From 8daa83a594a2e98f39d764422bfbdbc62c9efd44 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Fri, 19 Apr 2024 19:20:00 +0200 Subject: Adding upstream version 2:4.20.0+dfsg. Signed-off-by: Daniel Baumann --- lib/compression/tests/test_lzx_huffman.c | 1255 ++++++++++++++++++++++++++++++ 1 file changed, 1255 insertions(+) create mode 100644 lib/compression/tests/test_lzx_huffman.c (limited to 'lib/compression/tests/test_lzx_huffman.c') diff --git a/lib/compression/tests/test_lzx_huffman.c b/lib/compression/tests/test_lzx_huffman.c new file mode 100644 index 0000000..7770535 --- /dev/null +++ b/lib/compression/tests/test_lzx_huffman.c @@ -0,0 +1,1255 @@ +/* + * Samba compression library - LGPLv3 + * + * Copyright © Catalyst IT 2022 + * + * Written by Douglas Bagnall + * + * ** NOTE! The following LGPL license applies to this file. + * ** It does NOT imply that all of Samba is released under the LGPL + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 3 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see . + */ + +#include +#include +#include +#include +#include +#include +#include "replace.h" +#include +#include "lzxpress_huffman.h" +#include "lib/util/stable_sort.h" +#include "lib/util/data_blob.h" + +/* set LZXHUFF_DEBUG_FILES to true to save round-trip files in /tmp. */ +#define LZXHUFF_DEBUG_FILES false + +/* set LZXHUFF_DEBUG_VERBOSE to true to print more. */ +#define LZXHUFF_DEBUG_VERBOSE false + + +#if LZXHUFF_DEBUG_VERBOSE +#define debug_message(...) print_message(__VA_ARGS__) + +#include + +struct timespec start = {0}; +struct timespec end = {0}; +static void debug_start_timer(void) +{ + clock_gettime(CLOCK_MONOTONIC, &start); +} + +static void debug_end_timer(const char *name, size_t len) +{ + uint64_t ns; + double secs; + double rate; + clock_gettime(CLOCK_MONOTONIC, &end); + ns = end.tv_nsec; + ns += end.tv_sec * 1000 * 1000 * 1000; + ns -= start.tv_nsec; + ns -= start.tv_sec * 1000 * 1000 * 1000; + secs = ns / 1e9; + rate = len / (secs * 1024 * 1024); + debug_message("%s %zu bytes in %.2g: \033[1;35m%.2f\033[0m MB per second\n", + name, len, secs, rate); +} + +#else +#define debug_message(...) /* debug_message */ +#define debug_start_timer(...) /* debug_start_timer */ +#define debug_end_timer(...) /* debug_end_timer */ +#endif + + +struct lzx_pair { + const char *name; + DATA_BLOB compressed; + DATA_BLOB decompressed; +}; + +struct lzx_file_pair { + const char *name; + const char *compressed_file; + const char *decompressed_file; +}; + + +#define DECOMP_DIR "testdata/compression/decompressed" +#define COMP_DIR "testdata/compression/compressed-huffman" +#define MORE_COMP_DIR "testdata/compression/compressed-more-huffman" + + +#define VARRGH(...) __VA_ARGS__ + +#define BLOB_FROM_ARRAY(...) \ + { \ + .data = (uint8_t[]){__VA_ARGS__}, \ + .length = sizeof((uint8_t[]){__VA_ARGS__}) \ + } + +#define BLOB_FROM_STRING(s) \ + { \ + .data = discard_const_p(uint8_t, s), \ + .length = (sizeof(s) - 1) \ + } + + +const char * file_names[] = { + "27826-8.txt", + "5d049b4cb1bd933f5e8ex19", + "638e61e96d54279981c3x5", + "64k-minus-one-zeros", + "64k-plus-one-zeros", + "64k-zeros", + "96f696a4e5ce56c61a3dx10", + "9e0b6a12febf38e98f13", + "abc-times-101", + "abc-times-105", + "abc-times-200", + "and_rand", + "and_rand-128k+", + "b63289ccc7f218c0d56b", + "beta-variate1-128k+", + "beta-variate2-128k+", + "beta-variate3-128k+", + "decayed_alphabet_128k+", + "decayed_alphabet_64k", + "exp_shuffle", + "exp_shuffle-128k+", + "f00842317dc6d5695b02", + "fib_shuffle", + "fib_shuffle-128k+", + "fuzzing-0fc2d461b56cd8103c91", + "fuzzing-17c961778538cc10ab7c", + "fuzzing-3591f9dc02bb00a54b60", + "fuzzing-3ec3bca27bb9eb40c128", + "fuzzing-80b4fa18ff5f8dd04862", + "fuzzing-a3115a81d1ac500318f9", + "generate-windows-test-vectors.c", + "midsummer-nights-dream.txt", + "notes-on-the-underground.txt", + "pg22009.txt", + "repeating", + "repeating-exactly-64k", + "setup.log", + "skewed_choices", + "skewed_choices-128k+", + /* These ones were deathly slow in fuzzing at one point */ + "slow-015ddc36a71412ccc50d", + "slow-100e9f966a7feb9ca40a", + "slow-2a671c3cff4f1574cbab", + "slow-33d90a24e70515b14cd0", + "slow-49d8c05261e3f412fc72", + "slow-50a249d2fe56873e56a0", + "slow-63e9f0b52235fb0129fa", + "slow-73b7f971d65908ac0095", + "slow-8b61e3dd267908544531", + "slow-9d1c5a079b0462986f1f", + "slow-aa7262a821dabdcf04a6", + "slow-b8a91d142b0d2af7f5ca", + "slow-c79142457734bbc8d575", + "slow-d736544545b90d83fe75", + "slow-e3b9bdfaed7d1a606fdb", + "slow-f3f1c02a9d006e5e1703", + "square_series", + "square_series-128k+", + "trigram_128k+", + "trigram_64k", + "trigram_sum_128k+", + "trigram_sum_64k", + NULL +}; + +struct lzx_pair bidirectional_pairs[] = { + + {.name = "abc__100_repeats", /* [MS-XCA] 3.2 example 2. */ + .decompressed = BLOB_FROM_STRING( + "abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc" + "abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc" + "abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc" + "abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc" + "abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc" + ), + .compressed = BLOB_FROM_ARRAY( + /* + * The 'a', 'b', and 'c' bytes are 0x61, 0x62, 0x63. No other + * symbols occur. That means we need 48 0x00 bytes for the + * first 96 symbol-nybbles, then some short codes, then zeros + * again for the rest of the literals. + */ + 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, + 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, + 0,0,0,0,0, 0,0,0, + 0x30, 0x23, /* a_ cb */ + 0,0,0,0,0, 0,0,0,0,0, + 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, + 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, /* 100 bytes */ + 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, + 0,0,0,0,0, 0,0,0, /* here end the 0-255 literals (128 bytes) */ + 0x02, /* 'EOF' symbol 256 (byte 128 low) */ + 0,0,0,0,0, 0,0,0,0,0, 0, /* 140 bytes */ + 0,0,0, + 0x20, /* codepoint 287 (byte 143 high) */ + 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0, /* 160 bytes */ + 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, + 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, + 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, + 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, /* 240 bytes */ + 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0, + /* + * So that's the tree. + * + * length 2 codes for 'c', EOF, 287 + * length 3 for 'a', 'b'. + * + * c: 00 + * EOF: 01 + * 287: 10 + * a: 110 + * b: 111 + * + * thus the literal string "abc" is 110-111-00. + * + * Now for the lz77 match definitions for EOF and 287. + * + * Why 287? It encodes the match distance and offset. + * + * 287 - 256 = 31 + * + * _length = 31 % 16 = 15 + * _distance = 31 / 16 = 1 + * + * (it's easier to look at the hex, 0x11f: + * 1xx means a match; x1x is _distance; xxf is _length) + * + * _distance 1 means a two bit distance (10 or 11; 2 or 3). + * That means the next bit will be the least significant bit + * of distance (1 in this case, meaning distance 3). + * + * if _length is 15, real length is included inline. + * + * 'EOF' == 256 means _length = 0, _distance = 0. + * + * _distance 0 means 1, so no further bits needed. + * _length 0 means length 3. + * + * but when used as EOF, this doesn't matter. + */ + 0xa8, 0xdc, 0x00, 0x00, 0xff, 0x26, 0x01 + /* These remaining bytes are: + * + * 10101000 11011100 00000000 00000000 11111111 + * 00100110 00000001 + * + * and we read them as 16 chunks (i.e. flipping odd/even order) + * + * 110-111-00 10-1-01-000 + * a b c 287 | EOF + * | + * this is the 287 distance low bit. + * + * The last 3 bits are not used. The 287 length is sort of + * out of band, coming up soon (because 287 encodes length + * 15; most codes do not do this). + * + * 00000000 00000000 + * + * This padding is there because the first 32 bits are read + * at the beginning of decoding. If there were more things to + * be encoded, they would be in here. + * + * 11111111 + * + * This byte is pulled as the length for the 287 match. + * Because it is 0xff, we pull a further 2 bytes for the + * actual length, i.e. a 16 bit number greater than 270. + * + * 00000001 00100110 + * + * that is 0x126 = 294 = the match length - 3 (because we're + * encoding ["abc", , EOF]). + * + */ + ) + }, + {.name = "abcdefghijklmnopqrstuvwxyz", /* [MS-XCA] 3.2 example 1. */ + .decompressed = BLOB_FROM_STRING("abcdefghijklmnopqrstuvwxyz"), + .compressed = BLOB_FROM_ARRAY( + /* + * In this case there are no matches encoded as there are no + * repeated symbols. Including the EOF, there are 27 symbols + * all occurring exactly as frequently as each other (once). + * From that we would expect the codes to be mostly 5 bits + * long, because 27 < 2^5 (32), but greater than 2^4. And + * that's what we see. + */ + 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, + 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, + 0,0,0,0,0, 0,0,0, + /* 14 non-zero bytes for 26 letters/nibbles */ + 0x50, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, + 0x55, 0x55, 0x55, 0x45, 0x44, 0x04, + 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0, /* 80 */ + 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, + 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, + 0,0,0,0,0, 0,0,0, + 0x04, /* 0x100 EOF */ + /* no matches */ + 0,0,0,0,0, 0,0,0,0,0, 0, /* 140 */ + 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, + 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, + 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, + 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, + 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, /* 240 */ + 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0, + + 0xd8, 0x52, 0x3e, 0xd7, 0x94, 0x11, 0x5b, 0xe9, + 0x19, 0x5f, 0xf9, 0xd6, 0x7c, 0xdf, 0x8d, 0x04, + 0x00, 0x00, 0x00, 0x00) + }, + {0} +}; + + +static void test_lzxpress_huffman_decompress(void **state) +{ + size_t i; + ssize_t written; + uint8_t *dest = NULL; + TALLOC_CTX *mem_ctx = talloc_new(NULL); + for (i = 0; bidirectional_pairs[i].name != NULL; i++) { + struct lzx_pair p = bidirectional_pairs[i]; + dest = talloc_array(mem_ctx, uint8_t, p.decompressed.length); + + debug_message("%s compressed %zu decomp %zu\n", p.name, + p.compressed.length, + p.decompressed.length); + + written = lzxpress_huffman_decompress(p.compressed.data, + p.compressed.length, + dest, + p.decompressed.length); + assert_int_not_equal(written, -1); + assert_int_equal(written, p.decompressed.length); + + assert_memory_equal(dest, p.decompressed.data, p.decompressed.length); + talloc_free(dest); + } +} + +static void test_lzxpress_huffman_compress(void **state) +{ + size_t i; + ssize_t written; + uint8_t *dest = NULL; + TALLOC_CTX *mem_ctx = talloc_new(NULL); + for (i = 0; bidirectional_pairs[i].name != NULL; i++) { + struct lzx_pair p = bidirectional_pairs[i]; + debug_message("%s compressed %zu decomp %zu\n", p.name, + p.compressed.length, + p.decompressed.length); + + written = lzxpress_huffman_compress_talloc(mem_ctx, + p.decompressed.data, + p.decompressed.length, + &dest); + + assert_int_not_equal(written, -1); + assert_int_equal(written, p.compressed.length); + assert_memory_equal(dest, p.compressed.data, p.compressed.length); + talloc_free(dest); + } +} + + +static DATA_BLOB datablob_from_file(TALLOC_CTX *mem_ctx, + const char *filename) +{ + DATA_BLOB b = {0}; + FILE *fh = fopen(filename, "rb"); + int ret; + struct stat s; + size_t len; + if (fh == NULL) { + debug_message("could not open '%s'\n", filename); + return b; + } + ret = fstat(fileno(fh), &s); + if (ret != 0) { + fclose(fh); + return b; + } + b.data = talloc_array(mem_ctx, uint8_t, s.st_size); + if (b.data == NULL) { + fclose(fh); + return b; + } + len = fread(b.data, 1, s.st_size, fh); + if (ferror(fh) || len != s.st_size) { + TALLOC_FREE(b.data); + } else { + b.length = len; + } + fclose(fh); + return b; +} + + + +static void test_lzxpress_huffman_decompress_files(void **state) +{ + size_t i; + int score = 0; + TALLOC_CTX *mem_ctx = talloc_new(NULL); + for (i = 0; file_names[i] != NULL; i++) { + char filename[200]; + uint8_t *dest = NULL; + ssize_t written; + TALLOC_CTX *tmp_ctx = talloc_new(mem_ctx); + struct lzx_pair p = { + .name = file_names[i] + }; + + debug_message("%s\n", p.name); + + snprintf(filename, sizeof(filename), + "%s/%s.decomp", DECOMP_DIR, p.name); + + p.decompressed = datablob_from_file(tmp_ctx, filename); + assert_non_null(p.decompressed.data); + + snprintf(filename, sizeof(filename), + "%s/%s.lzhuff", COMP_DIR, p.name); + + p.compressed = datablob_from_file(tmp_ctx, filename); + assert_non_null(p.compressed.data); + + dest = talloc_array(tmp_ctx, uint8_t, p.decompressed.length); + debug_start_timer(); + written = lzxpress_huffman_decompress(p.compressed.data, + p.compressed.length, + dest, + p.decompressed.length); + debug_end_timer("decompress", p.decompressed.length); + if (written != -1 && + written == p.decompressed.length && + memcmp(dest, p.decompressed.data, p.decompressed.length) == 0) { + debug_message("\033[1;32mdecompressed %s!\033[0m\n", p.name); + score++; + } else { + debug_message("\033[1;31mfailed to decompress %s!\033[0m\n", + p.name); + debug_message("size %zd vs reference %zu\n", + written, p.decompressed.length); + } + talloc_free(tmp_ctx); + } + debug_message("%d/%zu correct\n", score, i); + assert_int_equal(score, i); +} + + +static void test_lzxpress_huffman_decompress_more_compressed_files(void **state) +{ + /* + * This tests the decompression of files that have been compressed on + * Windows with the level turned up (to 1, default for MS-XCA is 0). + * + * The format is identical, but it will have tried harder to find + * matches. + */ + size_t i; + int score = 0; + int found = 0; + TALLOC_CTX *mem_ctx = talloc_new(NULL); + for (i = 0; file_names[i] != NULL; i++) { + char filename[200]; + uint8_t *dest = NULL; + ssize_t written; + TALLOC_CTX *tmp_ctx = talloc_new(mem_ctx); + struct lzx_pair p = { + .name = file_names[i] + }; + + debug_message("%s\n", p.name); + + snprintf(filename, sizeof(filename), + "%s/%s.decomp", DECOMP_DIR, p.name); + + p.decompressed = datablob_from_file(tmp_ctx, filename); + assert_non_null(p.decompressed.data); + + snprintf(filename, sizeof(filename), + "%s/%s.lzhuff", MORE_COMP_DIR, p.name); + + p.compressed = datablob_from_file(tmp_ctx, filename); + if (p.compressed.data == NULL) { + /* + * We don't have all the vectors in the + * more-compressed directory, which is OK, we skip + * them. + */ + continue; + } + found++; + dest = talloc_array(tmp_ctx, uint8_t, p.decompressed.length); + debug_start_timer(); + written = lzxpress_huffman_decompress(p.compressed.data, + p.compressed.length, + dest, + p.decompressed.length); + debug_end_timer("decompress", p.decompressed.length); + if (written == p.decompressed.length && + memcmp(dest, p.decompressed.data, p.decompressed.length) == 0) { + debug_message("\033[1;32mdecompressed %s!\033[0m\n", p.name); + score++; + } else { + debug_message("\033[1;31mfailed to decompress %s!\033[0m\n", + p.name); + debug_message("size %zd vs reference %zu\n", + written, p.decompressed.length); + } + talloc_free(tmp_ctx); + } + debug_message("%d/%d correct\n", score, found); + assert_int_equal(score, found); +} + + +/* + * attempt_round_trip() tests whether a data blob can survive a compression + * and decompression cycle. If save_name is not NULL and LZXHUFF_DEBUG_FILES + * evals to true, the various stages are saved in files with that name and the + * '-original', '-compressed', and '-decompressed' suffixes. If ref_compressed + * has data, it'll print a message saying whether the compressed data matches + * that. + */ + +static ssize_t attempt_round_trip(TALLOC_CTX *mem_ctx, + DATA_BLOB original, + const char *save_name, + DATA_BLOB ref_compressed) +{ + TALLOC_CTX *tmp_ctx = talloc_new(mem_ctx); + DATA_BLOB compressed = data_blob_talloc(tmp_ctx, NULL, + original.length * 4 / 3 + 260); + DATA_BLOB decompressed = data_blob_talloc(tmp_ctx, NULL, + original.length); + ssize_t comp_written, decomp_written; + debug_start_timer(); + comp_written = lzxpress_huffman_compress_talloc(tmp_ctx, + original.data, + original.length, + &compressed.data); + debug_end_timer("compress", original.length); + if (comp_written <= 0) { + talloc_free(tmp_ctx); + return -1; + } + + if (ref_compressed.data != NULL) { + /* + * This is informational, not an assertion; there are + * ~infinite legitimate ways to compress the data, many as + * good as each other (think of compression as a language, not + * a format). + */ + debug_message("compressed size %zd vs reference %zu\n", + comp_written, ref_compressed.length); + + if (comp_written == compressed.length && + memcmp(compressed.data, ref_compressed.data, comp_written) == 0) { + debug_message("\033[1;32mbyte identical!\033[0m\n"); + } + } + debug_start_timer(); + decomp_written = lzxpress_huffman_decompress(compressed.data, + comp_written, + decompressed.data, + original.length); + debug_end_timer("decompress", original.length); + if (save_name != NULL && LZXHUFF_DEBUG_FILES) { + char s[300]; + FILE *fh = NULL; + + snprintf(s, sizeof(s), "%s-original", save_name); + fprintf(stderr, "Saving %zu bytes to %s\n", original.length, s); + fh = fopen(s, "w"); + fwrite(original.data, 1, original.length, fh); + fclose(fh); + + snprintf(s, sizeof(s), "%s-compressed", save_name); + fprintf(stderr, "Saving %zu bytes to %s\n", comp_written, s); + fh = fopen(s, "w"); + fwrite(compressed.data, 1, comp_written, fh); + fclose(fh); + /* + * We save the decompressed file using original.length, not + * the returned size. If these differ, the returned size will + * be -1. By saving the whole buffer we can see at what point + * it went haywire. + */ + snprintf(s, sizeof(s), "%s-decompressed", save_name); + fprintf(stderr, "Saving %zu bytes to %s\n", original.length, s); + fh = fopen(s, "w"); + fwrite(decompressed.data, 1, original.length, fh); + fclose(fh); + } + + if (original.length != decomp_written || + memcmp(decompressed.data, + original.data, + original.length) != 0) { + debug_message("\033[1;31mgot %zd, expected %zu\033[0m\n", + decomp_written, + original.length); + talloc_free(tmp_ctx); + return -1; + } + talloc_free(tmp_ctx); + return comp_written; +} + + +static void test_lzxpress_huffman_round_trip(void **state) +{ + size_t i; + int score = 0; + ssize_t compressed_total = 0; + ssize_t reference_total = 0; + TALLOC_CTX *mem_ctx = talloc_new(NULL); + for (i = 0; file_names[i] != NULL; i++) { + char filename[200]; + char *debug_files = NULL; + TALLOC_CTX *tmp_ctx = talloc_new(mem_ctx); + ssize_t comp_size; + struct lzx_pair p = { + .name = file_names[i] + }; + debug_message("-------------------\n"); + debug_message("%s\n", p.name); + + snprintf(filename, sizeof(filename), + "%s/%s.decomp", DECOMP_DIR, p.name); + + p.decompressed = datablob_from_file(tmp_ctx, filename); + assert_non_null(p.decompressed.data); + + snprintf(filename, sizeof(filename), + "%s/%s.lzhuff", COMP_DIR, p.name); + + p.compressed = datablob_from_file(tmp_ctx, filename); + if (p.compressed.data == NULL) { + debug_message( + "Could not load %s reference file %s\n", + p.name, filename); + debug_message("%s decompressed %zu\n", p.name, + p.decompressed.length); + } else { + debug_message("%s: reference compressed %zu decomp %zu\n", + p.name, + p.compressed.length, + p.decompressed.length); + } + if (1) { + /* + * We're going to save copies in /tmp. + */ + snprintf(filename, sizeof(filename), + "/tmp/lzxhuffman-%s", p.name); + debug_files = filename; + } + + comp_size = attempt_round_trip(mem_ctx, p.decompressed, + debug_files, + p.compressed); + if (comp_size > 0) { + debug_message("\033[1;32mround trip!\033[0m\n"); + score++; + if (p.compressed.length) { + compressed_total += comp_size; + reference_total += p.compressed.length; + } + } + talloc_free(tmp_ctx); + } + debug_message("%d/%zu correct\n", score, i); + print_message("\033[1;34mtotal compressed size: %zu\033[0m\n", + compressed_total); + print_message("total reference size: %zd \n", reference_total); + print_message("diff: %7zd \n", + reference_total - compressed_total); + assert_true(reference_total != 0); + print_message("ratio: \033[1;3%dm%.2f\033[0m \n", + 2 + (compressed_total >= reference_total), + ((double)compressed_total) / reference_total); + /* + * Assert that the compression is *about* as good as Windows. Of course + * it doesn't matter if we do better, but mysteriously getting better + * is usually a sign that something is wrong. + * + * At the time of writing, compressed_total is 2674004, or 10686 more + * than the Windows reference total. That's < 0.5% difference, we're + * asserting at 2%. + */ + assert_true(labs(compressed_total - reference_total) < + compressed_total / 50); + + assert_int_equal(score, i); + talloc_free(mem_ctx); +} + +/* + * Bob Jenkins' Small Fast RNG. + * + * We don't need it to be this good, but we do need it to be reproduceable + * across platforms, which rand() etc aren't. + * + * http://burtleburtle.net/bob/rand/smallprng.html + */ + +struct jsf_rng { + uint32_t a; + uint32_t b; + uint32_t c; + uint32_t d; +}; + +#define ROTATE32(x, k) (((x) << (k)) | ((x) >> (32 - (k)))) + +static uint32_t jsf32(struct jsf_rng *x) { + uint32_t e = x->a - ROTATE32(x->b, 27); + x->a = x->b ^ ROTATE32(x->c, 17); + x->b = x->c + x->d; + x->c = x->d + e; + x->d = e + x->a; + return x->d; +} + +static void jsf32_init(struct jsf_rng *x, uint32_t seed) { + size_t i; + x->a = 0xf1ea5eed; + x->b = x->c = x->d = seed; + for (i = 0; i < 20; ++i) { + jsf32(x); + } +} + + +static void test_lzxpress_huffman_long_gpl_round_trip(void **state) +{ + /* + * We use a kind of model-free Markov model to generate a massively + * extended pastiche of the GPLv3 (chosen because it is right there in + * "COPYING" and won't change often). + * + * The point is to check a round trip of a very long message with + * multiple repetitions on many scales, without having to add a very + * large file. + */ + size_t i, j, k; + uint8_t c; + TALLOC_CTX *mem_ctx = talloc_new(NULL); + DATA_BLOB gpl = datablob_from_file(mem_ctx, "COPYING"); + DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, 5 * 1024 * 1024); + DATA_BLOB ref = {0}; + ssize_t comp_size; + struct jsf_rng rng; + + if (gpl.data == NULL) { + print_message("could not read COPYING\n"); + fail(); + } + + jsf32_init(&rng, 1); + + j = 1; + original.data[0] = gpl.data[0]; + for (i = 1; i < original.length; i++) { + size_t m; + char p = original.data[i - 1]; + c = gpl.data[j]; + original.data[i] = c; + j++; + m = (j + jsf32(&rng)) % (gpl.length - 50); + for (k = m; k < m + 30; k++) { + if (p == gpl.data[k] && + c == gpl.data[k + 1]) { + j = k + 2; + break; + } + } + if (j == gpl.length) { + j = 1; + } + } + + comp_size = attempt_round_trip(mem_ctx, original, "/tmp/gpl", ref); + assert_true(comp_size > 0); + assert_true(comp_size < original.length); + + talloc_free(mem_ctx); +} + + +static void test_lzxpress_huffman_long_random_graph_round_trip(void **state) +{ + size_t i; + TALLOC_CTX *mem_ctx = talloc_new(NULL); + DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, 5 * 1024 * 1024); + DATA_BLOB ref = {0}; + /* + * There's a random trigram graph, with each pair of sequential bytes + * pointing to a successor. This would probably fall into a fairly + * simple loop, but we introduce damage into the system, randomly + * flipping about 1 bit in 64. + * + * The result is semi-structured and compressible. + */ + uint8_t *d = original.data; + uint8_t *table = talloc_array(mem_ctx, uint8_t, 65536); + uint32_t *table32 = (void*)table; + ssize_t comp_size; + struct jsf_rng rng; + + jsf32_init(&rng, 1); + for (i = 0; i < (65536 / 4); i++) { + table32[i] = jsf32(&rng); + } + + d[0] = 'a'; + d[1] = 'b'; + + for (i = 2; i < original.length; i++) { + uint16_t k = (d[i - 2] << 8) | d[i - 1]; + uint32_t damage = jsf32(&rng) & jsf32(&rng) & jsf32(&rng); + damage &= (damage >> 16); + k ^= damage & 0xffff; + d[i] = table[k]; + } + + comp_size = attempt_round_trip(mem_ctx, original, "/tmp/random-graph", ref); + assert_true(comp_size > 0); + assert_true(comp_size < original.length); + + talloc_free(mem_ctx); +} + + +static void test_lzxpress_huffman_chaos_graph_round_trip(void **state) +{ + size_t i; + TALLOC_CTX *mem_ctx = talloc_new(NULL); + DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, 5 * 1024 * 1024); + DATA_BLOB ref = {0}; + /* + * There's a random trigram graph, with each pair of sequential bytes + * pointing to a successor. This would probably fall into a fairly + * simple loop, but we keep changing the graph. The result is long + * periods of stability separatd by bursts of noise. + */ + uint8_t *d = original.data; + uint8_t *table = talloc_array(mem_ctx, uint8_t, 65536); + uint32_t *table32 = (void*)table; + ssize_t comp_size; + struct jsf_rng rng; + + jsf32_init(&rng, 1); + for (i = 0; i < (65536 / 4); i++) { + table32[i] = jsf32(&rng); + } + + d[0] = 'a'; + d[1] = 'b'; + + for (i = 2; i < original.length; i++) { + uint16_t k = (d[i - 2] << 8) | d[i - 1]; + uint32_t damage = jsf32(&rng); + d[i] = table[k]; + if ((damage >> 29) == 0) { + uint16_t index = damage & 0xffff; + uint8_t value = (damage >> 16) & 0xff; + table[index] = value; + } + } + + comp_size = attempt_round_trip(mem_ctx, original, "/tmp/chaos-graph", ref); + assert_true(comp_size > 0); + assert_true(comp_size < original.length); + + talloc_free(mem_ctx); +} + + +static void test_lzxpress_huffman_sparse_random_graph_round_trip(void **state) +{ + size_t i; + TALLOC_CTX *mem_ctx = talloc_new(NULL); + DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, 5 * 1024 * 1024); + DATA_BLOB ref = {0}; + /* + * There's a random trigram graph, with each pair of sequential bytes + * pointing to a successor. This will fall into a fairly simple loops, + * but we introduce damage into the system, randomly mangling about 1 + * byte in 65536. + * + * The result has very long repetitive runs, which should lead to + * oversized blocks. + */ + uint8_t *d = original.data; + uint8_t *table = talloc_array(mem_ctx, uint8_t, 65536); + uint32_t *table32 = (void*)table; + ssize_t comp_size; + struct jsf_rng rng; + + jsf32_init(&rng, 3); + for (i = 0; i < (65536 / 4); i++) { + table32[i] = jsf32(&rng); + } + + d[0] = 'a'; + d[1] = 'b'; + + for (i = 2; i < original.length; i++) { + uint16_t k = (d[i - 2] << 8) | d[i - 1]; + uint32_t damage = jsf32(&rng); + if ((damage & 0xffff0000) == 0) { + k ^= damage & 0xffff; + } + d[i] = table[k]; + } + + comp_size = attempt_round_trip(mem_ctx, original, "/tmp/sparse-random-graph", ref); + assert_true(comp_size > 0); + assert_true(comp_size < original.length); + + talloc_free(mem_ctx); +} + + +static void test_lzxpress_huffman_random_noise_round_trip(void **state) +{ + size_t i; + size_t len = 1024 * 1024; + TALLOC_CTX *mem_ctx = talloc_new(NULL); + DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, len); + DATA_BLOB ref = {0}; + ssize_t comp_size; + /* + * We are filling this up with incompressible noise, but we can assert + * quite tight bounds on how badly it will fail to compress. + * + * Specifically, with randomly distributed codes, the Huffman table + * should come out as roughly even, averaging 8 bit codes. Then there + * will be a 256 byte table every 64k, which is a 1/256 overhead (i.e. + * the compressed length will be 257/256 the original *on average*). + * We assert it is less than 1 in 200 but more than 1 in 300. + */ + uint32_t *d32 = (uint32_t*)((void*)original.data); + struct jsf_rng rng; + jsf32_init(&rng, 2); + + for (i = 0; i < (len / 4); i++) { + d32[i] = jsf32(&rng); + } + + comp_size = attempt_round_trip(mem_ctx, original, "/tmp/random-noise", ref); + assert_true(comp_size > 0); + assert_true(comp_size > original.length + original.length / 300); + assert_true(comp_size < original.length + original.length / 200); + debug_message("original size %zu; compressed size %zd; ratio %.3f\n", + len, comp_size, ((double)comp_size) / len); + + talloc_free(mem_ctx); +} + + +static void test_lzxpress_huffman_overlong_matches(void **state) +{ + size_t i, j = 0; + TALLOC_CTX *mem_ctx = talloc_new(NULL); + DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, 1024 * 1024); + DATA_BLOB ref = {0}; + uint8_t *d = original.data; + char filename[300]; + /* + * We are testing with something like "aaaaaaaaaaaaaaaaaaaaaaabbbbb" + * where typically the number of "a"s is > 65536, and the number of + * "b"s is < 42. + */ + ssize_t na[] = {65535, 65536, 65537, 65559, 65575, 200000, -1}; + ssize_t nb[] = {1, 2, 20, 39, 40, 41, 42, -1}; + int score = 0; + ssize_t comp_size; + + for (i = 0; na[i] >= 0; i++) { + ssize_t a = na[i]; + memset(d, 'a', a); + for (j = 0; nb[j] >= 0; j++) { + ssize_t b = nb[j]; + memset(d + a, 'b', b); + original.length = a + b; + snprintf(filename, sizeof(filename), + "/tmp/overlong-%zd-%zd", a, b); + comp_size = attempt_round_trip(mem_ctx, + original, + filename, ref); + if (comp_size > 0) { + score++; + } + } + } + debug_message("%d/%zu correct\n", score, i * j); + assert_int_equal(score, i * j); + talloc_free(mem_ctx); +} + + +static void test_lzxpress_huffman_overlong_matches_abc(void **state) +{ + size_t i, j = 0, k = 0; + TALLOC_CTX *mem_ctx = talloc_new(NULL); + DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, 1024 * 1024); + DATA_BLOB ref = {0}; + uint8_t *d = original.data; + char filename[300]; + /* + * We are testing with something like "aaaabbbbcc" where typically + * the number of "a"s + "b"s is around 65536, and the number of "c"s + * is < 43. + */ + ssize_t nab[] = {1, 21, 32767, 32768, 32769, -1}; + ssize_t nc[] = {1, 2, 20, 39, 40, 41, 42, -1}; + int score = 0; + ssize_t comp_size; + + for (i = 0; nab[i] >= 0; i++) { + ssize_t a = nab[i]; + memset(d, 'a', a); + for (j = 0; nab[j] >= 0; j++) { + ssize_t b = nab[j]; + memset(d + a, 'b', b); + for (k = 0; nc[k] >= 0; k++) { + ssize_t c = nc[k]; + memset(d + a + b, 'c', c); + original.length = a + b + c; + snprintf(filename, sizeof(filename), + "/tmp/overlong-abc-%zd-%zd-%zd", + a, b, c); + comp_size = attempt_round_trip(mem_ctx, + original, + filename, ref); + if (comp_size > 0) { + score++; + } + } + } + } + debug_message("%d/%zu correct\n", score, i * j * k); + assert_int_equal(score, i * j * k); + talloc_free(mem_ctx); +} + + +static void test_lzxpress_huffman_extremely_compressible_middle(void **state) +{ + size_t len = 192 * 1024; + TALLOC_CTX *mem_ctx = talloc_new(NULL); + DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, len); + DATA_BLOB ref = {0}; + ssize_t comp_size; + /* + * When a middle block (i.e. not the first and not the last of >= 3), + * can be entirely expressed as a match starting in the previous + * block, the Huffman tree would end up with 1 element, which does not + * work for the code construction. It really wants to use both bits. + * So we need to ensure we have some way of dealing with this. + */ + memset(original.data, 'a', 0x10000 - 1); + memset(original.data + 0x10000 - 1, 'b', 0x10000 + 1); + memset(original.data + 0x20000, 'a', 0x10000); + comp_size = attempt_round_trip(mem_ctx, original, "/tmp/compressible-middle", ref); + assert_true(comp_size > 0); + assert_true(comp_size < 1024); + debug_message("original size %zu; compressed size %zd; ratio %.3f\n", + len, comp_size, ((double)comp_size) / len); + + talloc_free(mem_ctx); +} + + +static void test_lzxpress_huffman_max_length_limit(void **state) +{ + size_t len = 65 * 1024 * 1024; + TALLOC_CTX *mem_ctx = talloc_new(NULL); + DATA_BLOB original = data_blob_talloc_zero(mem_ctx, len); + DATA_BLOB ref = {0}; + ssize_t comp_size; + /* + * Reputedly Windows has a 64MB limit in the maximum match length it + * will encode. We follow this, and test that here with nearly 65 MB + * of zeros between two letters; this should be encoded in three + * blocks: + * + * 1. 'a', 64M × '\0' + * 2. (1M - 2) × '\0' -- finishing off what would have been the same match + * 3. 'b' EOF + * + * Which we can assert by saying the length is > 768, < 1024. + */ + original.data[0] = 'a'; + original.data[len - 1] = 'b'; + comp_size = attempt_round_trip(mem_ctx, original, "/tmp/max-length-limit", ref); + assert_true(comp_size > 0x300); + assert_true(comp_size < 0x400); + debug_message("original size %zu; compressed size %zd; ratio %.3f\n", + len, comp_size, ((double)comp_size) / len); + + talloc_free(mem_ctx); +} + + +static void test_lzxpress_huffman_short_boring_strings(void **state) +{ + size_t len = 64 * 1024; + TALLOC_CTX *mem_ctx = talloc_new(NULL); + DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, len); + DATA_BLOB ref = {0}; + ssize_t comp_size; + ssize_t lengths[] = { + 1, 2, 20, 39, 40, 41, 42, 256, 270, 273, 274, 1000, 64000, -1}; + char filename[300]; + size_t i; + /* + * How do short repetitive strings work? We're poking at the limit + * around which LZ77 comprssion is turned on. + * + * For this test we don't change the blob memory between runs, just + * the declared length. + */ + memset(original.data, 'a', len); + for (i = 0; lengths[i] >= 0; i++) { + original.length = lengths[i]; + snprintf(filename, sizeof(filename), + "/tmp/short-boring-%zu", + original.length); + comp_size = attempt_round_trip(mem_ctx, original, filename, ref); + if (original.length < 41) { + assert_true(comp_size > 256 + original.length / 8); + } else if (original.length < 274) { + assert_true(comp_size == 261); + } else { + assert_true(comp_size == 263); + } + assert_true(comp_size < 261 + original.length / 8); + } + /* let's just show we didn't change the original */ + for (i = 0; i < len; i++) { + if (original.data[i] != 'a') { + fail_msg("input data[%zu] was changed! (%2x, expected %2x)\n", + i, original.data[i], 'a'); + } + } + + talloc_free(mem_ctx); +} + + +static void test_lzxpress_huffman_compress_empty_or_null(void **state) +{ + /* + * We expect these to fail with a -1, except the last one, which does + * the real thing. + */ + ssize_t ret; + const uint8_t *input = bidirectional_pairs[0].decompressed.data; + size_t ilen = bidirectional_pairs[0].decompressed.length; + size_t olen = bidirectional_pairs[0].compressed.length; + uint8_t output[olen]; + struct lzxhuff_compressor_mem cmp_mem; + + ret = lzxpress_huffman_compress(&cmp_mem, input, 0, output, olen); + assert_int_equal(ret, -1LL); + ret = lzxpress_huffman_compress(&cmp_mem, input, ilen, output, 0); + assert_int_equal(ret, -1LL); + + ret = lzxpress_huffman_compress(&cmp_mem, NULL, ilen, output, olen); + assert_int_equal(ret, -1LL); + ret = lzxpress_huffman_compress(&cmp_mem, input, ilen, NULL, olen); + assert_int_equal(ret, -1LL); + ret = lzxpress_huffman_compress(NULL, input, ilen, output, olen); + assert_int_equal(ret, -1LL); + + ret = lzxpress_huffman_compress(&cmp_mem, input, ilen, output, olen); + assert_int_equal(ret, olen); +} + + +static void test_lzxpress_huffman_decompress_empty_or_null(void **state) +{ + /* + * We expect these to fail with a -1, except the last one. + */ + ssize_t ret; + const uint8_t *input = bidirectional_pairs[0].compressed.data; + size_t ilen = bidirectional_pairs[0].compressed.length; + size_t olen = bidirectional_pairs[0].decompressed.length; + uint8_t output[olen]; + + ret = lzxpress_huffman_decompress(input, 0, output, olen); + assert_int_equal(ret, -1LL); + ret = lzxpress_huffman_decompress(input, ilen, output, 0); + assert_int_equal(ret, -1LL); + + ret = lzxpress_huffman_decompress(NULL, ilen, output, olen); + assert_int_equal(ret, -1LL); + ret = lzxpress_huffman_decompress(input, ilen, NULL, olen); + assert_int_equal(ret, -1LL); + + ret = lzxpress_huffman_decompress(input, ilen, output, olen); + assert_int_equal(ret, olen); +} + + +int main(void) { + const struct CMUnitTest tests[] = { + cmocka_unit_test(test_lzxpress_huffman_short_boring_strings), + cmocka_unit_test(test_lzxpress_huffman_max_length_limit), + cmocka_unit_test(test_lzxpress_huffman_extremely_compressible_middle), + cmocka_unit_test(test_lzxpress_huffman_long_random_graph_round_trip), + cmocka_unit_test(test_lzxpress_huffman_chaos_graph_round_trip), + cmocka_unit_test(test_lzxpress_huffman_sparse_random_graph_round_trip), + cmocka_unit_test(test_lzxpress_huffman_round_trip), + cmocka_unit_test(test_lzxpress_huffman_decompress_files), + cmocka_unit_test(test_lzxpress_huffman_decompress_more_compressed_files), + cmocka_unit_test(test_lzxpress_huffman_compress), + cmocka_unit_test(test_lzxpress_huffman_decompress), + cmocka_unit_test(test_lzxpress_huffman_long_gpl_round_trip), + cmocka_unit_test(test_lzxpress_huffman_long_random_graph_round_trip), + cmocka_unit_test(test_lzxpress_huffman_random_noise_round_trip), + cmocka_unit_test(test_lzxpress_huffman_overlong_matches_abc), + cmocka_unit_test(test_lzxpress_huffman_overlong_matches), + cmocka_unit_test(test_lzxpress_huffman_decompress_empty_or_null), + cmocka_unit_test(test_lzxpress_huffman_compress_empty_or_null), + }; + if (!isatty(1)) { + cmocka_set_message_output(CM_OUTPUT_SUBUNIT); + } + + return cmocka_run_group_tests(tests, NULL, NULL); +} -- cgit v1.2.3