summaryrefslogtreecommitdiffstats
path: root/vendor/polonius-engine/src/output/datafrog_opt.rs
blob: da9c343ccd93f10fea816caa120f5a4fe979b595 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
// Copyright 2017 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use datafrog::{Iteration, Relation, RelationLeaper};
use std::time::Instant;

use crate::facts::FactTypes;
use crate::output::{Context, Output};

pub(super) fn compute<T: FactTypes>(
    ctx: &Context<'_, T>,
    result: &mut Output<T>,
) -> (
    Relation<(T::Loan, T::Point)>,
    Relation<(T::Origin, T::Origin, T::Point)>,
) {
    let timer = Instant::now();

    let (errors, subset_errors) = {
        // Static inputs
        let origin_live_on_entry_rel = &ctx.origin_live_on_entry;
        let cfg_edge_rel = &ctx.cfg_edge;
        let loan_killed_at = &ctx.loan_killed_at;
        let known_placeholder_subset = &ctx.known_placeholder_subset;
        let placeholder_origin = &ctx.placeholder_origin;

        // Create a new iteration context, ...
        let mut iteration = Iteration::new();

        // `loan_invalidated_at` facts, stored ready for joins
        let loan_invalidated_at =
            iteration.variable::<((T::Loan, T::Point), ())>("loan_invalidated_at");

        // we need `origin_live_on_entry` in both variable and relation forms,
        // (respectively, for join and antijoin).
        let origin_live_on_entry_var =
            iteration.variable::<((T::Origin, T::Point), ())>("origin_live_on_entry");

        // `loan_issued_at` input but organized for join
        let loan_issued_at_op =
            iteration.variable::<((T::Origin, T::Point), T::Loan)>("loan_issued_at_op");

        // .decl subset(origin1, origin2, point)
        //
        // Indicates that `origin1: origin2` at `point`.
        let subset_o1p = iteration.variable::<((T::Origin, T::Point), T::Origin)>("subset_o1p");

        // .decl origin_contains_loan_on_entry(origin, loan, point)
        //
        // At `point`, things with `origin` may depend on data from `loan`.
        let origin_contains_loan_on_entry_op = iteration
            .variable::<((T::Origin, T::Point), T::Loan)>("origin_contains_loan_on_entry_op");

        // .decl loan_live_at(loan, point)
        //
        // True if the restrictions of the `loan` need to be enforced at `point`.
        let loan_live_at = iteration.variable::<((T::Loan, T::Point), ())>("loan_live_at");

        // .decl live_to_dying_regions(origin1, origin2, point1, point2)
        //
        // The origins `origin1` and `origin2` are "live to dead"
        // on the edge `point1 -> point2` if:
        //
        // - In `point1`, `origin1` <= `origin2`
        // - In `point2`, `origin1` is live but `origin2` is dead.
        //
        // In that case, `point2` would like to add all the
        // live things reachable from `origin2` to `origin1`.
        //
        let live_to_dying_regions_o2pq = iteration
            .variable::<((T::Origin, T::Point, T::Point), T::Origin)>("live_to_dying_regions_o2pq");

        // .decl dying_region_requires((origin, point1, point2), loan)
        //
        // The `origin` requires `loan`, but the `origin` goes dead
        // along the edge `point1 -> point2`.
        let dying_region_requires = iteration
            .variable::<((T::Origin, T::Point, T::Point), T::Loan)>("dying_region_requires");

        // .decl dying_can_reach_origins(origin, point1, point2)
        //
        // Contains dead origins where we are interested
        // in computing the transitive closure of things they
        // can reach.
        //
        // FIXME: this relation was named before renaming the `regions` atoms to `origins`, and
        // will need to be renamed to change "_origins" to "_ascendants", "_roots", etc.
        let dying_can_reach_origins =
            iteration.variable::<((T::Origin, T::Point), T::Point)>("dying_can_reach_origins");

        // .decl dying_can_reach(origin1, origin2, point1, point2)
        //
        // Indicates that `origin1`, which is dead
        // in `point2`, can reach `origin2` in `point1`.
        //
        // This is effectively the transitive subset
        // relation, but we try to limit it to origins
        // that are dying on the edge `point1 -> point2`.
        let dying_can_reach_o2q =
            iteration.variable::<((T::Origin, T::Point), (T::Origin, T::Point))>("dying_can_reach");
        let dying_can_reach_1 = iteration.variable_indistinct("dying_can_reach_1");

        // .decl dying_can_reach_live(origin1, origin2, point1, point2)
        //
        // Indicates that, along the edge `point1 -> point2`, the dead (in `point2`)
        // `origin1` can reach the live (in `point2`) `origin2` via a subset
        // relation. This is a subset of the full `dying_can_reach`
        // relation where we filter down to those cases where `origin2` is
        // live in `point2`.
        let dying_can_reach_live = iteration
            .variable::<((T::Origin, T::Point, T::Point), T::Origin)>("dying_can_reach_live");

        // .decl dead_borrow_region_can_reach_root((origin, point), loan)
        //
        // Indicates a "borrow region" `origin` at `point` which is not live on
        // entry to `point`.
        let dead_borrow_region_can_reach_root = iteration
            .variable::<((T::Origin, T::Point), T::Loan)>("dead_borrow_region_can_reach_root");

        // .decl dead_borrow_region_can_reach_dead((origin2, point), loan)
        let dead_borrow_region_can_reach_dead = iteration
            .variable::<((T::Origin, T::Point), T::Loan)>("dead_borrow_region_can_reach_dead");
        let dead_borrow_region_can_reach_dead_1 =
            iteration.variable_indistinct("dead_borrow_region_can_reach_dead_1");

        // .decl errors(loan, point)
        let errors = iteration.variable("errors");
        let subset_errors = iteration.variable::<(T::Origin, T::Origin, T::Point)>("subset_errors");

        let subset_placeholder =
            iteration.variable::<(T::Origin, T::Origin, T::Point)>("subset_placeholder");
        let subset_placeholder_o2p = iteration.variable_indistinct("subset_placeholder_o2p");

        // Make "variable" versions of the relations, needed for joins.
        loan_issued_at_op.extend(
            ctx.loan_issued_at
                .iter()
                .map(|&(origin, loan, point)| ((origin, point), loan)),
        );
        loan_invalidated_at.extend(
            ctx.loan_invalidated_at
                .iter()
                .map(|&(loan, point)| ((loan, point), ())),
        );
        origin_live_on_entry_var.extend(
            origin_live_on_entry_rel
                .iter()
                .map(|&(origin, point)| ((origin, point), ())),
        );

        // subset(origin1, origin2, point) :-
        //   subset_base(origin1, origin2, point).
        subset_o1p.extend(
            ctx.subset_base
                .iter()
                .map(|&(origin1, origin2, point)| ((origin1, point), origin2)),
        );

        // origin_contains_loan_on_entry(origin, loan, point) :-
        //   loan_issued_at(origin, loan, point).
        origin_contains_loan_on_entry_op.extend(
            ctx.loan_issued_at
                .iter()
                .map(|&(origin, loan, point)| ((origin, point), loan)),
        );

        // .. and then start iterating rules!
        while iteration.changed() {
            // Cleanup step: remove symmetries
            // - remove origins which are `subset`s of themselves
            //
            // FIXME: investigate whether is there a better way to do that without complicating
            // the rules too much, because it would also require temporary variables and
            // impact performance. Until then, the big reduction in tuples improves performance
            // a lot, even if we're potentially adding a small number of tuples
            // per round just to remove them in the next round.
            subset_o1p
                .recent
                .borrow_mut()
                .elements
                .retain(|&((origin1, _), origin2)| origin1 != origin2);

            subset_placeholder
                .recent
                .borrow_mut()
                .elements
                .retain(|&(origin1, origin2, _)| origin1 != origin2);
            subset_placeholder_o2p.from_map(&subset_placeholder, |&(origin1, origin2, point)| {
                ((origin2, point), origin1)
            });

            // live_to_dying_regions(origin1, origin2, point1, point2) :-
            //   subset(origin1, origin2, point1),
            //   cfg_edge(point1, point2),
            //   origin_live_on_entry(origin1, point2),
            //   !origin_live_on_entry(origin2, point2).
            live_to_dying_regions_o2pq.from_leapjoin(
                &subset_o1p,
                (
                    cfg_edge_rel.extend_with(|&((_, point1), _)| point1),
                    origin_live_on_entry_rel.extend_with(|&((origin1, _), _)| origin1),
                    origin_live_on_entry_rel.extend_anti(|&((_, _), origin2)| origin2),
                ),
                |&((origin1, point1), origin2), &point2| ((origin2, point1, point2), origin1),
            );

            // dying_region_requires((origin, point1, point2), loan) :-
            //   origin_contains_loan_on_entry(origin, loan, point1),
            //   !loan_killed_at(loan, point1),
            //   cfg_edge(point1, point2),
            //   !origin_live_on_entry(origin, point2).
            dying_region_requires.from_leapjoin(
                &origin_contains_loan_on_entry_op,
                (
                    loan_killed_at.filter_anti(|&((_, point1), loan)| (loan, point1)),
                    cfg_edge_rel.extend_with(|&((_, point1), _)| point1),
                    origin_live_on_entry_rel.extend_anti(|&((origin, _), _)| origin),
                ),
                |&((origin, point1), loan), &point2| ((origin, point1, point2), loan),
            );

            // dying_can_reach_origins(origin2, point1, point2) :-
            //   live_to_dying_regions(_, origin2, point1, point2).
            dying_can_reach_origins.from_map(
                &live_to_dying_regions_o2pq,
                |&((origin2, point1, point2), _origin1)| ((origin2, point1), point2),
            );

            // dying_can_reach_origins(origin, point1, point2) :-
            //   dying_region_requires(origin, point1, point2, _loan).
            dying_can_reach_origins.from_map(
                &dying_region_requires,
                |&((origin, point1, point2), _loan)| ((origin, point1), point2),
            );

            // dying_can_reach(origin1, origin2, point1, point2) :-
            //   dying_can_reach_origins(origin1, point1, point2),
            //   subset(origin1, origin2, point1).
            dying_can_reach_o2q.from_join(
                &dying_can_reach_origins,
                &subset_o1p,
                |&(origin1, point1), &point2, &origin2| ((origin2, point2), (origin1, point1)),
            );

            // dying_can_reach(origin1, origin3, point1, point2) :-
            //   dying_can_reach(origin1, origin2, point1, point2),
            //   !origin_live_on_entry(origin2, point2),
            //   subset(origin2, origin3, point1).
            //
            // This is the "transitive closure" rule, but
            // note that we only apply it with the
            // "intermediate" `origin2` is dead at `point2`.
            dying_can_reach_1.from_antijoin(
                &dying_can_reach_o2q,
                &origin_live_on_entry_rel,
                |&(origin2, point2), &(origin1, point1)| ((origin2, point1), (origin1, point2)),
            );
            dying_can_reach_o2q.from_join(
                &dying_can_reach_1,
                &subset_o1p,
                |&(_origin2, point1), &(origin1, point2), &origin3| {
                    ((origin3, point2), (origin1, point1))
                },
            );

            // dying_can_reach_live(origin1, origin2, point1, point2) :-
            //   dying_can_reach(origin1, origin2, point1, point2),
            //   origin_live_on_entry(origin2, point2).
            dying_can_reach_live.from_join(
                &dying_can_reach_o2q,
                &origin_live_on_entry_var,
                |&(origin2, point2), &(origin1, point1), _| ((origin1, point1, point2), origin2),
            );

            // subset(origin1, origin2, point2) :-
            //   subset(origin1, origin2, point1),
            //   cfg_edge(point1, point2),
            //   origin_live_on_entry(origin1, point2),
            //   origin_live_on_entry(origin2, point2).
            //
            // Carry `origin1 <= origin2` from `point1` into `point2` if both `origin1` and
            // `origin2` are live in `point2`.
            subset_o1p.from_leapjoin(
                &subset_o1p,
                (
                    cfg_edge_rel.extend_with(|&((_, point1), _)| point1),
                    origin_live_on_entry_rel.extend_with(|&((origin1, _), _)| origin1),
                    origin_live_on_entry_rel.extend_with(|&((_, _), origin2)| origin2),
                ),
                |&((origin1, _point1), origin2), &point2| ((origin1, point2), origin2),
            );

            // subset(origin1, origin3, point2) :-
            //   live_to_dying_regions(origin1, origin2, point1, point2),
            //   dying_can_reach_live(origin2, origin3, point1, point2).
            subset_o1p.from_join(
                &live_to_dying_regions_o2pq,
                &dying_can_reach_live,
                |&(_origin2, _point1, point2), &origin1, &origin3| ((origin1, point2), origin3),
            );

            // origin_contains_loan_on_entry(origin2, loan, point2) :-
            //   dying_region_requires(origin1, loan, point1, point2),
            //   dying_can_reach_live(origin1, origin2, point1, point2).
            //
            // Communicate a `origin1 contains loan` relation across
            // an edge `point1 -> point2` where `origin1` is dead in `point2`; in
            // that case, for each origin `origin2` live in `point2`
            // where `origin1 <= origin2` in `point1`, we add `origin2 contains loan`
            // to `point2`.
            origin_contains_loan_on_entry_op.from_join(
                &dying_region_requires,
                &dying_can_reach_live,
                |&(_origin1, _point1, point2), &loan, &origin2| ((origin2, point2), loan),
            );

            // origin_contains_loan_on_entry(origin, loan, point2) :-
            //   origin_contains_loan_on_entry(origin, loan, point1),
            //   !loan_killed_at(loan, point1),
            //   cfg_edge(point1, point2),
            //   origin_live_on_entry(origin, point2).
            origin_contains_loan_on_entry_op.from_leapjoin(
                &origin_contains_loan_on_entry_op,
                (
                    loan_killed_at.filter_anti(|&((_, point1), loan)| (loan, point1)),
                    cfg_edge_rel.extend_with(|&((_, point1), _)| point1),
                    origin_live_on_entry_rel.extend_with(|&((origin, _), _)| origin),
                ),
                |&((origin, _), loan), &point2| ((origin, point2), loan),
            );

            // dead_borrow_region_can_reach_root((origin, point), loan) :-
            //   loan_issued_at(origin, loan, point),
            //   !origin_live_on_entry(origin, point).
            dead_borrow_region_can_reach_root.from_antijoin(
                &loan_issued_at_op,
                &origin_live_on_entry_rel,
                |&(origin, point), &loan| ((origin, point), loan),
            );

            // dead_borrow_region_can_reach_dead((origin, point), loan) :-
            //   dead_borrow_region_can_reach_root((origin, point), loan).
            dead_borrow_region_can_reach_dead
                .from_map(&dead_borrow_region_can_reach_root, |&tuple| tuple);

            // dead_borrow_region_can_reach_dead((origin2, point), loan) :-
            //   dead_borrow_region_can_reach_dead(origin1, loan, point),
            //   subset(origin1, origin2, point),
            //   !origin_live_on_entry(origin2, point).
            dead_borrow_region_can_reach_dead_1.from_join(
                &dead_borrow_region_can_reach_dead,
                &subset_o1p,
                |&(_origin1, point), &loan, &origin2| ((origin2, point), loan),
            );
            dead_borrow_region_can_reach_dead.from_antijoin(
                &dead_borrow_region_can_reach_dead_1,
                &origin_live_on_entry_rel,
                |&(origin2, point), &loan| ((origin2, point), loan),
            );

            // loan_live_at(loan, point) :-
            //   origin_contains_loan_on_entry(origin, loan, point),
            //   origin_live_on_entry(origin, point).
            loan_live_at.from_join(
                &origin_contains_loan_on_entry_op,
                &origin_live_on_entry_var,
                |&(_origin, point), &loan, _| ((loan, point), ()),
            );

            // loan_live_at(loan, point) :-
            //   dead_borrow_region_can_reach_dead(origin1, loan, point),
            //   subset(origin1, origin2, point),
            //   origin_live_on_entry(origin2, point).
            //
            // NB: the datafrog code below uses
            // `dead_borrow_region_can_reach_dead_1`, which is equal
            // to `dead_borrow_region_can_reach_dead` and `subset`
            // joined together.
            loan_live_at.from_join(
                &dead_borrow_region_can_reach_dead_1,
                &origin_live_on_entry_var,
                |&(_origin2, point), &loan, _| ((loan, point), ()),
            );

            // errors(loan, point) :-
            //   loan_invalidated_at(loan, point),
            //   loan_live_at(loan, point).
            errors.from_join(
                &loan_invalidated_at,
                &loan_live_at,
                |&(loan, point), _, _| (loan, point),
            );

            // subset_placeholder(Origin1, Origin2, Point) :-
            //     subset(Origin1, Origin2, Point),
            //     placeholder_origin(Origin1).
            subset_placeholder.from_leapjoin(
                &subset_o1p,
                (
                    placeholder_origin.extend_with(|&((origin1, _point), _origin2)| origin1),
                    // remove symmetries:
                    datafrog::ValueFilter::from(|&((origin1, _point), origin2), _| {
                        origin1 != origin2
                    }),
                ),
                |&((origin1, point), origin2), _| (origin1, origin2, point),
            );

            // We compute the transitive closure of the placeholder origins, so we
            // maintain the invariant from the rule above that `Origin1` is a placeholder origin.
            //
            // subset_placeholder(Origin1, Origin3, Point) :-
            //     subset_placeholder(Origin1, Origin2, Point),
            //     subset(Origin2, Origin3, Point).
            subset_placeholder.from_join(
                &subset_placeholder_o2p,
                &subset_o1p,
                |&(_origin2, point), &origin1, &origin3| (origin1, origin3, point),
            );

            // subset_error(Origin1, Origin2, Point) :-
            //     subset_placeholder(Origin1, Origin2, Point),
            //     placeholder_origin(Origin2),
            //     !known_placeholder_subset(Origin1, Origin2).
            subset_errors.from_leapjoin(
                &subset_placeholder,
                (
                    placeholder_origin.extend_with(|&(_origin1, origin2, _point)| origin2),
                    known_placeholder_subset
                        .filter_anti(|&(origin1, origin2, _point)| (origin1, origin2)),
                    // remove symmetries:
                    datafrog::ValueFilter::from(|&(origin1, origin2, _point), _| {
                        origin1 != origin2
                    }),
                ),
                |&(origin1, origin2, point), _| (origin1, origin2, point),
            );
        }

        if result.dump_enabled {
            let subset_o1p = subset_o1p.complete();
            assert!(
                subset_o1p
                    .iter()
                    .filter(|&((origin1, _), origin2)| origin1 == origin2)
                    .count()
                    == 0,
                "unwanted subset symmetries"
            );
            for &((origin1, location), origin2) in subset_o1p.iter() {
                result
                    .subset
                    .entry(location)
                    .or_default()
                    .entry(origin1)
                    .or_default()
                    .insert(origin2);
            }

            let origin_contains_loan_on_entry_op = origin_contains_loan_on_entry_op.complete();
            for &((origin, location), loan) in origin_contains_loan_on_entry_op.iter() {
                result
                    .origin_contains_loan_at
                    .entry(location)
                    .or_default()
                    .entry(origin)
                    .or_default()
                    .insert(loan);
            }

            let loan_live_at = loan_live_at.complete();
            for &((loan, location), _) in loan_live_at.iter() {
                result.loan_live_at.entry(location).or_default().push(loan);
            }
        }

        (errors.complete(), subset_errors.complete())
    };

    info!(
        "analysis done: {} `errors` tuples, {} `subset_errors` tuples, {:?}",
        errors.len(),
        subset_errors.len(),
        timer.elapsed()
    );

    (errors, subset_errors)
}