1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
|
extern crate quickcheck;
use self::quickcheck::{Arbitrary, Gen};
use crate::graph::{node_index, IndexType};
#[cfg(feature = "stable_graph")]
use crate::stable_graph::StableGraph;
use crate::{EdgeType, Graph};
#[cfg(feature = "graphmap")]
use crate::graphmap::{GraphMap, NodeTrait};
use crate::visit::NodeIndexable;
/// Return a random float in the range [0, 1.)
fn random_01<G: Gen>(g: &mut G) -> f64 {
// from rand
let bits = 53;
let scale = 1. / ((1u64 << bits) as f64);
let x = g.next_u64();
(x >> (64 - bits)) as f64 * scale
}
/// `Arbitrary` for `Graph` creates a graph by selecting a node count
/// and a probability for each possible edge to exist.
///
/// The result will be simple graph or digraph, self loops
/// possible, no parallel edges.
///
/// The exact properties of the produced graph is subject to change.
///
/// Requires crate feature `"quickcheck"`
impl<N, E, Ty, Ix> Arbitrary for Graph<N, E, Ty, Ix>
where
N: Arbitrary,
E: Arbitrary,
Ty: EdgeType + Send + 'static,
Ix: IndexType + Send,
{
fn arbitrary<G: Gen>(g: &mut G) -> Self {
let nodes = usize::arbitrary(g);
if nodes == 0 {
return Graph::with_capacity(0, 0);
}
// use X² for edge probability (bias towards lower)
let edge_prob = random_01(g) * random_01(g);
let edges = ((nodes as f64).powi(2) * edge_prob) as usize;
let mut gr = Graph::with_capacity(nodes, edges);
for _ in 0..nodes {
gr.add_node(N::arbitrary(g));
}
for i in gr.node_indices() {
for j in gr.node_indices() {
if !gr.is_directed() && i > j {
continue;
}
let p: f64 = random_01(g);
if p <= edge_prob {
gr.add_edge(i, j, E::arbitrary(g));
}
}
}
gr
}
// shrink the graph by splitting it in two by a very
// simple algorithm, just even and odd node indices
fn shrink(&self) -> Box<dyn Iterator<Item = Self>> {
let self_ = self.clone();
Box::new((0..2).filter_map(move |x| {
let gr = self_.filter_map(
|i, w| {
if i.index() % 2 == x {
Some(w.clone())
} else {
None
}
},
|_, w| Some(w.clone()),
);
// make sure we shrink
if gr.node_count() < self_.node_count() {
Some(gr)
} else {
None
}
}))
}
}
#[cfg(feature = "stable_graph")]
/// `Arbitrary` for `StableGraph` creates a graph by selecting a node count
/// and a probability for each possible edge to exist.
///
/// The result will be simple graph or digraph, with possible
/// self loops, no parallel edges.
///
/// The exact properties of the produced graph is subject to change.
///
/// Requires crate features `"quickcheck"` and `"stable_graph"`
impl<N, E, Ty, Ix> Arbitrary for StableGraph<N, E, Ty, Ix>
where
N: Arbitrary,
E: Arbitrary,
Ty: EdgeType + Send + 'static,
Ix: IndexType + Send,
{
fn arbitrary<G: Gen>(g: &mut G) -> Self {
let nodes = usize::arbitrary(g);
if nodes == 0 {
return StableGraph::with_capacity(0, 0);
}
// use X² for edge probability (bias towards lower)
let edge_prob = random_01(g) * random_01(g);
let edges = ((nodes as f64).powi(2) * edge_prob) as usize;
let mut gr = StableGraph::with_capacity(nodes, edges);
for _ in 0..nodes {
gr.add_node(N::arbitrary(g));
}
for i in 0..gr.node_count() {
for j in 0..gr.node_count() {
let i = node_index(i);
let j = node_index(j);
if !gr.is_directed() && i > j {
continue;
}
let p: f64 = random_01(g);
if p <= edge_prob {
gr.add_edge(i, j, E::arbitrary(g));
}
}
}
if bool::arbitrary(g) {
// potentially remove nodes to make holes in nodes & edge sets
let n = u8::arbitrary(g) % (gr.node_count() as u8);
for _ in 0..n {
let ni = node_index(usize::arbitrary(g) % gr.node_bound());
if gr.node_weight(ni).is_some() {
gr.remove_node(ni);
}
}
}
gr
}
// shrink the graph by splitting it in two by a very
// simple algorithm, just even and odd node indices
fn shrink(&self) -> Box<dyn Iterator<Item = Self>> {
let self_ = self.clone();
Box::new((0..2).filter_map(move |x| {
let gr = self_.filter_map(
|i, w| {
if i.index() % 2 == x {
Some(w.clone())
} else {
None
}
},
|_, w| Some(w.clone()),
);
// make sure we shrink
if gr.node_count() < self_.node_count() {
Some(gr)
} else {
None
}
}))
}
}
/// `Arbitrary` for `GraphMap` creates a graph by selecting a node count
/// and a probability for each possible edge to exist.
///
/// The result will be simple graph or digraph, self loops
/// possible, no parallel edges.
///
/// The exact properties of the produced graph is subject to change.
///
/// Requires crate features `"quickcheck"` and `"graphmap"`
#[cfg(feature = "graphmap")]
impl<N, E, Ty> Arbitrary for GraphMap<N, E, Ty>
where
N: NodeTrait + Arbitrary,
E: Arbitrary,
Ty: EdgeType + Clone + Send + 'static,
{
fn arbitrary<G: Gen>(g: &mut G) -> Self {
let nodes = usize::arbitrary(g);
if nodes == 0 {
return GraphMap::with_capacity(0, 0);
}
let mut nodes = (0..nodes).map(|_| N::arbitrary(g)).collect::<Vec<_>>();
nodes.sort();
nodes.dedup();
// use X² for edge probability (bias towards lower)
let edge_prob = random_01(g) * random_01(g);
let edges = ((nodes.len() as f64).powi(2) * edge_prob) as usize;
let mut gr = GraphMap::with_capacity(nodes.len(), edges);
for &node in &nodes {
gr.add_node(node);
}
for (index, &i) in nodes.iter().enumerate() {
let js = if Ty::is_directed() {
&nodes[..]
} else {
&nodes[index..]
};
for &j in js {
let p: f64 = random_01(g);
if p <= edge_prob {
gr.add_edge(i, j, E::arbitrary(g));
}
}
}
gr
}
}
|