/* ctdb_call protocol code Copyright (C) Andrew Tridgell 2006 This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, see . */ /* see http://wiki.samba.org/index.php/Samba_%26_Clustering for protocol design and packet details */ #include "replace.h" #include "system/network.h" #include "system/filesys.h" #include #include #include "lib/util/dlinklist.h" #include "lib/util/debug.h" #include "lib/util/samba_util.h" #include "lib/util/sys_rw.h" #include "lib/util/util_process.h" #include "ctdb_private.h" #include "ctdb_client.h" #include "common/rb_tree.h" #include "common/reqid.h" #include "common/system.h" #include "common/common.h" #include "common/logging.h" #include "common/hash_count.h" struct ctdb_sticky_record { struct ctdb_context *ctdb; struct ctdb_db_context *ctdb_db; TDB_CONTEXT *pindown; }; /* find the ctdb_db from a db index */ struct ctdb_db_context *find_ctdb_db(struct ctdb_context *ctdb, uint32_t id) { struct ctdb_db_context *ctdb_db; for (ctdb_db=ctdb->db_list; ctdb_db; ctdb_db=ctdb_db->next) { if (ctdb_db->db_id == id) { break; } } return ctdb_db; } /* a variant of input packet that can be used in lock requeue */ static void ctdb_call_input_pkt(void *p, struct ctdb_req_header *hdr) { struct ctdb_context *ctdb = talloc_get_type(p, struct ctdb_context); ctdb_input_pkt(ctdb, hdr); } /* send an error reply */ static void ctdb_send_error(struct ctdb_context *ctdb, struct ctdb_req_header *hdr, uint32_t status, const char *fmt, ...) PRINTF_ATTRIBUTE(4,5); static void ctdb_send_error(struct ctdb_context *ctdb, struct ctdb_req_header *hdr, uint32_t status, const char *fmt, ...) { va_list ap; struct ctdb_reply_error_old *r; char *msg; int msglen, len; if (ctdb->methods == NULL) { DEBUG(DEBUG_INFO,(__location__ " Failed to send error. Transport is DOWN\n")); return; } va_start(ap, fmt); msg = talloc_vasprintf(ctdb, fmt, ap); if (msg == NULL) { ctdb_fatal(ctdb, "Unable to allocate error in ctdb_send_error\n"); } va_end(ap); msglen = strlen(msg)+1; len = offsetof(struct ctdb_reply_error_old, msg); r = ctdb_transport_allocate(ctdb, msg, CTDB_REPLY_ERROR, len + msglen, struct ctdb_reply_error_old); CTDB_NO_MEMORY_FATAL(ctdb, r); r->hdr.destnode = hdr->srcnode; r->hdr.reqid = hdr->reqid; r->status = status; r->msglen = msglen; memcpy(&r->msg[0], msg, msglen); ctdb_queue_packet(ctdb, &r->hdr); talloc_free(msg); } /** * send a redirect reply * * The logic behind this function is this: * * A client wants to grab a record and sends a CTDB_REQ_CALL packet * to its local ctdb (ctdb_request_call). If the node is not itself * the record's DMASTER, it first redirects the packet to the * record's LMASTER. The LMASTER then redirects the call packet to * the current DMASTER. Note that this works because of this: When * a record is migrated off a node, then the new DMASTER is stored * in the record's copy on the former DMASTER. */ static void ctdb_call_send_redirect(struct ctdb_context *ctdb, struct ctdb_db_context *ctdb_db, TDB_DATA key, struct ctdb_req_call_old *c, struct ctdb_ltdb_header *header) { uint32_t lmaster = ctdb_lmaster(ctdb, &key); c->hdr.destnode = lmaster; if (ctdb->pnn == lmaster) { c->hdr.destnode = header->dmaster; } c->hopcount++; if (c->hopcount%100 > 95) { DEBUG(DEBUG_WARNING,("High hopcount %d dbid:%s " "key:0x%08x reqid=%08x pnn:%d src:%d lmaster:%d " "header->dmaster:%d dst:%d\n", c->hopcount, ctdb_db->db_name, ctdb_hash(&key), c->hdr.reqid, ctdb->pnn, c->hdr.srcnode, lmaster, header->dmaster, c->hdr.destnode)); } ctdb_queue_packet(ctdb, &c->hdr); } /* send a dmaster reply caller must have the chainlock before calling this routine. Caller must be the lmaster */ static void ctdb_send_dmaster_reply(struct ctdb_db_context *ctdb_db, struct ctdb_ltdb_header *header, TDB_DATA key, TDB_DATA data, uint32_t new_dmaster, uint32_t reqid) { struct ctdb_context *ctdb = ctdb_db->ctdb; struct ctdb_reply_dmaster_old *r; int ret, len; TALLOC_CTX *tmp_ctx; if (ctdb->pnn != ctdb_lmaster(ctdb, &key)) { DEBUG(DEBUG_ALERT,(__location__ " Caller is not lmaster!\n")); return; } header->dmaster = new_dmaster; ret = ctdb_ltdb_store(ctdb_db, key, header, data); if (ret != 0) { ctdb_fatal(ctdb, "ctdb_send_dmaster_reply unable to update dmaster"); return; } if (ctdb->methods == NULL) { ctdb_fatal(ctdb, "ctdb_send_dmaster_reply can't update dmaster since transport is down"); return; } /* put the packet on a temporary context, allowing us to safely free it below even if ctdb_reply_dmaster() has freed it already */ tmp_ctx = talloc_new(ctdb); /* send the CTDB_REPLY_DMASTER */ len = offsetof(struct ctdb_reply_dmaster_old, data) + key.dsize + data.dsize + sizeof(uint32_t); r = ctdb_transport_allocate(ctdb, tmp_ctx, CTDB_REPLY_DMASTER, len, struct ctdb_reply_dmaster_old); CTDB_NO_MEMORY_FATAL(ctdb, r); r->hdr.destnode = new_dmaster; r->hdr.reqid = reqid; r->hdr.generation = ctdb_db->generation; r->rsn = header->rsn; r->keylen = key.dsize; r->datalen = data.dsize; r->db_id = ctdb_db->db_id; memcpy(&r->data[0], key.dptr, key.dsize); memcpy(&r->data[key.dsize], data.dptr, data.dsize); memcpy(&r->data[key.dsize+data.dsize], &header->flags, sizeof(uint32_t)); ctdb_queue_packet(ctdb, &r->hdr); talloc_free(tmp_ctx); } /* send a dmaster request (give another node the dmaster for a record) This is always sent to the lmaster, which ensures that the lmaster always knows who the dmaster is. The lmaster will then send a CTDB_REPLY_DMASTER to the new dmaster */ static void ctdb_call_send_dmaster(struct ctdb_db_context *ctdb_db, struct ctdb_req_call_old *c, struct ctdb_ltdb_header *header, TDB_DATA *key, TDB_DATA *data) { struct ctdb_req_dmaster_old *r; struct ctdb_context *ctdb = ctdb_db->ctdb; int len; uint32_t lmaster = ctdb_lmaster(ctdb, key); if (ctdb->methods == NULL) { ctdb_fatal(ctdb, "Failed ctdb_call_send_dmaster since transport is down"); return; } if (data->dsize != 0) { header->flags |= CTDB_REC_FLAG_MIGRATED_WITH_DATA; } if (lmaster == ctdb->pnn) { ctdb_send_dmaster_reply(ctdb_db, header, *key, *data, c->hdr.srcnode, c->hdr.reqid); return; } len = offsetof(struct ctdb_req_dmaster_old, data) + key->dsize + data->dsize + sizeof(uint32_t); r = ctdb_transport_allocate(ctdb, ctdb, CTDB_REQ_DMASTER, len, struct ctdb_req_dmaster_old); CTDB_NO_MEMORY_FATAL(ctdb, r); r->hdr.destnode = lmaster; r->hdr.reqid = c->hdr.reqid; r->hdr.generation = ctdb_db->generation; r->db_id = c->db_id; r->rsn = header->rsn; r->dmaster = c->hdr.srcnode; r->keylen = key->dsize; r->datalen = data->dsize; memcpy(&r->data[0], key->dptr, key->dsize); memcpy(&r->data[key->dsize], data->dptr, data->dsize); memcpy(&r->data[key->dsize + data->dsize], &header->flags, sizeof(uint32_t)); header->dmaster = c->hdr.srcnode; if (ctdb_ltdb_store(ctdb_db, *key, header, *data) != 0) { ctdb_fatal(ctdb, "Failed to store record in ctdb_call_send_dmaster"); } ctdb_queue_packet(ctdb, &r->hdr); talloc_free(r); } static void ctdb_sticky_pindown_timeout(struct tevent_context *ev, struct tevent_timer *te, struct timeval t, void *private_data) { struct ctdb_sticky_record *sr = talloc_get_type(private_data, struct ctdb_sticky_record); DEBUG(DEBUG_ERR,("Pindown timeout db:%s unstick record\n", sr->ctdb_db->db_name)); if (sr->pindown != NULL) { talloc_free(sr->pindown); sr->pindown = NULL; } } static int ctdb_set_sticky_pindown(struct ctdb_context *ctdb, struct ctdb_db_context *ctdb_db, TDB_DATA key) { TALLOC_CTX *tmp_ctx = talloc_new(NULL); uint32_t *k; struct ctdb_sticky_record *sr; k = ctdb_key_to_idkey(tmp_ctx, key); if (k == NULL) { DEBUG(DEBUG_ERR,("Failed to allocate key for sticky record\n")); talloc_free(tmp_ctx); return -1; } sr = trbt_lookuparray32(ctdb_db->sticky_records, k[0], &k[0]); if (sr == NULL) { talloc_free(tmp_ctx); return 0; } talloc_free(tmp_ctx); if (sr->pindown == NULL) { DEBUG(DEBUG_ERR,("Pinning down record in %s for %d ms\n", ctdb_db->db_name, ctdb->tunable.sticky_pindown)); sr->pindown = talloc_new(sr); if (sr->pindown == NULL) { DEBUG(DEBUG_ERR,("Failed to allocate pindown context for sticky record\n")); return -1; } tevent_add_timer(ctdb->ev, sr->pindown, timeval_current_ofs(ctdb->tunable.sticky_pindown / 1000, (ctdb->tunable.sticky_pindown * 1000) % 1000000), ctdb_sticky_pindown_timeout, sr); } return 0; } /* called when a CTDB_REPLY_DMASTER packet comes in, or when the lmaster gets a CTDB_REQUEST_DMASTER for itself. We become the dmaster. must be called with the chainlock held. This function releases the chainlock */ static void ctdb_become_dmaster(struct ctdb_db_context *ctdb_db, struct ctdb_req_header *hdr, TDB_DATA key, TDB_DATA data, uint64_t rsn, uint32_t record_flags) { struct ctdb_call_state *state; struct ctdb_context *ctdb = ctdb_db->ctdb; struct ctdb_ltdb_header header; int ret; DEBUG(DEBUG_DEBUG,("pnn %u dmaster response %08x\n", ctdb->pnn, ctdb_hash(&key))); ZERO_STRUCT(header); header.rsn = rsn; header.dmaster = ctdb->pnn; header.flags = record_flags; state = reqid_find(ctdb->idr, hdr->reqid, struct ctdb_call_state); if (state) { if (state->call->flags & CTDB_CALL_FLAG_VACUUM_MIGRATION) { /* * We temporarily add the VACUUM_MIGRATED flag to * the record flags, so that ctdb_ltdb_store can * decide whether the record should be stored or * deleted. */ header.flags |= CTDB_REC_FLAG_VACUUM_MIGRATED; } } if (ctdb_ltdb_store(ctdb_db, key, &header, data) != 0) { ctdb_fatal(ctdb, "ctdb_reply_dmaster store failed\n"); ret = ctdb_ltdb_unlock(ctdb_db, key); if (ret != 0) { DEBUG(DEBUG_ERR,(__location__ " ctdb_ltdb_unlock() failed with error %d\n", ret)); } return; } /* we just became DMASTER and this database is "sticky", see if the record is flagged as "hot" and set up a pin-down context to stop migrations for a little while if so */ if (ctdb_db_sticky(ctdb_db)) { ctdb_set_sticky_pindown(ctdb, ctdb_db, key); } if (state == NULL) { DEBUG(DEBUG_ERR,("pnn %u Invalid reqid %u in ctdb_become_dmaster from node %u\n", ctdb->pnn, hdr->reqid, hdr->srcnode)); ret = ctdb_ltdb_unlock(ctdb_db, key); if (ret != 0) { DEBUG(DEBUG_ERR,(__location__ " ctdb_ltdb_unlock() failed with error %d\n", ret)); } return; } if (key.dsize != state->call->key.dsize || memcmp(key.dptr, state->call->key.dptr, key.dsize)) { DEBUG(DEBUG_ERR, ("Got bogus DMASTER packet reqid:%u from node %u. Key does not match key held in matching idr.\n", hdr->reqid, hdr->srcnode)); ret = ctdb_ltdb_unlock(ctdb_db, key); if (ret != 0) { DEBUG(DEBUG_ERR,(__location__ " ctdb_ltdb_unlock() failed with error %d\n", ret)); } return; } if (hdr->reqid != state->reqid) { /* we found a record but it was the wrong one */ DEBUG(DEBUG_ERR, ("Dropped orphan in ctdb_become_dmaster with reqid:%u\n from node %u", hdr->reqid, hdr->srcnode)); ret = ctdb_ltdb_unlock(ctdb_db, key); if (ret != 0) { DEBUG(DEBUG_ERR,(__location__ " ctdb_ltdb_unlock() failed with error %d\n", ret)); } return; } (void) hash_count_increment(ctdb_db->migratedb, key); ctdb_call_local(ctdb_db, state->call, &header, state, &data, true); ret = ctdb_ltdb_unlock(ctdb_db, state->call->key); if (ret != 0) { DEBUG(DEBUG_ERR,(__location__ " ctdb_ltdb_unlock() failed with error %d\n", ret)); } state->state = CTDB_CALL_DONE; if (state->async.fn) { state->async.fn(state); } } struct dmaster_defer_call { struct dmaster_defer_call *next, *prev; struct ctdb_context *ctdb; struct ctdb_req_header *hdr; }; struct dmaster_defer_queue { struct ctdb_db_context *ctdb_db; uint32_t generation; struct dmaster_defer_call *deferred_calls; }; static void dmaster_defer_reprocess(struct tevent_context *ev, struct tevent_timer *te, struct timeval t, void *private_data) { struct dmaster_defer_call *call = talloc_get_type( private_data, struct dmaster_defer_call); ctdb_input_pkt(call->ctdb, call->hdr); talloc_free(call); } static int dmaster_defer_queue_destructor(struct dmaster_defer_queue *ddq) { /* Ignore requests, if database recovery happens in-between. */ if (ddq->generation != ddq->ctdb_db->generation) { return 0; } while (ddq->deferred_calls != NULL) { struct dmaster_defer_call *call = ddq->deferred_calls; DLIST_REMOVE(ddq->deferred_calls, call); talloc_steal(call->ctdb, call); tevent_add_timer(call->ctdb->ev, call, timeval_zero(), dmaster_defer_reprocess, call); } return 0; } static void *insert_ddq_callback(void *parm, void *data) { if (data) { talloc_free(data); } return parm; } /** * This function is used to register a key in database that needs to be updated. * Any requests for that key should get deferred till this is completed. */ static int dmaster_defer_setup(struct ctdb_db_context *ctdb_db, struct ctdb_req_header *hdr, TDB_DATA key) { uint32_t *k; struct dmaster_defer_queue *ddq; k = ctdb_key_to_idkey(hdr, key); if (k == NULL) { DEBUG(DEBUG_ERR, ("Failed to allocate key for dmaster defer setup\n")); return -1; } /* Already exists */ ddq = trbt_lookuparray32(ctdb_db->defer_dmaster, k[0], k); if (ddq != NULL) { if (ddq->generation == ctdb_db->generation) { talloc_free(k); return 0; } /* Recovery occurred - get rid of old queue. All the deferred * requests will be resent anyway from ctdb_call_resend_db. */ talloc_free(ddq); } ddq = talloc(hdr, struct dmaster_defer_queue); if (ddq == NULL) { DEBUG(DEBUG_ERR, ("Failed to allocate dmaster defer queue\n")); talloc_free(k); return -1; } ddq->ctdb_db = ctdb_db; ddq->generation = hdr->generation; ddq->deferred_calls = NULL; trbt_insertarray32_callback(ctdb_db->defer_dmaster, k[0], k, insert_ddq_callback, ddq); talloc_set_destructor(ddq, dmaster_defer_queue_destructor); talloc_free(k); return 0; } static int dmaster_defer_add(struct ctdb_db_context *ctdb_db, struct ctdb_req_header *hdr, TDB_DATA key) { struct dmaster_defer_queue *ddq; struct dmaster_defer_call *call; uint32_t *k; k = ctdb_key_to_idkey(hdr, key); if (k == NULL) { DEBUG(DEBUG_ERR, ("Failed to allocate key for dmaster defer add\n")); return -1; } ddq = trbt_lookuparray32(ctdb_db->defer_dmaster, k[0], k); if (ddq == NULL) { talloc_free(k); return -1; } talloc_free(k); if (ddq->generation != hdr->generation) { talloc_set_destructor(ddq, NULL); talloc_free(ddq); return -1; } call = talloc(ddq, struct dmaster_defer_call); if (call == NULL) { DEBUG(DEBUG_ERR, ("Failed to allocate dmaster defer call\n")); return -1; } call->ctdb = ctdb_db->ctdb; call->hdr = talloc_steal(call, hdr); DLIST_ADD_END(ddq->deferred_calls, call); return 0; } /* called when a CTDB_REQ_DMASTER packet comes in this comes into the lmaster for a record when the current dmaster wants to give up the dmaster role and give it to someone else */ void ctdb_request_dmaster(struct ctdb_context *ctdb, struct ctdb_req_header *hdr) { struct ctdb_req_dmaster_old *c = (struct ctdb_req_dmaster_old *)hdr; TDB_DATA key, data, data2; struct ctdb_ltdb_header header; struct ctdb_db_context *ctdb_db; uint32_t record_flags = 0; size_t len; int ret; key.dptr = c->data; key.dsize = c->keylen; data.dptr = c->data + c->keylen; data.dsize = c->datalen; len = offsetof(struct ctdb_req_dmaster_old, data) + key.dsize + data.dsize + sizeof(uint32_t); if (len <= c->hdr.length) { memcpy(&record_flags, &c->data[c->keylen + c->datalen], sizeof(record_flags)); } ctdb_db = find_ctdb_db(ctdb, c->db_id); if (!ctdb_db) { ctdb_send_error(ctdb, hdr, -1, "Unknown database in request. db_id==0x%08x", c->db_id); return; } dmaster_defer_setup(ctdb_db, hdr, key); /* fetch the current record */ ret = ctdb_ltdb_lock_fetch_requeue(ctdb_db, key, &header, hdr, &data2, ctdb_call_input_pkt, ctdb, false); if (ret == -1) { ctdb_fatal(ctdb, "ctdb_req_dmaster failed to fetch record"); return; } if (ret == -2) { DEBUG(DEBUG_INFO,(__location__ " deferring ctdb_request_dmaster\n")); return; } if (ctdb_lmaster(ctdb, &key) != ctdb->pnn) { DEBUG(DEBUG_ERR, ("dmaster request to non-lmaster " "db=%s lmaster=%u gen=%u curgen=%u\n", ctdb_db->db_name, ctdb_lmaster(ctdb, &key), hdr->generation, ctdb_db->generation)); ctdb_fatal(ctdb, "ctdb_req_dmaster to non-lmaster"); } DEBUG(DEBUG_DEBUG,("pnn %u dmaster request on %08x for %u from %u\n", ctdb->pnn, ctdb_hash(&key), c->dmaster, c->hdr.srcnode)); /* its a protocol error if the sending node is not the current dmaster */ if (header.dmaster != hdr->srcnode) { DEBUG(DEBUG_ALERT,("pnn %u dmaster request for new-dmaster %u from non-master %u real-dmaster=%u key %08x dbid 0x%08x gen=%u curgen=%u c->rsn=%llu header.rsn=%llu reqid=%u keyval=0x%08x\n", ctdb->pnn, c->dmaster, hdr->srcnode, header.dmaster, ctdb_hash(&key), ctdb_db->db_id, hdr->generation, ctdb->vnn_map->generation, (unsigned long long)c->rsn, (unsigned long long)header.rsn, c->hdr.reqid, (key.dsize >= 4)?(*(uint32_t *)key.dptr):0)); if (header.rsn != 0 || header.dmaster != ctdb->pnn) { DEBUG(DEBUG_ERR,("ctdb_req_dmaster from non-master. Force a recovery.\n")); ctdb->recovery_mode = CTDB_RECOVERY_ACTIVE; ctdb_ltdb_unlock(ctdb_db, key); return; } } if (header.rsn > c->rsn) { DEBUG(DEBUG_ALERT,("pnn %u dmaster request with older RSN new-dmaster %u from %u real-dmaster=%u key %08x dbid 0x%08x gen=%u curgen=%u c->rsn=%llu header.rsn=%llu reqid=%u\n", ctdb->pnn, c->dmaster, hdr->srcnode, header.dmaster, ctdb_hash(&key), ctdb_db->db_id, hdr->generation, ctdb->vnn_map->generation, (unsigned long long)c->rsn, (unsigned long long)header.rsn, c->hdr.reqid)); } /* use the rsn from the sending node */ header.rsn = c->rsn; /* store the record flags from the sending node */ header.flags = record_flags; /* check if the new dmaster is the lmaster, in which case we skip the dmaster reply */ if (c->dmaster == ctdb->pnn) { ctdb_become_dmaster(ctdb_db, hdr, key, data, c->rsn, record_flags); } else { ctdb_send_dmaster_reply(ctdb_db, &header, key, data, c->dmaster, hdr->reqid); ret = ctdb_ltdb_unlock(ctdb_db, key); if (ret != 0) { DEBUG(DEBUG_ERR,(__location__ " ctdb_ltdb_unlock() failed with error %d\n", ret)); } } } static void ctdb_sticky_record_timeout(struct tevent_context *ev, struct tevent_timer *te, struct timeval t, void *private_data) { struct ctdb_sticky_record *sr = talloc_get_type(private_data, struct ctdb_sticky_record); talloc_free(sr); } static void *ctdb_make_sticky_record_callback(void *parm, void *data) { if (data) { DEBUG(DEBUG_ERR,("Already have sticky record registered. Free old %p and create new %p\n", data, parm)); talloc_free(data); } return parm; } static int ctdb_make_record_sticky(struct ctdb_context *ctdb, struct ctdb_db_context *ctdb_db, TDB_DATA key) { TALLOC_CTX *tmp_ctx = talloc_new(NULL); uint32_t *k; struct ctdb_sticky_record *sr; k = ctdb_key_to_idkey(tmp_ctx, key); if (k == NULL) { DEBUG(DEBUG_ERR,("Failed to allocate key for sticky record\n")); talloc_free(tmp_ctx); return -1; } sr = trbt_lookuparray32(ctdb_db->sticky_records, k[0], &k[0]); if (sr != NULL) { talloc_free(tmp_ctx); return 0; } sr = talloc(ctdb_db->sticky_records, struct ctdb_sticky_record); if (sr == NULL) { talloc_free(tmp_ctx); DEBUG(DEBUG_ERR,("Failed to allocate sticky record structure\n")); return -1; } sr->ctdb = ctdb; sr->ctdb_db = ctdb_db; sr->pindown = NULL; DEBUG(DEBUG_ERR,("Make record sticky for %d seconds in db %s key:0x%08x.\n", ctdb->tunable.sticky_duration, ctdb_db->db_name, ctdb_hash(&key))); trbt_insertarray32_callback(ctdb_db->sticky_records, k[0], &k[0], ctdb_make_sticky_record_callback, sr); tevent_add_timer(ctdb->ev, sr, timeval_current_ofs(ctdb->tunable.sticky_duration, 0), ctdb_sticky_record_timeout, sr); talloc_free(tmp_ctx); return 0; } struct pinned_down_requeue_handle { struct ctdb_context *ctdb; struct ctdb_req_header *hdr; }; struct pinned_down_deferred_call { struct ctdb_context *ctdb; struct ctdb_req_header *hdr; }; static void pinned_down_requeue(struct tevent_context *ev, struct tevent_timer *te, struct timeval t, void *private_data) { struct pinned_down_requeue_handle *handle = talloc_get_type(private_data, struct pinned_down_requeue_handle); struct ctdb_context *ctdb = handle->ctdb; talloc_steal(ctdb, handle->hdr); ctdb_call_input_pkt(ctdb, handle->hdr); talloc_free(handle); } static int pinned_down_destructor(struct pinned_down_deferred_call *pinned_down) { struct ctdb_context *ctdb = pinned_down->ctdb; struct pinned_down_requeue_handle *handle = talloc(ctdb, struct pinned_down_requeue_handle); handle->ctdb = pinned_down->ctdb; handle->hdr = pinned_down->hdr; talloc_steal(handle, handle->hdr); tevent_add_timer(ctdb->ev, handle, timeval_zero(), pinned_down_requeue, handle); return 0; } static int ctdb_defer_pinned_down_request(struct ctdb_context *ctdb, struct ctdb_db_context *ctdb_db, TDB_DATA key, struct ctdb_req_header *hdr) { TALLOC_CTX *tmp_ctx = talloc_new(NULL); uint32_t *k; struct ctdb_sticky_record *sr; struct pinned_down_deferred_call *pinned_down; k = ctdb_key_to_idkey(tmp_ctx, key); if (k == NULL) { DEBUG(DEBUG_ERR,("Failed to allocate key for sticky record\n")); talloc_free(tmp_ctx); return -1; } sr = trbt_lookuparray32(ctdb_db->sticky_records, k[0], &k[0]); if (sr == NULL) { talloc_free(tmp_ctx); return -1; } talloc_free(tmp_ctx); if (sr->pindown == NULL) { return -1; } pinned_down = talloc(sr->pindown, struct pinned_down_deferred_call); if (pinned_down == NULL) { DEBUG(DEBUG_ERR,("Failed to allocate structure for deferred pinned down request\n")); return -1; } pinned_down->ctdb = ctdb; pinned_down->hdr = hdr; talloc_set_destructor(pinned_down, pinned_down_destructor); talloc_steal(pinned_down, hdr); return 0; } static int hot_key_cmp(const void *a, const void *b) { const struct ctdb_db_hot_key *ka = (const struct ctdb_db_hot_key *)a; const struct ctdb_db_hot_key *kb = (const struct ctdb_db_hot_key *)b; if (ka->count < kb->count) { return -1; } if (ka->count > kb->count) { return 1; } return 0; } static void ctdb_update_db_stat_hot_keys(struct ctdb_db_context *ctdb_db, TDB_DATA key, unsigned int count) { unsigned int i, id; char *keystr; /* * If all slots are being used then only need to compare * against the count in the 0th slot, since it contains the * smallest count. */ if (ctdb_db->statistics.num_hot_keys == MAX_HOT_KEYS && count <= ctdb_db->hot_keys[0].count) { return; } /* see if we already know this key */ for (i = 0; i < MAX_HOT_KEYS; i++) { if (key.dsize != ctdb_db->hot_keys[i].key.dsize) { continue; } if (memcmp(key.dptr, ctdb_db->hot_keys[i].key.dptr, key.dsize)) { continue; } /* found an entry for this key */ if (count <= ctdb_db->hot_keys[i].count) { return; } if (count >= (2 * ctdb_db->hot_keys[i].last_logged_count)) { keystr = hex_encode_talloc(ctdb_db, (unsigned char *)key.dptr, key.dsize); D_NOTICE("Updated hot key database=%s key=%s count=%d\n", ctdb_db->db_name, keystr ? keystr : "" , count); TALLOC_FREE(keystr); ctdb_db->hot_keys[i].last_logged_count = count; } ctdb_db->hot_keys[i].count = count; goto sort_keys; } if (ctdb_db->statistics.num_hot_keys < MAX_HOT_KEYS) { id = ctdb_db->statistics.num_hot_keys; ctdb_db->statistics.num_hot_keys++; } else { id = 0; } if (ctdb_db->hot_keys[id].key.dptr != NULL) { talloc_free(ctdb_db->hot_keys[id].key.dptr); } ctdb_db->hot_keys[id].key.dsize = key.dsize; ctdb_db->hot_keys[id].key.dptr = talloc_memdup(ctdb_db, key.dptr, key.dsize); ctdb_db->hot_keys[id].count = count; keystr = hex_encode_talloc(ctdb_db, (unsigned char *)key.dptr, key.dsize); D_NOTICE("Added hot key database=%s key=%s count=%d\n", ctdb_db->db_name, keystr ? keystr : "" , count); talloc_free(keystr); ctdb_db->hot_keys[id].last_logged_count = count; sort_keys: qsort(&ctdb_db->hot_keys[0], ctdb_db->statistics.num_hot_keys, sizeof(struct ctdb_db_hot_key), hot_key_cmp); } /* called when a CTDB_REQ_CALL packet comes in */ void ctdb_request_call(struct ctdb_context *ctdb, struct ctdb_req_header *hdr) { struct ctdb_req_call_old *c = (struct ctdb_req_call_old *)hdr; TDB_DATA data; struct ctdb_reply_call_old *r; int ret, len; struct ctdb_ltdb_header header; struct ctdb_call *call; struct ctdb_db_context *ctdb_db; int tmp_count, bucket; if (ctdb->methods == NULL) { DEBUG(DEBUG_INFO,(__location__ " Failed ctdb_request_call. Transport is DOWN\n")); return; } ctdb_db = find_ctdb_db(ctdb, c->db_id); if (!ctdb_db) { ctdb_send_error(ctdb, hdr, -1, "Unknown database in request. db_id==0x%08x", c->db_id); return; } call = talloc(hdr, struct ctdb_call); CTDB_NO_MEMORY_FATAL(ctdb, call); call->call_id = c->callid; call->key.dptr = c->data; call->key.dsize = c->keylen; call->call_data.dptr = c->data + c->keylen; call->call_data.dsize = c->calldatalen; call->reply_data.dptr = NULL; call->reply_data.dsize = 0; /* If this record is pinned down we should defer the request until the pindown times out */ if (ctdb_db_sticky(ctdb_db)) { if (ctdb_defer_pinned_down_request(ctdb, ctdb_db, call->key, hdr) == 0) { DEBUG(DEBUG_WARNING, ("Defer request for pinned down record in %s\n", ctdb_db->db_name)); talloc_free(call); return; } } if (dmaster_defer_add(ctdb_db, hdr, call->key) == 0) { talloc_free(call); return; } /* determine if we are the dmaster for this key. This also fetches the record data (if any), thus avoiding a 2nd fetch of the data if the call will be answered locally */ ret = ctdb_ltdb_lock_fetch_requeue(ctdb_db, call->key, &header, hdr, &data, ctdb_call_input_pkt, ctdb, false); if (ret == -1) { ctdb_send_error(ctdb, hdr, ret, "ltdb fetch failed in ctdb_request_call"); talloc_free(call); return; } if (ret == -2) { DEBUG(DEBUG_INFO,(__location__ " deferred ctdb_request_call\n")); talloc_free(call); return; } /* Dont do READONLY if we don't have a tracking database */ if ((c->flags & CTDB_WANT_READONLY) && !ctdb_db_readonly(ctdb_db)) { c->flags &= ~CTDB_WANT_READONLY; } if (header.flags & CTDB_REC_RO_REVOKE_COMPLETE) { header.flags &= ~CTDB_REC_RO_FLAGS; CTDB_INCREMENT_STAT(ctdb, total_ro_revokes); CTDB_INCREMENT_DB_STAT(ctdb_db, db_ro_revokes); if (ctdb_ltdb_store(ctdb_db, call->key, &header, data) != 0) { ctdb_fatal(ctdb, "Failed to write header with cleared REVOKE flag"); } /* and clear out the tracking data */ if (tdb_delete(ctdb_db->rottdb, call->key) != 0) { DEBUG(DEBUG_ERR,(__location__ " Failed to clear out trackingdb record\n")); } } /* if we are revoking, we must defer all other calls until the revoke * had completed. */ if (header.flags & CTDB_REC_RO_REVOKING_READONLY) { talloc_free(data.dptr); ret = ctdb_ltdb_unlock(ctdb_db, call->key); if (ctdb_add_revoke_deferred_call(ctdb, ctdb_db, call->key, hdr, ctdb_call_input_pkt, ctdb) != 0) { ctdb_fatal(ctdb, "Failed to add deferred call for revoke child"); } talloc_free(call); return; } /* * If we are not the dmaster and are not hosting any delegations, * then we redirect the request to the node than can answer it * (the lmaster or the dmaster). */ if ((header.dmaster != ctdb->pnn) && (!(header.flags & CTDB_REC_RO_HAVE_DELEGATIONS)) ) { talloc_free(data.dptr); ctdb_call_send_redirect(ctdb, ctdb_db, call->key, c, &header); ret = ctdb_ltdb_unlock(ctdb_db, call->key); if (ret != 0) { DEBUG(DEBUG_ERR,(__location__ " ctdb_ltdb_unlock() failed with error %d\n", ret)); } talloc_free(call); return; } if ( (!(c->flags & CTDB_WANT_READONLY)) && (header.flags & (CTDB_REC_RO_HAVE_DELEGATIONS|CTDB_REC_RO_HAVE_READONLY)) ) { header.flags |= CTDB_REC_RO_REVOKING_READONLY; if (ctdb_ltdb_store(ctdb_db, call->key, &header, data) != 0) { ctdb_fatal(ctdb, "Failed to store record with HAVE_DELEGATIONS set"); } ret = ctdb_ltdb_unlock(ctdb_db, call->key); if (ctdb_start_revoke_ro_record(ctdb, ctdb_db, call->key, &header, data) != 0) { ctdb_fatal(ctdb, "Failed to start record revoke"); } talloc_free(data.dptr); if (ctdb_add_revoke_deferred_call(ctdb, ctdb_db, call->key, hdr, ctdb_call_input_pkt, ctdb) != 0) { ctdb_fatal(ctdb, "Failed to add deferred call for revoke child"); } talloc_free(call); return; } /* If this is the first request for delegation. bump rsn and set * the delegations flag */ if ((c->flags & CTDB_WANT_READONLY) && (c->callid == CTDB_FETCH_WITH_HEADER_FUNC) && (!(header.flags & CTDB_REC_RO_HAVE_DELEGATIONS))) { header.rsn += 3; header.flags |= CTDB_REC_RO_HAVE_DELEGATIONS; if (ctdb_ltdb_store(ctdb_db, call->key, &header, data) != 0) { ctdb_fatal(ctdb, "Failed to store record with HAVE_DELEGATIONS set"); } } if ((c->flags & CTDB_WANT_READONLY) && ((unsigned int)call->call_id == CTDB_FETCH_WITH_HEADER_FUNC)) { TDB_DATA tdata; tdata = tdb_fetch(ctdb_db->rottdb, call->key); if (ctdb_trackingdb_add_pnn(ctdb, &tdata, c->hdr.srcnode) != 0) { ctdb_fatal(ctdb, "Failed to add node to trackingdb"); } if (tdb_store(ctdb_db->rottdb, call->key, tdata, TDB_REPLACE) != 0) { ctdb_fatal(ctdb, "Failed to store trackingdb data"); } free(tdata.dptr); ret = ctdb_ltdb_unlock(ctdb_db, call->key); if (ret != 0) { DEBUG(DEBUG_ERR,(__location__ " ctdb_ltdb_unlock() failed with error %d\n", ret)); } len = offsetof(struct ctdb_reply_call_old, data) + data.dsize + sizeof(struct ctdb_ltdb_header); r = ctdb_transport_allocate(ctdb, ctdb, CTDB_REPLY_CALL, len, struct ctdb_reply_call_old); CTDB_NO_MEMORY_FATAL(ctdb, r); r->hdr.destnode = c->hdr.srcnode; r->hdr.reqid = c->hdr.reqid; r->hdr.generation = ctdb_db->generation; r->status = 0; r->datalen = data.dsize + sizeof(struct ctdb_ltdb_header); header.rsn -= 2; header.flags |= CTDB_REC_RO_HAVE_READONLY; header.flags &= ~CTDB_REC_RO_HAVE_DELEGATIONS; memcpy(&r->data[0], &header, sizeof(struct ctdb_ltdb_header)); if (data.dsize) { memcpy(&r->data[sizeof(struct ctdb_ltdb_header)], data.dptr, data.dsize); } ctdb_queue_packet(ctdb, &r->hdr); CTDB_INCREMENT_STAT(ctdb, total_ro_delegations); CTDB_INCREMENT_DB_STAT(ctdb_db, db_ro_delegations); talloc_free(r); talloc_free(call); return; } CTDB_UPDATE_STAT(ctdb, max_hop_count, c->hopcount); tmp_count = c->hopcount; bucket = 0; while (tmp_count) { tmp_count >>= 1; bucket++; } if (bucket >= MAX_COUNT_BUCKETS) { bucket = MAX_COUNT_BUCKETS - 1; } CTDB_INCREMENT_STAT(ctdb, hop_count_bucket[bucket]); CTDB_INCREMENT_DB_STAT(ctdb_db, hop_count_bucket[bucket]); /* If this database supports sticky records, then check if the hopcount is big. If it is it means the record is hot and we should make it sticky. */ if (ctdb_db_sticky(ctdb_db) && c->hopcount >= ctdb->tunable.hopcount_make_sticky) { ctdb_make_record_sticky(ctdb, ctdb_db, call->key); } /* Try if possible to migrate the record off to the caller node. * From the clients perspective a fetch of the data is just as * expensive as a migration. */ if (c->hdr.srcnode != ctdb->pnn) { if (ctdb_db->persistent_state) { DEBUG(DEBUG_INFO, (__location__ " refusing migration" " of key %s while transaction is active\n", (char *)call->key.dptr)); } else { DEBUG(DEBUG_DEBUG,("pnn %u starting migration of %08x to %u\n", ctdb->pnn, ctdb_hash(&(call->key)), c->hdr.srcnode)); ctdb_call_send_dmaster(ctdb_db, c, &header, &(call->key), &data); talloc_free(data.dptr); ret = ctdb_ltdb_unlock(ctdb_db, call->key); if (ret != 0) { DEBUG(DEBUG_ERR,(__location__ " ctdb_ltdb_unlock() failed with error %d\n", ret)); } } talloc_free(call); return; } ret = ctdb_call_local(ctdb_db, call, &header, hdr, &data, true); if (ret != 0) { DEBUG(DEBUG_ERR,(__location__ " ctdb_call_local failed\n")); call->status = -1; } ret = ctdb_ltdb_unlock(ctdb_db, call->key); if (ret != 0) { DEBUG(DEBUG_ERR,(__location__ " ctdb_ltdb_unlock() failed with error %d\n", ret)); } len = offsetof(struct ctdb_reply_call_old, data) + call->reply_data.dsize; r = ctdb_transport_allocate(ctdb, ctdb, CTDB_REPLY_CALL, len, struct ctdb_reply_call_old); CTDB_NO_MEMORY_FATAL(ctdb, r); r->hdr.destnode = hdr->srcnode; r->hdr.reqid = hdr->reqid; r->hdr.generation = ctdb_db->generation; r->status = call->status; r->datalen = call->reply_data.dsize; if (call->reply_data.dsize) { memcpy(&r->data[0], call->reply_data.dptr, call->reply_data.dsize); } ctdb_queue_packet(ctdb, &r->hdr); talloc_free(r); talloc_free(call); } /** * called when a CTDB_REPLY_CALL packet comes in * * This packet comes in response to a CTDB_REQ_CALL request packet. It * contains any reply data from the call */ void ctdb_reply_call(struct ctdb_context *ctdb, struct ctdb_req_header *hdr) { struct ctdb_reply_call_old *c = (struct ctdb_reply_call_old *)hdr; struct ctdb_call_state *state; state = reqid_find(ctdb->idr, hdr->reqid, struct ctdb_call_state); if (state == NULL) { DEBUG(DEBUG_ERR, (__location__ " reqid %u not found\n", hdr->reqid)); return; } if (hdr->reqid != state->reqid) { /* we found a record but it was the wrong one */ DEBUG(DEBUG_ERR, ("Dropped orphaned call reply with reqid:%u\n",hdr->reqid)); return; } /* read only delegation processing */ /* If we got a FETCH_WITH_HEADER we should check if this is a ro * delegation since we may need to update the record header */ if (state->c->callid == CTDB_FETCH_WITH_HEADER_FUNC) { struct ctdb_db_context *ctdb_db = state->ctdb_db; struct ctdb_ltdb_header *header = (struct ctdb_ltdb_header *)&c->data[0]; struct ctdb_ltdb_header oldheader; TDB_DATA key, data, olddata; int ret; if (!(header->flags & CTDB_REC_RO_HAVE_READONLY)) { goto finished_ro; return; } key.dsize = state->c->keylen; key.dptr = state->c->data; ret = ctdb_ltdb_lock_requeue(ctdb_db, key, hdr, ctdb_call_input_pkt, ctdb, false); if (ret == -2) { return; } if (ret != 0) { DEBUG(DEBUG_ERR,(__location__ " Failed to get lock in ctdb_reply_call\n")); return; } ret = ctdb_ltdb_fetch(ctdb_db, key, &oldheader, state, &olddata); if (ret != 0) { DEBUG(DEBUG_ERR, ("Failed to fetch old record in ctdb_reply_call\n")); ctdb_ltdb_unlock(ctdb_db, key); goto finished_ro; } if (header->rsn <= oldheader.rsn) { ctdb_ltdb_unlock(ctdb_db, key); goto finished_ro; } if (c->datalen < sizeof(struct ctdb_ltdb_header)) { DEBUG(DEBUG_ERR,(__location__ " Got FETCH_WITH_HEADER reply with too little data: %d bytes\n", c->datalen)); ctdb_ltdb_unlock(ctdb_db, key); goto finished_ro; } data.dsize = c->datalen - sizeof(struct ctdb_ltdb_header); data.dptr = &c->data[sizeof(struct ctdb_ltdb_header)]; ret = ctdb_ltdb_store(ctdb_db, key, header, data); if (ret != 0) { DEBUG(DEBUG_ERR, ("Failed to store new record in ctdb_reply_call\n")); ctdb_ltdb_unlock(ctdb_db, key); goto finished_ro; } ctdb_ltdb_unlock(ctdb_db, key); } finished_ro: state->call->reply_data.dptr = c->data; state->call->reply_data.dsize = c->datalen; state->call->status = c->status; talloc_steal(state, c); state->state = CTDB_CALL_DONE; if (state->async.fn) { state->async.fn(state); } } /** * called when a CTDB_REPLY_DMASTER packet comes in * * This packet comes in from the lmaster in response to a CTDB_REQ_CALL * request packet. It means that the current dmaster wants to give us * the dmaster role. */ void ctdb_reply_dmaster(struct ctdb_context *ctdb, struct ctdb_req_header *hdr) { struct ctdb_reply_dmaster_old *c = (struct ctdb_reply_dmaster_old *)hdr; struct ctdb_db_context *ctdb_db; TDB_DATA key, data; uint32_t record_flags = 0; size_t len; int ret; ctdb_db = find_ctdb_db(ctdb, c->db_id); if (ctdb_db == NULL) { DEBUG(DEBUG_ERR,("Unknown db_id 0x%x in ctdb_reply_dmaster\n", c->db_id)); return; } key.dptr = c->data; key.dsize = c->keylen; data.dptr = &c->data[key.dsize]; data.dsize = c->datalen; len = offsetof(struct ctdb_reply_dmaster_old, data) + key.dsize + data.dsize + sizeof(uint32_t); if (len <= c->hdr.length) { memcpy(&record_flags, &c->data[c->keylen + c->datalen], sizeof(record_flags)); } dmaster_defer_setup(ctdb_db, hdr, key); ret = ctdb_ltdb_lock_requeue(ctdb_db, key, hdr, ctdb_call_input_pkt, ctdb, false); if (ret == -2) { return; } if (ret != 0) { DEBUG(DEBUG_ERR,(__location__ " Failed to get lock in ctdb_reply_dmaster\n")); return; } ctdb_become_dmaster(ctdb_db, hdr, key, data, c->rsn, record_flags); } /* called when a CTDB_REPLY_ERROR packet comes in */ void ctdb_reply_error(struct ctdb_context *ctdb, struct ctdb_req_header *hdr) { struct ctdb_reply_error_old *c = (struct ctdb_reply_error_old *)hdr; struct ctdb_call_state *state; state = reqid_find(ctdb->idr, hdr->reqid, struct ctdb_call_state); if (state == NULL) { DEBUG(DEBUG_ERR,("pnn %u Invalid reqid %u in ctdb_reply_error\n", ctdb->pnn, hdr->reqid)); return; } if (hdr->reqid != state->reqid) { /* we found a record but it was the wrong one */ DEBUG(DEBUG_ERR, ("Dropped orphaned error reply with reqid:%u\n",hdr->reqid)); return; } talloc_steal(state, c); state->state = CTDB_CALL_ERROR; state->errmsg = (char *)c->msg; if (state->async.fn) { state->async.fn(state); } } /* destroy a ctdb_call */ static int ctdb_call_destructor(struct ctdb_call_state *state) { DLIST_REMOVE(state->ctdb_db->pending_calls, state); reqid_remove(state->ctdb_db->ctdb->idr, state->reqid); return 0; } /* called when a ctdb_call needs to be resent after a reconfigure event */ static void ctdb_call_resend(struct ctdb_call_state *state) { struct ctdb_context *ctdb = state->ctdb_db->ctdb; state->generation = state->ctdb_db->generation; /* use a new reqid, in case the old reply does eventually come in */ reqid_remove(ctdb->idr, state->reqid); state->reqid = reqid_new(ctdb->idr, state); state->c->hdr.reqid = state->reqid; /* update the generation count for this request, so its valid with the new vnn_map */ state->c->hdr.generation = state->generation; /* send the packet to ourselves, it will be redirected appropriately */ state->c->hdr.destnode = ctdb->pnn; ctdb_queue_packet(ctdb, &state->c->hdr); D_INFO("resent ctdb_call for db %s reqid %u generation %u\n", state->ctdb_db->db_name, state->reqid, state->generation); } /* resend all pending calls on recovery */ void ctdb_call_resend_db(struct ctdb_db_context *ctdb_db) { struct ctdb_call_state *state, *next; unsigned int count = 0; for (state = ctdb_db->pending_calls; state; state = next) { next = state->next; ctdb_call_resend(state); count++; } /* Avoid logging a 0 count below */ if (count == 0) { return; } D_NOTICE("Resent calls for database=%s, generation=%u, count=%u\n", ctdb_db->db_name, ctdb_db->generation, count); } void ctdb_call_resend_all(struct ctdb_context *ctdb) { struct ctdb_db_context *ctdb_db; for (ctdb_db = ctdb->db_list; ctdb_db; ctdb_db = ctdb_db->next) { ctdb_call_resend_db(ctdb_db); } } /* this allows the caller to setup a async.fn */ static void call_local_trigger(struct tevent_context *ev, struct tevent_timer *te, struct timeval t, void *private_data) { struct ctdb_call_state *state = talloc_get_type(private_data, struct ctdb_call_state); if (state->async.fn) { state->async.fn(state); } } /* construct an event driven local ctdb_call this is used so that locally processed ctdb_call requests are processed in an event driven manner */ struct ctdb_call_state *ctdb_call_local_send(struct ctdb_db_context *ctdb_db, struct ctdb_call *call, struct ctdb_ltdb_header *header, TDB_DATA *data) { struct ctdb_call_state *state; struct ctdb_context *ctdb = ctdb_db->ctdb; int ret; state = talloc_zero(ctdb_db, struct ctdb_call_state); CTDB_NO_MEMORY_NULL(ctdb, state); talloc_steal(state, data->dptr); state->state = CTDB_CALL_DONE; state->call = talloc(state, struct ctdb_call); CTDB_NO_MEMORY_NULL(ctdb, state->call); *(state->call) = *call; state->ctdb_db = ctdb_db; ret = ctdb_call_local(ctdb_db, state->call, header, state, data, true); if (ret != 0) { DEBUG(DEBUG_DEBUG,("ctdb_call_local() failed, ignoring return code %d\n", ret)); } tevent_add_timer(ctdb->ev, state, timeval_zero(), call_local_trigger, state); return state; } /* make a remote ctdb call - async send. Called in daemon context. This constructs a ctdb_call request and queues it for processing. This call never blocks. */ struct ctdb_call_state *ctdb_daemon_call_send_remote(struct ctdb_db_context *ctdb_db, struct ctdb_call *call, struct ctdb_ltdb_header *header) { uint32_t len; struct ctdb_call_state *state; struct ctdb_context *ctdb = ctdb_db->ctdb; struct ctdb_req_call_old *c; if (ctdb->methods == NULL) { DEBUG(DEBUG_INFO,(__location__ " Failed send packet. Transport is down\n")); return NULL; } state = talloc_zero(ctdb_db, struct ctdb_call_state); CTDB_NO_MEMORY_NULL(ctdb, state); state->call = talloc(state, struct ctdb_call); CTDB_NO_MEMORY_NULL(ctdb, state->call); state->reqid = reqid_new(ctdb->idr, state); state->ctdb_db = ctdb_db; state->state = CTDB_CALL_WAIT; state->generation = ctdb_db->generation; len = offsetof(struct ctdb_req_call_old, data) + call->key.dsize + call->call_data.dsize; c = ctdb_transport_allocate(ctdb, state, CTDB_REQ_CALL, len, struct ctdb_req_call_old); CTDB_NO_MEMORY_NULL(ctdb, c); state->c = c; c->hdr.destnode = header->dmaster; c->hdr.reqid = state->reqid; c->hdr.generation = ctdb_db->generation; c->flags = call->flags; c->db_id = ctdb_db->db_id; c->callid = call->call_id; c->hopcount = 0; c->keylen = call->key.dsize; c->calldatalen = call->call_data.dsize; memcpy(&c->data[0], call->key.dptr, call->key.dsize); memcpy(&c->data[call->key.dsize], call->call_data.dptr, call->call_data.dsize); *(state->call) = *call; state->call->call_data.dptr = &c->data[call->key.dsize]; state->call->key.dptr = &c->data[0]; DLIST_ADD(ctdb_db->pending_calls, state); talloc_set_destructor(state, ctdb_call_destructor); ctdb_queue_packet(ctdb, &state->c->hdr); return state; } /* make a remote ctdb call - async recv - called in daemon context This is called when the program wants to wait for a ctdb_call to complete and get the results. This call will block unless the call has already completed. */ int ctdb_daemon_call_recv(struct ctdb_call_state *state, struct ctdb_call *call) { while (state->state < CTDB_CALL_DONE) { tevent_loop_once(state->ctdb_db->ctdb->ev); } if (state->state != CTDB_CALL_DONE) { ctdb_set_error(state->ctdb_db->ctdb, "%s", state->errmsg); talloc_free(state); return -1; } if (state->call->reply_data.dsize) { call->reply_data.dptr = talloc_memdup(call, state->call->reply_data.dptr, state->call->reply_data.dsize); call->reply_data.dsize = state->call->reply_data.dsize; } else { call->reply_data.dptr = NULL; call->reply_data.dsize = 0; } call->status = state->call->status; talloc_free(state); return 0; } struct revokechild_deferred_call { struct revokechild_deferred_call *prev, *next; struct ctdb_context *ctdb; struct ctdb_req_header *hdr; deferred_requeue_fn fn; void *ctx; struct revokechild_handle *rev_hdl; }; struct revokechild_handle { struct revokechild_handle *next, *prev; struct ctdb_context *ctdb; struct ctdb_db_context *ctdb_db; struct tevent_fd *fde; int status; int fd[2]; pid_t child; TDB_DATA key; struct revokechild_deferred_call *deferred_call_list; }; static void deferred_call_requeue(struct tevent_context *ev, struct tevent_timer *te, struct timeval t, void *private_data) { struct revokechild_deferred_call *dlist = talloc_get_type_abort( private_data, struct revokechild_deferred_call); while (dlist != NULL) { struct revokechild_deferred_call *dcall = dlist; talloc_set_destructor(dcall, NULL); DLIST_REMOVE(dlist, dcall); dcall->fn(dcall->ctx, dcall->hdr); talloc_free(dcall); } } static int deferred_call_destructor(struct revokechild_deferred_call *dcall) { struct revokechild_handle *rev_hdl = dcall->rev_hdl; DLIST_REMOVE(rev_hdl->deferred_call_list, dcall); return 0; } static int revokechild_destructor(struct revokechild_handle *rev_hdl) { struct revokechild_deferred_call *now_list = NULL; struct revokechild_deferred_call *delay_list = NULL; if (rev_hdl->fde != NULL) { talloc_free(rev_hdl->fde); } if (rev_hdl->fd[0] != -1) { close(rev_hdl->fd[0]); } if (rev_hdl->fd[1] != -1) { close(rev_hdl->fd[1]); } ctdb_kill(rev_hdl->ctdb, rev_hdl->child, SIGKILL); DLIST_REMOVE(rev_hdl->ctdb_db->revokechild_active, rev_hdl); while (rev_hdl->deferred_call_list != NULL) { struct revokechild_deferred_call *dcall; dcall = rev_hdl->deferred_call_list; DLIST_REMOVE(rev_hdl->deferred_call_list, dcall); /* If revoke is successful, then first process all the calls * that need write access, and delay readonly requests by 1 * second grace. * * If revoke is unsuccessful, most likely because of node * failure, delay all the pending requests, so database can * be recovered. */ if (rev_hdl->status == 0) { struct ctdb_req_call_old *c; c = (struct ctdb_req_call_old *)dcall->hdr; if (c->flags & CTDB_WANT_READONLY) { DLIST_ADD(delay_list, dcall); } else { DLIST_ADD(now_list, dcall); } } else { DLIST_ADD(delay_list, dcall); } } if (now_list != NULL) { tevent_add_timer(rev_hdl->ctdb->ev, rev_hdl->ctdb_db, tevent_timeval_current_ofs(0, 0), deferred_call_requeue, now_list); } if (delay_list != NULL) { tevent_add_timer(rev_hdl->ctdb->ev, rev_hdl->ctdb_db, tevent_timeval_current_ofs(1, 0), deferred_call_requeue, delay_list); } return 0; } static void revokechild_handler(struct tevent_context *ev, struct tevent_fd *fde, uint16_t flags, void *private_data) { struct revokechild_handle *rev_hdl = talloc_get_type(private_data, struct revokechild_handle); int ret; char c; ret = sys_read(rev_hdl->fd[0], &c, 1); if (ret != 1) { DEBUG(DEBUG_ERR,("Failed to read status from revokechild. errno:%d\n", errno)); rev_hdl->status = -1; talloc_free(rev_hdl); return; } if (c != 0) { DEBUG(DEBUG_ERR,("revokechild returned failure. status:%d\n", c)); rev_hdl->status = -1; talloc_free(rev_hdl); return; } talloc_free(rev_hdl); } struct ctdb_revoke_state { struct ctdb_db_context *ctdb_db; TDB_DATA key; struct ctdb_ltdb_header *header; TDB_DATA data; int count; int status; int finished; }; static void update_record_cb(struct ctdb_client_control_state *state) { struct ctdb_revoke_state *revoke_state; int ret; int32_t res; if (state == NULL) { return; } revoke_state = state->async.private_data; state->async.fn = NULL; ret = ctdb_control_recv(state->ctdb, state, state, NULL, &res, NULL); if ((ret != 0) || (res != 0)) { DEBUG(DEBUG_ERR,("Recv for revoke update record failed ret:%d res:%d\n", ret, res)); revoke_state->status = -1; } revoke_state->count--; if (revoke_state->count <= 0) { revoke_state->finished = 1; } } static void revoke_send_cb(struct ctdb_context *ctdb, uint32_t pnn, void *private_data) { struct ctdb_revoke_state *revoke_state = private_data; struct ctdb_client_control_state *state; state = ctdb_ctrl_updaterecord_send(ctdb, revoke_state, timeval_current_ofs(ctdb->tunable.control_timeout,0), pnn, revoke_state->ctdb_db, revoke_state->key, revoke_state->header, revoke_state->data); if (state == NULL) { DEBUG(DEBUG_ERR,("Failure to send update record to revoke readonly delegation\n")); revoke_state->status = -1; return; } state->async.fn = update_record_cb; state->async.private_data = revoke_state; revoke_state->count++; } static void ctdb_revoke_timeout_handler(struct tevent_context *ev, struct tevent_timer *te, struct timeval yt, void *private_data) { struct ctdb_revoke_state *state = private_data; DEBUG(DEBUG_ERR,("Timed out waiting for revoke to finish\n")); state->finished = 1; state->status = -1; } static int ctdb_revoke_all_delegations(struct ctdb_context *ctdb, struct ctdb_db_context *ctdb_db, TDB_DATA tdata, TDB_DATA key, struct ctdb_ltdb_header *header, TDB_DATA data) { struct ctdb_revoke_state *state = talloc_zero(ctdb, struct ctdb_revoke_state); struct ctdb_ltdb_header new_header; TDB_DATA new_data; state->ctdb_db = ctdb_db; state->key = key; state->header = header; state->data = data; ctdb_trackingdb_traverse(ctdb, tdata, revoke_send_cb, state); tevent_add_timer(ctdb->ev, state, timeval_current_ofs(ctdb->tunable.control_timeout, 0), ctdb_revoke_timeout_handler, state); while (state->finished == 0) { tevent_loop_once(ctdb->ev); } if (ctdb_ltdb_lock(ctdb_db, key) != 0) { DEBUG(DEBUG_ERR,("Failed to chainlock the database in revokechild\n")); talloc_free(state); return -1; } if (ctdb_ltdb_fetch(ctdb_db, key, &new_header, state, &new_data) != 0) { ctdb_ltdb_unlock(ctdb_db, key); DEBUG(DEBUG_ERR,("Failed for fetch tdb record in revokechild\n")); talloc_free(state); return -1; } header->rsn++; if (new_header.rsn > header->rsn) { ctdb_ltdb_unlock(ctdb_db, key); DEBUG(DEBUG_ERR,("RSN too high in tdb record in revokechild\n")); talloc_free(state); return -1; } if ( (new_header.flags & (CTDB_REC_RO_REVOKING_READONLY|CTDB_REC_RO_HAVE_DELEGATIONS)) != (CTDB_REC_RO_REVOKING_READONLY|CTDB_REC_RO_HAVE_DELEGATIONS) ) { ctdb_ltdb_unlock(ctdb_db, key); DEBUG(DEBUG_ERR,("Flags are wrong in tdb record in revokechild\n")); talloc_free(state); return -1; } /* * If revoke on all nodes succeed, revoke is complete. Otherwise, * remove CTDB_REC_RO_REVOKING_READONLY flag and retry. */ if (state->status == 0) { new_header.rsn++; new_header.flags |= CTDB_REC_RO_REVOKE_COMPLETE; } else { DEBUG(DEBUG_NOTICE, ("Revoke all delegations failed, retrying.\n")); new_header.flags &= ~CTDB_REC_RO_REVOKING_READONLY; } if (ctdb_ltdb_store(ctdb_db, key, &new_header, new_data) != 0) { ctdb_ltdb_unlock(ctdb_db, key); DEBUG(DEBUG_ERR,("Failed to write new record in revokechild\n")); talloc_free(state); return -1; } ctdb_ltdb_unlock(ctdb_db, key); talloc_free(state); return 0; } int ctdb_start_revoke_ro_record(struct ctdb_context *ctdb, struct ctdb_db_context *ctdb_db, TDB_DATA key, struct ctdb_ltdb_header *header, TDB_DATA data) { TDB_DATA tdata; struct revokechild_handle *rev_hdl; pid_t parent = getpid(); int ret; header->flags &= ~(CTDB_REC_RO_REVOKING_READONLY | CTDB_REC_RO_HAVE_DELEGATIONS | CTDB_REC_RO_HAVE_READONLY); header->flags |= CTDB_REC_FLAG_MIGRATED_WITH_DATA; header->rsn -= 1; rev_hdl = talloc_zero(ctdb_db, struct revokechild_handle); if (rev_hdl == NULL) { D_ERR("Failed to allocate revokechild_handle\n"); return -1; } tdata = tdb_fetch(ctdb_db->rottdb, key); if (tdata.dsize > 0) { uint8_t *tmp; tmp = tdata.dptr; tdata.dptr = talloc_memdup(rev_hdl, tdata.dptr, tdata.dsize); free(tmp); } rev_hdl->status = 0; rev_hdl->ctdb = ctdb; rev_hdl->ctdb_db = ctdb_db; rev_hdl->fd[0] = -1; rev_hdl->fd[1] = -1; rev_hdl->key.dsize = key.dsize; rev_hdl->key.dptr = talloc_memdup(rev_hdl, key.dptr, key.dsize); if (rev_hdl->key.dptr == NULL) { D_ERR("Failed to allocate key for revokechild_handle\n"); goto err_out; } ret = pipe(rev_hdl->fd); if (ret != 0) { D_ERR("Failed to allocate key for revokechild_handle\n"); goto err_out; } rev_hdl->child = ctdb_fork(ctdb); if (rev_hdl->child == (pid_t)-1) { D_ERR("Failed to fork child for revokechild\n"); goto err_out; } if (rev_hdl->child == 0) { char c = 0; close(rev_hdl->fd[0]); prctl_set_comment("ctdb_revokechild"); if (switch_from_server_to_client(ctdb) != 0) { D_ERR("Failed to switch from server to client " "for revokechild process\n"); c = 1; goto child_finished; } c = ctdb_revoke_all_delegations(ctdb, ctdb_db, tdata, key, header, data); child_finished: sys_write(rev_hdl->fd[1], &c, 1); ctdb_wait_for_process_to_exit(parent); _exit(0); } close(rev_hdl->fd[1]); rev_hdl->fd[1] = -1; set_close_on_exec(rev_hdl->fd[0]); rev_hdl->fde = tevent_add_fd(ctdb->ev, rev_hdl, rev_hdl->fd[0], TEVENT_FD_READ, revokechild_handler, (void *)rev_hdl); if (rev_hdl->fde == NULL) { D_ERR("Failed to set up fd event for revokechild process\n"); talloc_free(rev_hdl); } tevent_fd_set_auto_close(rev_hdl->fde); /* This is an active revokechild child process */ DLIST_ADD_END(ctdb_db->revokechild_active, rev_hdl); talloc_set_destructor(rev_hdl, revokechild_destructor); return 0; err_out: talloc_free(rev_hdl); return -1; } int ctdb_add_revoke_deferred_call(struct ctdb_context *ctdb, struct ctdb_db_context *ctdb_db, TDB_DATA key, struct ctdb_req_header *hdr, deferred_requeue_fn fn, void *call_context) { struct revokechild_handle *rev_hdl; struct revokechild_deferred_call *deferred_call; for (rev_hdl = ctdb_db->revokechild_active; rev_hdl; rev_hdl = rev_hdl->next) { if (rev_hdl->key.dsize == 0) { continue; } if (rev_hdl->key.dsize != key.dsize) { continue; } if (!memcmp(rev_hdl->key.dptr, key.dptr, key.dsize)) { break; } } if (rev_hdl == NULL) { DEBUG(DEBUG_ERR,("Failed to add deferred call to revoke list. revoke structure not found\n")); return -1; } deferred_call = talloc(call_context, struct revokechild_deferred_call); if (deferred_call == NULL) { DEBUG(DEBUG_ERR,("Failed to allocate deferred call structure for revoking record\n")); return -1; } deferred_call->ctdb = ctdb; deferred_call->hdr = talloc_steal(deferred_call, hdr); deferred_call->fn = fn; deferred_call->ctx = call_context; deferred_call->rev_hdl = rev_hdl; talloc_set_destructor(deferred_call, deferred_call_destructor); DLIST_ADD(rev_hdl->deferred_call_list, deferred_call); return 0; } static void ctdb_migration_count_handler(TDB_DATA key, uint64_t counter, void *private_data) { struct ctdb_db_context *ctdb_db = talloc_get_type_abort( private_data, struct ctdb_db_context); unsigned int value; value = (counter < INT_MAX ? counter : INT_MAX); ctdb_update_db_stat_hot_keys(ctdb_db, key, value); } static void ctdb_migration_cleandb_event(struct tevent_context *ev, struct tevent_timer *te, struct timeval current_time, void *private_data) { struct ctdb_db_context *ctdb_db = talloc_get_type_abort( private_data, struct ctdb_db_context); if (ctdb_db->migratedb == NULL) { return; } hash_count_expire(ctdb_db->migratedb, NULL); te = tevent_add_timer(ctdb_db->ctdb->ev, ctdb_db->migratedb, tevent_timeval_current_ofs(10, 0), ctdb_migration_cleandb_event, ctdb_db); if (te == NULL) { DEBUG(DEBUG_ERR, ("Memory error in migration cleandb event for %s\n", ctdb_db->db_name)); TALLOC_FREE(ctdb_db->migratedb); } } int ctdb_migration_init(struct ctdb_db_context *ctdb_db) { struct timeval one_second = { 1, 0 }; struct tevent_timer *te; int ret; if (! ctdb_db_volatile(ctdb_db)) { return 0; } ret = hash_count_init(ctdb_db, one_second, ctdb_migration_count_handler, ctdb_db, &ctdb_db->migratedb); if (ret != 0) { DEBUG(DEBUG_ERR, ("Memory error in migration init for %s\n", ctdb_db->db_name)); return -1; } te = tevent_add_timer(ctdb_db->ctdb->ev, ctdb_db->migratedb, tevent_timeval_current_ofs(10, 0), ctdb_migration_cleandb_event, ctdb_db); if (te == NULL) { DEBUG(DEBUG_ERR, ("Memory error in migration init for %s\n", ctdb_db->db_name)); TALLOC_FREE(ctdb_db->migratedb); return -1; } return 0; }