summaryrefslogtreecommitdiffstats
path: root/vendor/rustix/src/imp/linux_raw/vdso.rs
blob: bda0a4773d1ee2a856dd53b263b89972f1f1f815 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
//! Parse the Linux vDSO.
//!
//! The following code is transliterated from
//! tools/testing/selftests/vDSO/parse_vdso.c in Linux 5.11, which is licensed
//! with Creative Commons Zero License, version 1.0,
//! available at <https://creativecommons.org/publicdomain/zero/1.0/legalcode>
//!
//! # Safety
//!
//! Parsing the vDSO involves a lot of raw pointer manipulation. This
//! implementation follows Linux's reference implementation, and adds several
//! additional safety checks.
#![allow(unsafe_code)]

use super::c;
use super::elf::*;
use super::mm::syscalls::madvise;
use super::mm::types::Advice;
use crate::ffi::CStr;
use crate::io;
use core::ffi::c_void;
use core::mem::{align_of, size_of};
use core::ptr::{null, null_mut};

pub(super) struct Vdso {
    // Load information
    load_addr: *const Elf_Ehdr,
    load_end: *const c_void, // the end of the `PT_LOAD` segment
    pv_offset: usize,        // recorded paddr - recorded vaddr

    // Symbol table
    symtab: *const Elf_Sym,
    symstrings: *const u8,
    bucket: *const u32,
    chain: *const u32,
    nbucket: u32,
    //nchain: u32,

    // Version table
    versym: *const u16,
    verdef: *const Elf_Verdef,
}

// Straight from the ELF specification.
fn elf_hash(name: &CStr) -> u32 {
    let mut h: u32 = 0;
    for b in name.to_bytes() {
        h = (h << 4).wrapping_add(u32::from(*b));
        let g = h & 0xf000_0000;
        if g != 0 {
            h ^= g >> 24;
        }
        h &= !g;
    }
    h
}

/// Cast `value` to a pointer type, doing some checks for validity.
fn make_pointer<T>(value: *const c_void) -> Option<*const T> {
    if value.is_null()
        || (value as usize).checked_add(size_of::<T>()).is_none()
        || (value as usize) % align_of::<T>() != 0
    {
        return None;
    }

    Some(value.cast())
}

/// Create a `Vdso` value by parsing the vDSO at the given address.
///
/// # Safety
///
/// `base` must be a valid pointer to an ELF image in memory.
unsafe fn init_from_sysinfo_ehdr(base: *const Elf_Ehdr) -> Option<Vdso> {
    // Check that `base` is a valid pointer to the kernel-provided vDSO.
    let hdr = check_vdso_base(base)?;

    let mut vdso = Vdso {
        load_addr: base,
        load_end: base.cast(),
        pv_offset: 0,
        symtab: null(),
        symstrings: null(),
        bucket: null(),
        chain: null(),
        nbucket: 0,
        //nchain: 0,
        versym: null(),
        verdef: null(),
    };

    let pt = make_pointer::<Elf_Phdr>(vdso.base_plus(hdr.e_phoff)?)?;
    let mut dyn_: *const Elf_Dyn = null();
    let mut num_dyn = 0;

    // We need two things from the segment table: the load offset
    // and the dynamic table.
    let mut found_vaddr = false;
    for i in 0..hdr.e_phnum {
        let phdr = &*pt.add(i as usize);
        if phdr.p_flags & PF_W != 0 {
            // Don't trust any vDSO that claims to be loading writable
            // segments into memory.
            return None;
        }
        if phdr.p_type == PT_LOAD && !found_vaddr {
            // The segment should be readable and executable, because it
            // contains the symbol table and the function bodies.
            if phdr.p_flags & (PF_R | PF_X) != (PF_R | PF_X) {
                return None;
            }
            found_vaddr = true;
            vdso.load_end = vdso.base_plus(phdr.p_offset.checked_add(phdr.p_memsz)?)?;
            vdso.pv_offset = phdr.p_offset.wrapping_sub(phdr.p_vaddr);
        } else if phdr.p_type == PT_DYNAMIC {
            // If `p_offset` is zero, it's more likely that we're looking at memory
            // that has been zeroed than that the kernel has somehow aliased the
            // `Ehdr` and the `Elf_Dyn` array.
            if phdr.p_offset < size_of::<Elf_Ehdr>() {
                return None;
            }

            dyn_ = make_pointer::<Elf_Dyn>(vdso.base_plus(phdr.p_offset)?)?;
            num_dyn = phdr.p_memsz / size_of::<Elf_Dyn>();
        } else if phdr.p_type == PT_INTERP || phdr.p_type == PT_GNU_RELRO {
            // Don't trust any ELF image that has an "interpreter" or that uses
            // RELRO, which is likely to be a user ELF image rather and not the
            // kernel vDSO.
            return None;
        }
    }

    if !found_vaddr || dyn_.is_null() {
        return None; // Failed
    }

    // Fish out the useful bits of the dynamic table.
    let mut hash: *const u32 = null();
    vdso.symstrings = null();
    vdso.symtab = null();
    vdso.versym = null();
    vdso.verdef = null();
    let mut i = 0;
    loop {
        if i == num_dyn {
            return None;
        }
        let d = &*dyn_.add(i);
        match d.d_tag {
            DT_STRTAB => {
                vdso.symstrings = make_pointer::<u8>(vdso.addr_from_elf(d.d_val)?)?;
            }
            DT_SYMTAB => {
                vdso.symtab = make_pointer::<Elf_Sym>(vdso.addr_from_elf(d.d_val)?)?;
            }
            DT_HASH => {
                hash = make_pointer::<u32>(vdso.addr_from_elf(d.d_val)?)?;
            }
            DT_VERSYM => {
                vdso.versym = make_pointer::<u16>(vdso.addr_from_elf(d.d_val)?)?;
            }
            DT_VERDEF => {
                vdso.verdef = make_pointer::<Elf_Verdef>(vdso.addr_from_elf(d.d_val)?)?;
            }
            DT_SYMENT => {
                if d.d_val != size_of::<Elf_Sym>() {
                    return None; // Failed
                }
            }
            DT_NULL => break,
            _ => {}
        }
        i = i.checked_add(1)?;
    }
    if vdso.symstrings.is_null() || vdso.symtab.is_null() || hash.is_null() {
        return None; // Failed
    }

    if vdso.verdef.is_null() {
        vdso.versym = null();
    }

    // Parse the hash table header.
    vdso.nbucket = *hash.add(0);
    //vdso.nchain = *hash.add(1);
    vdso.bucket = hash.add(2);
    vdso.chain = hash.add(vdso.nbucket as usize + 2);

    // That's all we need.
    Some(vdso)
}

/// Check that `base` is a valid pointer to the kernel-provided vDSO.
///
/// `base` is some value we got from a `AT_SYSINFO_EHDR` aux record somewhere,
/// which hopefully holds the value of the kernel-provided vDSO in memory. Do a
/// series of checks to be as sure as we can that it's safe to use.
unsafe fn check_vdso_base<'vdso>(base: *const Elf_Ehdr) -> Option<&'vdso Elf_Ehdr> {
    // In theory, we could check that we're not attempting to parse our own ELF
    // image, as an additional check. However, older Linux toolchains don't
    // support this, and Rust's `#[linkage = "extern_weak"]` isn't stable yet,
    // so just disable this for now.
    /*
    {
        extern "C" {
            static __ehdr_start: c::c_void;
        }

        let ehdr_start: *const c::c_void = &__ehdr_start;
        if base == ehdr_start {
            return None;
        }
    }
    */

    let hdr = &*make_pointer::<Elf_Ehdr>(base.cast())?;

    // Check that the vDSO is page-aligned and appropriately mapped. We call
    // this after `make_pointer` so that we don't do a syscall if there's no
    // chance the pointer is valid.
    madvise(base as *mut c_void, size_of::<Elf_Ehdr>(), Advice::Normal).ok()?;

    if hdr.e_ident[..SELFMAG] != ELFMAG {
        return None; // Wrong ELF magic
    }
    if hdr.e_ident[EI_CLASS] != ELFCLASS {
        return None; // Wrong ELF class
    }
    if hdr.e_ident[EI_DATA] != ELFDATA {
        return None; // Wrong ELF data
    }
    if !matches!(hdr.e_ident[EI_OSABI], ELFOSABI_SYSV | ELFOSABI_LINUX) {
        return None; // Unrecognized ELF OS ABI
    }
    if hdr.e_ident[EI_ABIVERSION] != ELFABIVERSION {
        return None; // Unrecognized ELF ABI version
    }
    if hdr.e_type != ET_DYN {
        return None; // Wrong ELF type
    }
    // Verify that the `e_machine` matches the architecture we're running as.
    // This helps catch cases where we're running under qemu.
    if hdr.e_machine != EM_CURRENT {
        return None; // Wrong machine type
    }

    // If ELF is extended, we'll need to adjust.
    if hdr.e_ident[EI_VERSION] != EV_CURRENT
        || hdr.e_ehsize as usize != size_of::<Elf_Ehdr>()
        || hdr.e_phentsize as usize != size_of::<Elf_Phdr>()
    {
        return None;
    }
    // We don't currently support extra-large numbers of segments.
    if hdr.e_phnum == PN_XNUM {
        return None;
    }

    // If `e_phoff` is zero, it's more likely that we're looking at memory that
    // has been zeroed than that the kernel has somehow aliased the `Ehdr` and
    // the `Phdr`.
    if hdr.e_phoff < size_of::<Elf_Ehdr>() {
        return None;
    }

    // Check that the vDSO is not writable, since that would indicate that this
    // isn't the kernel vDSO. Here we're just using `clock_getres` just as an
    // arbitrary system call which writes to a buffer and fails with `EFAULT`
    // if the buffer is not writable.
    {
        use super::conv::ret;
        use super::time::types::ClockId;
        if ret(syscall!(__NR_clock_getres, ClockId::Monotonic, base)) != Err(io::Errno::FAULT) {
            // We can't gracefully fail here because we would seem to have just
            // mutated some unknown memory.
            #[cfg(feature = "std")]
            {
                std::process::abort();
            }
            #[cfg(all(not(feature = "std"), feature = "rustc-dep-of-std"))]
            {
                core::intrinsics::abort();
            }
        }
    }

    Some(hdr)
}

impl Vdso {
    /// Parse the vDSO.
    ///
    /// Returns None if the vDSO can't be located or if it doesn't conform
    /// to our expectations.
    #[inline]
    pub(super) fn new() -> Option<Self> {
        init_from_auxv()
    }

    /// Check the version for a symbol.
    ///
    /// # Safety
    ///
    /// The raw pointers inside `self` must be valid.
    unsafe fn match_version(&self, mut ver: u16, name: &CStr, hash: u32) -> bool {
        // This is a helper function to check if the version indexed by
        // ver matches name (which hashes to hash).
        //
        // The version definition table is a mess, and I don't know how
        // to do this in better than linear time without allocating memory
        // to build an index. I also don't know why the table has
        // variable size entries in the first place.
        //
        // For added fun, I can't find a comprehensible specification of how
        // to parse all the weird flags in the table.
        //
        // So I just parse the whole table every time.

        // First step: find the version definition
        ver &= 0x7fff; // Apparently bit 15 means "hidden"
        let mut def = self.verdef;
        loop {
            if (*def).vd_version != VER_DEF_CURRENT {
                return false; // Failed
            }

            if ((*def).vd_flags & VER_FLG_BASE) == 0 && ((*def).vd_ndx & 0x7fff) == ver {
                break;
            }

            if (*def).vd_next == 0 {
                return false; // No definition.
            }

            def = def
                .cast::<u8>()
                .add((*def).vd_next as usize)
                .cast::<Elf_Verdef>();
        }

        // Now figure out whether it matches.
        let aux = &*(def.cast::<u8>())
            .add((*def).vd_aux as usize)
            .cast::<Elf_Verdaux>();
        (*def).vd_hash == hash
            && (name == CStr::from_ptr(self.symstrings.add(aux.vda_name as usize).cast()))
    }

    /// Look up a symbol in the vDSO.
    pub(super) fn sym(&self, version: &CStr, name: &CStr) -> *mut c::c_void {
        let ver_hash = elf_hash(version);
        let name_hash = elf_hash(name);

        // Safety: The pointers in `self` must be valid.
        unsafe {
            let mut chain = *self.bucket.add((name_hash % self.nbucket) as usize);

            while chain != STN_UNDEF {
                let sym = &*self.symtab.add(chain as usize);

                // Check for a defined global or weak function w/ right name.
                //
                // The reference parser in Linux's parse_vdso.c requires
                // symbols to have type `STT_FUNC`, but on powerpc64, the vDSO
                // uses `STT_NOTYPE`, so allow that too.
                if (ELF_ST_TYPE(sym.st_info) != STT_FUNC &&
                        ELF_ST_TYPE(sym.st_info) != STT_NOTYPE)
                    || (ELF_ST_BIND(sym.st_info) != STB_GLOBAL
                        && ELF_ST_BIND(sym.st_info) != STB_WEAK)
                    || sym.st_shndx == SHN_UNDEF
                    || sym.st_shndx == SHN_ABS
                    || ELF_ST_VISIBILITY(sym.st_other) != STV_DEFAULT
                    || (name != CStr::from_ptr(self.symstrings.add(sym.st_name as usize).cast()))
                    // Check symbol version.
                    || (!self.versym.is_null()
                        && !self.match_version(*self.versym.add(chain as usize), version, ver_hash))
                {
                    chain = *self.chain.add(chain as usize);
                    continue;
                }

                let sum = self.addr_from_elf(sym.st_value).unwrap();
                assert!(
                    sum as usize >= self.load_addr as usize
                        && sum as usize <= self.load_end as usize
                );
                return sum as *mut c::c_void;
            }
        }

        null_mut()
    }

    /// Add the given address to the vDSO base address.
    unsafe fn base_plus(&self, offset: usize) -> Option<*const c_void> {
        // Check for overflow.
        let _ = (self.load_addr as usize).checked_add(offset)?;
        // Add the offset to the base.
        Some(self.load_addr.cast::<u8>().add(offset).cast())
    }

    /// Translate an ELF-address-space address into a usable virtual address.
    unsafe fn addr_from_elf(&self, elf_addr: usize) -> Option<*const c_void> {
        self.base_plus(elf_addr.wrapping_add(self.pv_offset))
    }
}

// Find the `AT_SYSINFO_EHDR` in auxv records in memory. We have our own code
// for reading the auxv records in memory, so we don't currently use this.
//
// # Safety
//
// `elf_auxv` must point to a valid array of AUXV records terminated by an
// `AT_NULL` record.
/*
unsafe fn init_from_auxv(elf_auxv: *const Elf_auxv_t) -> Option<Vdso> {
    let mut i = 0;
    while (*elf_auxv.add(i)).a_type != AT_NULL {
        if (*elf_auxv.add(i)).a_type == AT_SYSINFO_EHDR {
            return init_from_sysinfo_ehdr((*elf_auxv.add(i)).a_val);
        }
        i += 1;
    }

    None
}
*/

/// Find the vDSO image by following the `AT_SYSINFO_EHDR` auxv record pointer.
fn init_from_auxv() -> Option<Vdso> {
    // Safety: `sysinfo_ehdr` does extensive checks to ensure that the value
    // we get really is an `AT_SYSINFO_EHDR` value from the kernel.
    unsafe { init_from_sysinfo_ehdr(super::param::auxv::sysinfo_ehdr()) }
}