1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
|
extern crate utf8;
use std::borrow::Cow;
use std::collections::VecDeque;
use std::io;
use utf8::*;
/// A re-implementation of std::str::from_utf8
pub fn str_from_utf8(input: &[u8]) -> Result<&str, usize> {
match decode(input) {
Ok(s) => return Ok(s),
Err(DecodeError::Invalid { valid_prefix, .. }) |
Err(DecodeError::Incomplete { valid_prefix, .. }) => Err(valid_prefix.len()),
}
}
#[test]
fn test_str_from_utf8() {
let xs = b"hello";
assert_eq!(str_from_utf8(xs), Ok("hello"));
let xs = "ศไทย中华Việt Nam".as_bytes();
assert_eq!(str_from_utf8(xs), Ok("ศไทย中华Việt Nam"));
let xs = b"hello\xFF";
assert!(str_from_utf8(xs).is_err());
}
#[test]
fn test_is_utf8() {
// Chars of 1, 2, 3, and 4 bytes
assert!(str_from_utf8("eé€\u{10000}".as_bytes()).is_ok());
// invalid prefix
assert!(str_from_utf8(&[0x80]).is_err());
// invalid 2 byte prefix
assert!(str_from_utf8(&[0xc0]).is_err());
assert!(str_from_utf8(&[0xc0, 0x10]).is_err());
// invalid 3 byte prefix
assert!(str_from_utf8(&[0xe0]).is_err());
assert!(str_from_utf8(&[0xe0, 0x10]).is_err());
assert!(str_from_utf8(&[0xe0, 0xff, 0x10]).is_err());
// invalid 4 byte prefix
assert!(str_from_utf8(&[0xf0]).is_err());
assert!(str_from_utf8(&[0xf0, 0x10]).is_err());
assert!(str_from_utf8(&[0xf0, 0xff, 0x10]).is_err());
assert!(str_from_utf8(&[0xf0, 0xff, 0xff, 0x10]).is_err());
// deny overlong encodings
assert!(str_from_utf8(&[0xc0, 0x80]).is_err());
assert!(str_from_utf8(&[0xc0, 0xae]).is_err());
assert!(str_from_utf8(&[0xe0, 0x80, 0x80]).is_err());
assert!(str_from_utf8(&[0xe0, 0x80, 0xaf]).is_err());
assert!(str_from_utf8(&[0xe0, 0x81, 0x81]).is_err());
assert!(str_from_utf8(&[0xf0, 0x82, 0x82, 0xac]).is_err());
assert!(str_from_utf8(&[0xf4, 0x90, 0x80, 0x80]).is_err());
// deny surrogates
assert!(str_from_utf8(&[0xED, 0xA0, 0x80]).is_err());
assert!(str_from_utf8(&[0xED, 0xBF, 0xBF]).is_err());
assert!(str_from_utf8(&[0xC2, 0x80]).is_ok());
assert!(str_from_utf8(&[0xDF, 0xBF]).is_ok());
assert!(str_from_utf8(&[0xE0, 0xA0, 0x80]).is_ok());
assert!(str_from_utf8(&[0xED, 0x9F, 0xBF]).is_ok());
assert!(str_from_utf8(&[0xEE, 0x80, 0x80]).is_ok());
assert!(str_from_utf8(&[0xEF, 0xBF, 0xBF]).is_ok());
assert!(str_from_utf8(&[0xF0, 0x90, 0x80, 0x80]).is_ok());
assert!(str_from_utf8(&[0xF4, 0x8F, 0xBF, 0xBF]).is_ok());
}
/// A re-implementation of String::from_utf8_lossy
pub fn string_from_utf8_lossy(input: &[u8]) -> Cow<str> {
let mut result = decode(input);
if let Ok(s) = result {
return s.into()
}
let mut string = String::with_capacity(input.len() + REPLACEMENT_CHARACTER.len());
loop {
match result {
Ok(s) => {
string.push_str(s);
return string.into()
}
Err(DecodeError::Incomplete { valid_prefix, .. }) => {
string.push_str(valid_prefix);
string.push_str(REPLACEMENT_CHARACTER);
return string.into()
}
Err(DecodeError::Invalid { valid_prefix, remaining_input, .. }) => {
string.push_str(valid_prefix);
string.push_str(REPLACEMENT_CHARACTER);
result = decode(remaining_input);
}
}
}
}
pub const DECODED_LOSSY: &'static [(&'static [u8], &'static str)] = &[
(b"hello", "hello"),
(b"\xe0\xb8\xa8\xe0\xb9\x84\xe0\xb8\x97\xe0\xb8\xa2\xe4\xb8\xad\xe5\x8d\x8e", "ศไทย中华"),
(b"Vi\xe1\xbb\x87t Nam", "Việt Nam"),
(b"Hello\xC2 There\xFF ", "Hello\u{FFFD} There\u{FFFD} "),
(b"Hello\xC0\x80 There", "Hello\u{FFFD}\u{FFFD} There"),
(b"\xE6\x83 Goodbye", "\u{FFFD} Goodbye"),
(b"\xF5foo\xF5\x80bar", "\u{FFFD}foo\u{FFFD}\u{FFFD}bar"),
(b"\xF5foo\xF5\xC2", "\u{FFFD}foo\u{FFFD}\u{FFFD}"),
(b"\xF1foo\xF1\x80bar\xF1\x80\x80baz", "\u{FFFD}foo\u{FFFD}bar\u{FFFD}baz"),
(b"\xF4foo\xF4\x80bar\xF4\xBFbaz", "\u{FFFD}foo\u{FFFD}bar\u{FFFD}\u{FFFD}baz"),
(b"\xF0\x80\x80\x80foo\xF0\x90\x80\x80bar", "\u{FFFD}\u{FFFD}\u{FFFD}\u{FFFD}foo\u{10000}bar"),
(b"\xF0\x90\x80foo", "\u{FFFD}foo"),
// surrogates
(b"\xED\xA0\x80foo\xED\xBF\xBFbar", "\u{FFFD}\u{FFFD}\u{FFFD}foo\u{FFFD}\u{FFFD}\u{FFFD}bar"),
];
#[test]
fn test_string_from_utf8_lossy() {
for &(input, expected) in DECODED_LOSSY {
assert_eq!(string_from_utf8_lossy(input), expected);
}
}
pub fn all_partitions<'a, F>(input: &'a [u8], f: F)
where F: Fn(&[&[u8]])
{
fn all_partitions_inner<'a, F>(chunks: &mut Vec<&'a [u8]>, input: &'a [u8], f: &F)
where F: Fn(&[&[u8]])
{
if input.is_empty() {
f(chunks)
}
for i in 1..(input.len() + 1) {
chunks.push(&input[..i]);
all_partitions_inner(chunks, &input[i..], f);
chunks.pop();
}
}
let mut chunks = Vec::new();
all_partitions_inner(&mut chunks, input, &f);
assert_eq!(chunks.len(), 0);
}
#[test]
fn test_incremental_decoder() {
for &(input, expected) in DECODED_LOSSY {
all_partitions(input, |chunks| {
let mut string = String::new();
{
let mut decoder = LossyDecoder::new(|s| string.push_str(s));
for &chunk in &*chunks {
decoder.feed(chunk);
}
}
assert_eq!(string, expected);
});
}
}
#[test]
fn test_bufread_decoder() {
for &(input, expected) in DECODED_LOSSY {
all_partitions(input, |chunks| {
let chunks = Chunks(chunks.to_vec().into());
let string = BufReadDecoder::read_to_string_lossy(chunks).unwrap();
assert_eq!(string, expected)
});
}
}
struct Chunks<'a>(VecDeque<&'a [u8]>);
impl<'a> io::Read for Chunks<'a> {
fn read(&mut self, _: &mut [u8]) -> io::Result<usize> {
unimplemented!()
}
}
impl<'a> io::BufRead for Chunks<'a> {
fn fill_buf(&mut self) -> io::Result<&[u8]> {
Ok(*self.0.front().unwrap())
}
fn consume(&mut self, bytes: usize) {
{
let front = self.0.front_mut().unwrap();
*front = &front[bytes..];
if !front.is_empty() {
return
}
}
if self.0.len() > 1 {
self.0.pop_front();
}
}
}
|