// that there is ambiguity and stop requesting more answers.
// Indeed, the only exception to this rule about constrained
// type parameters if with associated type projections, as in
// the case above!
//
// (Actually, because of the trivial answer cut off rule, we
// never even get to the point of asking the query above in
// `projection_from_env_slow`.)
//
// However, there is one fly in the ointment: answers include
// region constraints, and you might imagine that we could
// find future answers that are also trivial but with distinct
// sets of region constraints. **For this reason, we only
// apply this green cut rule if the set of generated
// constraints is empty.**
//
// The limitation on region constraints is quite a drag! We
// can probably do better, though: for example, coherence
// guarantees that, for any given set of types, only a single
// impl ought to be applicable, and that impl can only impose
// one set of region constraints. However, it's not quite that
// simple, thanks to specialization as well as the possibility
// of proving things from the environment (though the latter
// is a *bit* suspect; e.g., those things in the environment
// must be backed by an impl *eventually*).
let is_trivial_answer = {
self.forest.tables[table]
.table_goal
.is_trivial_substitution(self.context.program().interner(), &answer.subst)
&& answer
.subst
.value
.constraints
.is_empty(self.context.program().interner())
};
if let Some(answer_index) = self.forest.tables[table].push_answer(answer) {
// See above, if we have a *complete* and trivial answer, we don't
// want to follow any more strands
if !ambiguous && is_trivial_answer {
self.forest.tables[table].take_strands();
}
Some(answer_index)
} else {
info!("answer: not a new answer, returning None");
None
}
}
fn reconsider_floundered_subgoals(&mut self, ex_clause: &mut ExClause<I>) {
info!("reconsider_floundered_subgoals(ex_clause={:#?})", ex_clause,);
let ExClause {
answer_time,
subgoals,
floundered_subgoals,
..
} = ex_clause;
for i in (0..floundered_subgoals.len()).rev() {
if floundered_subgoals[i].floundered_time < *answer_time {
let floundered_subgoal = floundered_subgoals.swap_remove(i);
subgoals.push(floundered_subgoal.floundered_literal);
}
}
}
/// Removes the subgoal at `subgoal_index` from the strand's
/// subgoal list and adds it to the strand's floundered subgoal
/// list.
fn flounder_subgoal(&self, ex_clause: &mut ExClause<I>, subgoal_index: usize) {
let _s = debug_span!(
"flounder_subgoal",
answer_time = ?ex_clause.answer_time,
subgoal = ?ex_clause.subgoals[subgoal_index],
);
let _s = _s.enter();
let floundered_time = ex_clause.answer_time;
let floundered_literal = ex_clause.subgoals.remove(subgoal_index);
ex_clause.floundered_subgoals.push(FlounderedSubgoal {
floundered_literal,
floundered_time,
});
debug!(?ex_clause);
}
/// True if all the tables on the stack starting from `depth` and
/// continuing until the top of the stack are coinductive.
///
/// Example: Given a program like:
///
/// ```notrust
/// struct Foo { a: Option<Box<Bar>> }
/// struct Bar { a: Option<Box<Foo>> }
/// trait XXX { }
/// impl<T: Send> XXX for T { }
/// ```
///
/// and then a goal of `Foo: XXX`, we would eventually wind up
/// with a stack like this:
///
/// | StackIndex | Table Goal |
/// | ---------- | ----------- |
/// | 0 | `Foo: XXX` |
/// | 1 | `Foo: Send` |
/// | 2 | `Bar: Send` |
///
/// Here, the top of the stack is `Bar: Send`. And now we are
/// asking `top_of_stack_is_coinductive_from(1)` -- the answer
/// would be true, since `Send` is an auto trait, which yields a
/// coinductive goal. But `top_of_stack_is_coinductive_from(0)` is
/// false, since `XXX` is not an auto trait.
pub(super) fn top_of_stack_is_coinductive_from(&self, depth: StackIndex) -> bool {
StackIndex::iterate_range(self.stack.top_of_stack_from(depth)).all(|d| {
let table = self.stack[d].table;
self.forest.tables[table].coinductive_goal
})
}
}
|