1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
|
use std::{
hash::Hash,
iter::{from_fn, FromIterator},
};
use indexmap::IndexSet;
use crate::{
visit::{IntoNeighborsDirected, NodeCount},
Direction::Outgoing,
};
/// Returns iterator that produces all simple paths from `from` node to `to`, which contains at least `min_intermediate_nodes` nodes
/// and at most `max_intermediate_nodes`, if given, limited by graph's order otherwise
/// Simple path is path without repetitions
/// Algorithm is adopted from https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.simple_paths.all_simple_paths.html
pub fn all_simple_paths<TargetColl, G>(
graph: G,
from: G::NodeId,
to: G::NodeId,
min_intermediate_nodes: usize,
max_intermediate_nodes: Option<usize>,
) -> impl Iterator<Item = TargetColl>
where
G: NodeCount,
G: IntoNeighborsDirected,
G::NodeId: Eq + Hash,
TargetColl: FromIterator<G::NodeId>,
{
// how many nodes are allowed in simple path up to target node
// it is min/max allowed path length minus one, because it is more appropriate when implementing lookahead
// than constantly add 1 to length of current path
let max_length = if let Some(l) = max_intermediate_nodes {
l + 1
} else {
graph.node_count() - 1
};
let min_length = min_intermediate_nodes + 1;
// list of visited nodes
let mut visited: IndexSet<G::NodeId> = IndexSet::from_iter(Some(from));
// list of childs of currently exploring path nodes,
// last elem is list of childs of last visited node
let mut stack = vec![graph.neighbors_directed(from, Outgoing)];
from_fn(move || {
while let Some(children) = stack.last_mut() {
if let Some(child) = children.next() {
if visited.len() < max_length {
if child == to {
if visited.len() >= min_length {
let path = visited
.iter()
.cloned()
.chain(Some(to))
.collect::<TargetColl>();
return Some(path);
}
} else if !visited.contains(&child) {
visited.insert(child);
stack.push(graph.neighbors_directed(child, Outgoing));
}
} else {
if (child == to || children.any(|v| v == to)) && visited.len() >= min_length {
let path = visited
.iter()
.cloned()
.chain(Some(to))
.collect::<TargetColl>();
return Some(path);
}
stack.pop();
visited.pop();
}
} else {
stack.pop();
visited.pop();
}
}
None
})
}
#[cfg(test)]
mod test {
use std::{collections::HashSet, iter::FromIterator};
use itertools::assert_equal;
use crate::{dot::Dot, prelude::DiGraph};
use super::all_simple_paths;
#[test]
fn test_all_simple_paths() {
let graph = DiGraph::<i32, i32, _>::from_edges(&[
(0, 1),
(0, 2),
(0, 3),
(1, 2),
(1, 3),
(2, 3),
(2, 4),
(3, 2),
(3, 4),
(4, 2),
(4, 5),
(5, 2),
(5, 3),
]);
let expexted_simple_paths_0_to_5 = vec![
vec![0usize, 1, 2, 3, 4, 5],
vec![0, 1, 2, 4, 5],
vec![0, 1, 3, 2, 4, 5],
vec![0, 1, 3, 4, 5],
vec![0, 2, 3, 4, 5],
vec![0, 2, 4, 5],
vec![0, 3, 2, 4, 5],
vec![0, 3, 4, 5],
];
println!("{}", Dot::new(&graph));
let actual_simple_paths_0_to_5: HashSet<Vec<_>> =
all_simple_paths(&graph, 0u32.into(), 5u32.into(), 0, None)
.map(|v: Vec<_>| v.into_iter().map(|i| i.index()).collect())
.collect();
assert_eq!(actual_simple_paths_0_to_5.len(), 8);
assert_eq!(
HashSet::from_iter(expexted_simple_paths_0_to_5),
actual_simple_paths_0_to_5
);
}
#[test]
fn test_one_simple_path() {
let graph = DiGraph::<i32, i32, _>::from_edges(&[(0, 1), (2, 1)]);
let expexted_simple_paths_0_to_1 = &[vec![0usize, 1]];
println!("{}", Dot::new(&graph));
let actual_simple_paths_0_to_1: Vec<Vec<_>> =
all_simple_paths(&graph, 0u32.into(), 1u32.into(), 0, None)
.map(|v: Vec<_>| v.into_iter().map(|i| i.index()).collect())
.collect();
assert_eq!(actual_simple_paths_0_to_1.len(), 1);
assert_equal(expexted_simple_paths_0_to_1, &actual_simple_paths_0_to_1);
}
#[test]
fn test_no_simple_paths() {
let graph = DiGraph::<i32, i32, _>::from_edges(&[(0, 1), (2, 1)]);
println!("{}", Dot::new(&graph));
let actual_simple_paths_0_to_2: Vec<Vec<_>> =
all_simple_paths(&graph, 0u32.into(), 2u32.into(), 0, None)
.map(|v: Vec<_>| v.into_iter().map(|i| i.index()).collect())
.collect();
assert_eq!(actual_simple_paths_0_to_2.len(), 0);
}
}
|