/* protocol tests - common functions Copyright (C) Amitay Isaacs 2015-2017 This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, see . */ #include "replace.h" #include "system/network.h" #include #include "protocol/protocol_api.h" #include "tests/src/protocol_common_basic.h" #include "tests/src/protocol_common.h" void fill_tdb_data_nonnull(TALLOC_CTX *mem_ctx, TDB_DATA *p) { p->dsize = rand_int(1024) + 1; p->dptr = talloc_array(mem_ctx, uint8_t, p->dsize); assert(p->dptr != NULL); fill_buffer(p->dptr, p->dsize); } void fill_tdb_data(TALLOC_CTX *mem_ctx, TDB_DATA *p) { if (rand_int(5) == 0) { p->dsize = 0; p->dptr = NULL; } else { fill_tdb_data_nonnull(mem_ctx, p); } } void verify_tdb_data(TDB_DATA *p1, TDB_DATA *p2) { assert(p1->dsize == p2->dsize); verify_buffer(p1->dptr, p2->dptr, p1->dsize); } void fill_ctdb_tdb_data(TALLOC_CTX *mem_ctx, TDB_DATA *p) { fill_tdb_data(mem_ctx, p); } void verify_ctdb_tdb_data(TDB_DATA *p1, TDB_DATA *p2) { verify_tdb_data(p1, p2); } void fill_ctdb_tdb_datan(TALLOC_CTX *mem_ctx, TDB_DATA *p) { fill_tdb_data(mem_ctx, p); } void verify_ctdb_tdb_datan(TDB_DATA *p1, TDB_DATA *p2) { verify_tdb_data(p1, p2); } void fill_ctdb_latency_counter(struct ctdb_latency_counter *p) { p->num = rand32i(); p->min = rand_double(); p->max = rand_double(); p->total = rand_double(); } void verify_ctdb_latency_counter(struct ctdb_latency_counter *p1, struct ctdb_latency_counter *p2) { assert(p1->num == p2->num); assert(p1->min == p2->min); assert(p1->max == p2->max); assert(p1->total == p2->total); } void fill_ctdb_statistics(TALLOC_CTX *mem_ctx, struct ctdb_statistics *p) { int i; p->num_clients = rand32(); p->frozen = rand32(); p->recovering = rand32(); p->client_packets_sent = rand32(); p->client_packets_recv = rand32(); p->node_packets_sent = rand32(); p->node_packets_recv = rand32(); p->keepalive_packets_sent = rand32(); p->keepalive_packets_recv = rand32(); p->node.req_call = rand32(); p->node.reply_call = rand32(); p->node.req_dmaster = rand32(); p->node.reply_dmaster = rand32(); p->node.reply_error = rand32(); p->node.req_message = rand32(); p->node.req_control = rand32(); p->node.reply_control = rand32(); p->client.req_call = rand32(); p->client.req_message = rand32(); p->client.req_control = rand32(); p->timeouts.call = rand32(); p->timeouts.control = rand32(); p->timeouts.traverse = rand32(); fill_ctdb_latency_counter(&p->reclock.ctdbd); fill_ctdb_latency_counter(&p->reclock.recd); p->locks.num_calls = rand32(); p->locks.num_current = rand32(); p->locks.num_pending = rand32(); p->locks.num_failed = rand32(); fill_ctdb_latency_counter(&p->locks.latency); for (i=0; ilocks.buckets[i] = rand32(); } p->total_calls = rand32(); p->pending_calls = rand32(); p->childwrite_calls = rand32(); p->pending_childwrite_calls = rand32(); p->memory_used = rand32(); p->__last_counter = rand32(); p->max_hop_count = rand32(); for (i=0; ihop_count_bucket[i] = rand32(); } fill_ctdb_latency_counter(&p->call_latency); fill_ctdb_latency_counter(&p->childwrite_latency); p->num_recoveries = rand32(); fill_ctdb_timeval(&p->statistics_start_time); fill_ctdb_timeval(&p->statistics_current_time); p->total_ro_delegations = rand32(); p->total_ro_revokes = rand32(); } void verify_ctdb_statistics(struct ctdb_statistics *p1, struct ctdb_statistics *p2) { int i; assert(p1->num_clients == p2->num_clients); assert(p1->frozen == p2->frozen); assert(p1->recovering == p2->recovering); assert(p1->client_packets_sent == p2->client_packets_sent); assert(p1->client_packets_recv == p2->client_packets_recv); assert(p1->node_packets_sent == p2->node_packets_sent); assert(p1->node_packets_recv == p2->node_packets_recv); assert(p1->keepalive_packets_sent == p2->keepalive_packets_sent); assert(p1->keepalive_packets_recv == p2->keepalive_packets_recv); assert(p1->node.req_call == p2->node.req_call); assert(p1->node.reply_call == p2->node.reply_call); assert(p1->node.req_dmaster == p2->node.req_dmaster); assert(p1->node.reply_dmaster == p2->node.reply_dmaster); assert(p1->node.reply_error == p2->node.reply_error); assert(p1->node.req_message == p2->node.req_message); assert(p1->node.req_control == p2->node.req_control); assert(p1->node.reply_control == p2->node.reply_control); assert(p1->client.req_call == p2->client.req_call); assert(p1->client.req_message == p2->client.req_message); assert(p1->client.req_control == p2->client.req_control); assert(p1->timeouts.call == p2->timeouts.call); assert(p1->timeouts.control == p2->timeouts.control); assert(p1->timeouts.traverse == p2->timeouts.traverse); verify_ctdb_latency_counter(&p1->reclock.ctdbd, &p2->reclock.ctdbd); verify_ctdb_latency_counter(&p1->reclock.recd, &p2->reclock.recd); assert(p1->locks.num_calls == p2->locks.num_calls); assert(p1->locks.num_current == p2->locks.num_current); assert(p1->locks.num_pending == p2->locks.num_pending); assert(p1->locks.num_failed == p2->locks.num_failed); verify_ctdb_latency_counter(&p1->locks.latency, &p2->locks.latency); for (i=0; ilocks.buckets[i] == p2->locks.buckets[i]); } assert(p1->total_calls == p2->total_calls); assert(p1->pending_calls == p2->pending_calls); assert(p1->childwrite_calls == p2->childwrite_calls); assert(p1->pending_childwrite_calls == p2->pending_childwrite_calls); assert(p1->memory_used == p2->memory_used); assert(p1->__last_counter == p2->__last_counter); assert(p1->max_hop_count == p2->max_hop_count); for (i=0; ihop_count_bucket[i] == p2->hop_count_bucket[i]); } verify_ctdb_latency_counter(&p1->call_latency, &p2->call_latency); verify_ctdb_latency_counter(&p1->childwrite_latency, &p2->childwrite_latency); assert(p1->num_recoveries == p2->num_recoveries); verify_ctdb_timeval(&p1->statistics_start_time, &p2->statistics_start_time); verify_ctdb_timeval(&p1->statistics_current_time, &p2->statistics_current_time); assert(p1->total_ro_delegations == p2->total_ro_delegations); assert(p1->total_ro_revokes == p2->total_ro_revokes); } void fill_ctdb_vnn_map(TALLOC_CTX *mem_ctx, struct ctdb_vnn_map *p) { unsigned int i; p->generation = rand32(); p->size = rand_int(20); if (p->size > 0) { p->map = talloc_array(mem_ctx, uint32_t, p->size); assert(p->map != NULL); for (i=0; isize; i++) { p->map[i] = rand32(); } } else { p->map = NULL; } } void verify_ctdb_vnn_map(struct ctdb_vnn_map *p1, struct ctdb_vnn_map *p2) { unsigned int i; assert(p1->generation == p2->generation); assert(p1->size == p2->size); for (i=0; isize; i++) { assert(p1->map[i] == p2->map[i]); } } void fill_ctdb_dbid(TALLOC_CTX *mem_ctx, struct ctdb_dbid *p) { p->db_id = rand32(); p->flags = rand8(); } void verify_ctdb_dbid(struct ctdb_dbid *p1, struct ctdb_dbid *p2) { assert(p1->db_id == p2->db_id); assert(p1->flags == p2->flags); } void fill_ctdb_dbid_map(TALLOC_CTX *mem_ctx, struct ctdb_dbid_map *p) { unsigned int i; p->num = rand_int(40); if (p->num > 0) { p->dbs = talloc_zero_array(mem_ctx, struct ctdb_dbid, p->num); assert(p->dbs != NULL); for (i=0; inum; i++) { fill_ctdb_dbid(mem_ctx, &p->dbs[i]); } } else { p->dbs = NULL; } } void verify_ctdb_dbid_map(struct ctdb_dbid_map *p1, struct ctdb_dbid_map *p2) { unsigned int i; assert(p1->num == p2->num); for (i=0; inum; i++) { verify_ctdb_dbid(&p1->dbs[i], &p2->dbs[i]); } } void fill_ctdb_pulldb(TALLOC_CTX *mem_ctx, struct ctdb_pulldb *p) { p->db_id = rand32(); p->lmaster = rand32(); } void verify_ctdb_pulldb(struct ctdb_pulldb *p1, struct ctdb_pulldb *p2) { assert(p1->db_id == p2->db_id); assert(p1->lmaster == p2->lmaster); } void fill_ctdb_pulldb_ext(TALLOC_CTX *mem_ctx, struct ctdb_pulldb_ext *p) { p->db_id = rand32(); p->lmaster = rand32(); p->srvid = rand64(); } void verify_ctdb_pulldb_ext(struct ctdb_pulldb_ext *p1, struct ctdb_pulldb_ext *p2) { assert(p1->db_id == p2->db_id); assert(p1->lmaster == p2->lmaster); assert(p1->srvid == p2->srvid); } void fill_ctdb_db_vacuum(TALLOC_CTX *mem_ctx, struct ctdb_db_vacuum *p) { fill_ctdb_uint32(&p->db_id); fill_ctdb_bool(&p->full_vacuum_run); } void verify_ctdb_db_vacuum(struct ctdb_db_vacuum *p1, struct ctdb_db_vacuum *p2) { verify_ctdb_uint32(&p1->db_id, &p2->db_id); verify_ctdb_bool(&p1->full_vacuum_run, &p2->full_vacuum_run); } void fill_ctdb_echo_data(TALLOC_CTX *mem_ctx, struct ctdb_echo_data *p) { fill_ctdb_uint32(&p->timeout); fill_tdb_data(mem_ctx, &p->buf); } void verify_ctdb_echo_data(struct ctdb_echo_data *p1, struct ctdb_echo_data *p2) { verify_ctdb_uint32(&p1->timeout, &p2->timeout); verify_tdb_data(&p1->buf, &p2->buf); } void fill_ctdb_ltdb_header(struct ctdb_ltdb_header *p) { p->rsn = rand64(); p->dmaster = rand32(); p->reserved1 = rand32(); p->flags = rand32(); } void verify_ctdb_ltdb_header(struct ctdb_ltdb_header *p1, struct ctdb_ltdb_header *p2) { assert(p1->rsn == p2->rsn); assert(p1->dmaster == p2->dmaster); assert(p1->reserved1 == p2->reserved1); assert(p1->flags == p2->flags); } void fill_ctdb_rec_data(TALLOC_CTX *mem_ctx, struct ctdb_rec_data *p) { p->reqid = rand32(); if (p->reqid % 5 == 0) { p->header = talloc(mem_ctx, struct ctdb_ltdb_header); assert(p->header != NULL); fill_ctdb_ltdb_header(p->header); } else { p->header = NULL; } fill_tdb_data_nonnull(mem_ctx, &p->key); fill_tdb_data(mem_ctx, &p->data); } void verify_ctdb_rec_data(struct ctdb_rec_data *p1, struct ctdb_rec_data *p2) { struct ctdb_ltdb_header header; assert(p1->reqid == p2->reqid); if (p1->header != NULL) { assert(ctdb_ltdb_header_extract(&p2->data, &header) == 0); verify_ctdb_ltdb_header(p1->header, &header); } verify_tdb_data(&p1->key, &p2->key); verify_tdb_data(&p1->data, &p2->data); } void fill_ctdb_rec_buffer(TALLOC_CTX *mem_ctx, struct ctdb_rec_buffer *p) { struct ctdb_rec_data rec; int ret, i; int count; p->db_id = rand32(); p->count = 0; p->buf = NULL; p->buflen = 0; count = rand_int(100); if (count > 0) { for (i=0; idb_id == p2->db_id); assert(p1->count == p2->count); assert(p1->buflen == p2->buflen); verify_buffer(p1->buf, p2->buf, p1->buflen); } void fill_ctdb_traverse_start(TALLOC_CTX *mem_ctx, struct ctdb_traverse_start *p) { p->db_id = rand32(); p->reqid = rand32(); p->srvid = rand64(); } void verify_ctdb_traverse_start(struct ctdb_traverse_start *p1, struct ctdb_traverse_start *p2) { assert(p1->db_id == p2->db_id); assert(p1->reqid == p2->reqid); assert(p1->srvid == p2->srvid); } void fill_ctdb_traverse_all(TALLOC_CTX *mem_ctx, struct ctdb_traverse_all *p) { p->db_id = rand32(); p->reqid = rand32(); p->pnn = rand32(); p->client_reqid = rand32(); p->srvid = rand64(); } void verify_ctdb_traverse_all(struct ctdb_traverse_all *p1, struct ctdb_traverse_all *p2) { assert(p1->db_id == p2->db_id); assert(p1->reqid == p2->reqid); assert(p1->pnn == p2->pnn); assert(p1->client_reqid == p2->client_reqid); assert(p1->srvid == p2->srvid); } void fill_ctdb_traverse_start_ext(TALLOC_CTX *mem_ctx, struct ctdb_traverse_start_ext *p) { p->db_id = rand32(); p->reqid = rand32(); p->srvid = rand64(); p->withemptyrecords = rand_int(2); } void verify_ctdb_traverse_start_ext(struct ctdb_traverse_start_ext *p1, struct ctdb_traverse_start_ext *p2) { assert(p1->db_id == p2->db_id); assert(p1->reqid == p2->reqid); assert(p1->srvid == p2->srvid); assert(p1->withemptyrecords == p2->withemptyrecords); } void fill_ctdb_traverse_all_ext(TALLOC_CTX *mem_ctx, struct ctdb_traverse_all_ext *p) { p->db_id = rand32(); p->reqid = rand32(); p->pnn = rand32(); p->client_reqid = rand32(); p->srvid = rand64(); p->withemptyrecords = rand_int(2); } void verify_ctdb_traverse_all_ext(struct ctdb_traverse_all_ext *p1, struct ctdb_traverse_all_ext *p2) { assert(p1->db_id == p2->db_id); assert(p1->reqid == p2->reqid); assert(p1->pnn == p2->pnn); assert(p1->client_reqid == p2->client_reqid); assert(p1->srvid == p2->srvid); assert(p1->withemptyrecords == p2->withemptyrecords); } void fill_ctdb_sock_addr(TALLOC_CTX *mem_ctx, ctdb_sock_addr *p) { if (rand_int(2) == 0) { p->ip.sin_family = AF_INET; p->ip.sin_port = rand_int(65535); fill_buffer(&p->ip.sin_addr, sizeof(struct in_addr)); } else { p->ip6.sin6_family = AF_INET6; p->ip6.sin6_port = rand_int(65535); fill_buffer(&p->ip6.sin6_addr, sizeof(struct in6_addr)); } } void verify_ctdb_sock_addr(ctdb_sock_addr *p1, ctdb_sock_addr *p2) { assert(p1->sa.sa_family == p2->sa.sa_family); if (p1->sa.sa_family == AF_INET) { assert(p1->ip.sin_port == p2->ip.sin_port); verify_buffer(&p1->ip.sin_addr, &p2->ip.sin_addr, sizeof(struct in_addr)); } else { assert(p1->ip6.sin6_port == p2->ip6.sin6_port); verify_buffer(&p1->ip6.sin6_addr, &p2->ip6.sin6_addr, sizeof(struct in6_addr)); } } void fill_ctdb_connection(TALLOC_CTX *mem_ctx, struct ctdb_connection *p) { fill_ctdb_sock_addr(mem_ctx, &p->src); fill_ctdb_sock_addr(mem_ctx, &p->dst); } void verify_ctdb_connection(struct ctdb_connection *p1, struct ctdb_connection *p2) { verify_ctdb_sock_addr(&p1->src, &p2->src); verify_ctdb_sock_addr(&p1->dst, &p2->dst); } void fill_ctdb_connection_list(TALLOC_CTX *mem_ctx, struct ctdb_connection_list *p) { uint32_t i; p->num = rand_int(1000); if (p->num > 0) { p->conn = talloc_array(mem_ctx, struct ctdb_connection, p->num); assert(p->conn != NULL); for (i=0; inum; i++) { fill_ctdb_connection(mem_ctx, &p->conn[i]); } } else { p->conn = NULL; } } void verify_ctdb_connection_list(struct ctdb_connection_list *p1, struct ctdb_connection_list *p2) { uint32_t i; assert(p1->num == p2->num); for (i=0; inum; i++) { verify_ctdb_connection(&p1->conn[i], &p2->conn[i]); } } void fill_ctdb_tunable(TALLOC_CTX *mem_ctx, struct ctdb_tunable *p) { fill_ctdb_string(mem_ctx, &p->name); p->value = rand32(); } void verify_ctdb_tunable(struct ctdb_tunable *p1, struct ctdb_tunable *p2) { verify_ctdb_string(&p1->name, &p2->name); assert(p1->value == p2->value); } void fill_ctdb_node_flag_change(TALLOC_CTX *mem_ctx, struct ctdb_node_flag_change *p) { p->pnn = rand32(); p->new_flags = rand32(); p->old_flags = rand32(); } void verify_ctdb_node_flag_change(struct ctdb_node_flag_change *p1, struct ctdb_node_flag_change *p2) { assert(p1->pnn == p2->pnn); assert(p1->new_flags == p2->new_flags); assert(p1->old_flags == p2->old_flags); } void fill_ctdb_var_list(TALLOC_CTX *mem_ctx, struct ctdb_var_list *p) { int i; p->count = rand_int(100) + 1; p->var = talloc_array(mem_ctx, const char *, p->count); for (i=0; icount; i++) { fill_ctdb_string(p->var, &p->var[i]); } } void verify_ctdb_var_list(struct ctdb_var_list *p1, struct ctdb_var_list *p2) { int i; assert(p1->count == p2->count); for (i=0; icount; i++) { verify_ctdb_string(&p1->var[i], &p2->var[i]); } } void fill_ctdb_tunable_list(TALLOC_CTX *mem_ctx, struct ctdb_tunable_list *p) { p->max_redirect_count = rand32(); p->seqnum_interval = rand32(); p->control_timeout = rand32(); p->traverse_timeout = rand32(); p->keepalive_interval = rand32(); p->keepalive_limit = rand32(); p->recover_timeout = rand32(); p->recover_interval = rand32(); p->election_timeout = rand32(); p->takeover_timeout = rand32(); p->monitor_interval = rand32(); p->tickle_update_interval = rand32(); p->script_timeout = rand32(); p->monitor_timeout_count = rand32(); p->script_unhealthy_on_timeout = rand32(); p->recovery_grace_period = rand32(); p->recovery_ban_period = rand32(); p->database_hash_size = rand32(); p->database_max_dead = rand32(); p->rerecovery_timeout = rand32(); p->enable_bans = rand32(); p->deterministic_public_ips = rand32(); p->reclock_ping_period = rand32(); p->no_ip_failback = rand32(); p->disable_ip_failover = rand32(); p->verbose_memory_names = rand32(); p->recd_ping_timeout = rand32(); p->recd_ping_failcount = rand32(); p->log_latency_ms = rand32(); p->reclock_latency_ms = rand32(); p->recovery_drop_all_ips = rand32(); p->verify_recovery_lock = rand32(); p->vacuum_interval = rand32(); p->vacuum_max_run_time = rand32(); p->repack_limit = rand32(); p->vacuum_limit = rand32(); p->max_queue_depth_drop_msg = rand32(); p->allow_unhealthy_db_read = rand32(); p->stat_history_interval = rand32(); p->deferred_attach_timeout = rand32(); p->vacuum_fast_path_count = rand32(); p->lcp2_public_ip_assignment = rand32(); p->allow_client_db_attach = rand32(); p->recover_pdb_by_seqnum = rand32(); p->deferred_rebalance_on_node_add = rand32(); p->fetch_collapse = rand32(); p->hopcount_make_sticky = rand32(); p->sticky_duration = rand32(); p->sticky_pindown = rand32(); p->no_ip_takeover = rand32(); p->db_record_count_warn = rand32(); p->db_record_size_warn = rand32(); p->db_size_warn = rand32(); p->pulldb_preallocation_size = rand32(); p->no_ip_host_on_all_disabled = rand32(); p->samba3_hack = rand32(); p->mutex_enabled = rand32(); p->lock_processes_per_db = rand32(); p->rec_buffer_size_limit = rand32(); p->queue_buffer_size = rand32(); p->ip_alloc_algorithm = rand32(); p->allow_mixed_versions = rand32(); } void verify_ctdb_tunable_list(struct ctdb_tunable_list *p1, struct ctdb_tunable_list *p2) { assert(p1->max_redirect_count == p2->max_redirect_count); assert(p1->seqnum_interval == p2->seqnum_interval); assert(p1->control_timeout == p2->control_timeout); assert(p1->traverse_timeout == p2->traverse_timeout); assert(p1->keepalive_interval == p2->keepalive_interval); assert(p1->keepalive_limit == p2->keepalive_limit); assert(p1->recover_timeout == p2->recover_timeout); assert(p1->recover_interval == p2->recover_interval); assert(p1->election_timeout == p2->election_timeout); assert(p1->takeover_timeout == p2->takeover_timeout); assert(p1->monitor_interval == p2->monitor_interval); assert(p1->tickle_update_interval == p2->tickle_update_interval); assert(p1->script_timeout == p2->script_timeout); assert(p1->monitor_timeout_count == p2->monitor_timeout_count); assert(p1->script_unhealthy_on_timeout == p2->script_unhealthy_on_timeout); assert(p1->recovery_grace_period == p2->recovery_grace_period); assert(p1->recovery_ban_period == p2->recovery_ban_period); assert(p1->database_hash_size == p2->database_hash_size); assert(p1->database_max_dead == p2->database_max_dead); assert(p1->rerecovery_timeout == p2->rerecovery_timeout); assert(p1->enable_bans == p2->enable_bans); assert(p1->deterministic_public_ips == p2->deterministic_public_ips); assert(p1->reclock_ping_period == p2->reclock_ping_period); assert(p1->no_ip_failback == p2->no_ip_failback); assert(p1->disable_ip_failover == p2->disable_ip_failover); assert(p1->verbose_memory_names == p2->verbose_memory_names); assert(p1->recd_ping_timeout == p2->recd_ping_timeout); assert(p1->recd_ping_failcount == p2->recd_ping_failcount); assert(p1->log_latency_ms == p2->log_latency_ms); assert(p1->reclock_latency_ms == p2->reclock_latency_ms); assert(p1->recovery_drop_all_ips == p2->recovery_drop_all_ips); assert(p1->verify_recovery_lock == p2->verify_recovery_lock); assert(p1->vacuum_interval == p2->vacuum_interval); assert(p1->vacuum_max_run_time == p2->vacuum_max_run_time); assert(p1->repack_limit == p2->repack_limit); assert(p1->vacuum_limit == p2->vacuum_limit); assert(p1->max_queue_depth_drop_msg == p2->max_queue_depth_drop_msg); assert(p1->allow_unhealthy_db_read == p2->allow_unhealthy_db_read); assert(p1->stat_history_interval == p2->stat_history_interval); assert(p1->deferred_attach_timeout == p2->deferred_attach_timeout); assert(p1->vacuum_fast_path_count == p2->vacuum_fast_path_count); assert(p1->lcp2_public_ip_assignment == p2->lcp2_public_ip_assignment); assert(p1->allow_client_db_attach == p2->allow_client_db_attach); assert(p1->recover_pdb_by_seqnum == p2->recover_pdb_by_seqnum); assert(p1->deferred_rebalance_on_node_add == p2->deferred_rebalance_on_node_add); assert(p1->fetch_collapse == p2->fetch_collapse); assert(p1->hopcount_make_sticky == p2->hopcount_make_sticky); assert(p1->sticky_duration == p2->sticky_duration); assert(p1->sticky_pindown == p2->sticky_pindown); assert(p1->no_ip_takeover == p2->no_ip_takeover); assert(p1->db_record_count_warn == p2->db_record_count_warn); assert(p1->db_record_size_warn == p2->db_record_size_warn); assert(p1->db_size_warn == p2->db_size_warn); assert(p1->pulldb_preallocation_size == p2->pulldb_preallocation_size); assert(p1->no_ip_host_on_all_disabled == p2->no_ip_host_on_all_disabled); assert(p1->samba3_hack == p2->samba3_hack); assert(p1->mutex_enabled == p2->mutex_enabled); assert(p1->lock_processes_per_db == p2->lock_processes_per_db); assert(p1->rec_buffer_size_limit == p2->rec_buffer_size_limit); assert(p1->queue_buffer_size == p2->queue_buffer_size); assert(p1->ip_alloc_algorithm == p2->ip_alloc_algorithm); assert(p1->allow_mixed_versions == p2->allow_mixed_versions); } void fill_ctdb_tickle_list(TALLOC_CTX *mem_ctx, struct ctdb_tickle_list *p) { unsigned int i; fill_ctdb_sock_addr(mem_ctx, &p->addr); p->num = rand_int(1000); if (p->num > 0) { p->conn = talloc_array(mem_ctx, struct ctdb_connection, p->num); assert(p->conn != NULL); for (i=0; inum; i++) { fill_ctdb_connection(mem_ctx, &p->conn[i]); } } else { p->conn = NULL; } } void verify_ctdb_tickle_list(struct ctdb_tickle_list *p1, struct ctdb_tickle_list *p2) { unsigned int i; verify_ctdb_sock_addr(&p1->addr, &p2->addr); assert(p1->num == p2->num); for (i=0; inum; i++) { verify_ctdb_connection(&p1->conn[i], &p2->conn[i]); } } void fill_ctdb_addr_info(TALLOC_CTX *mem_ctx, struct ctdb_addr_info *p) { fill_ctdb_sock_addr(mem_ctx, &p->addr); p->mask = rand_int(33); if (rand_int(2) == 0) { p->iface = NULL; } else { fill_ctdb_string(mem_ctx, &p->iface); } } void verify_ctdb_addr_info(struct ctdb_addr_info *p1, struct ctdb_addr_info *p2) { verify_ctdb_sock_addr(&p1->addr, &p2->addr); assert(p1->mask == p2->mask); verify_ctdb_string(&p1->iface, &p2->iface); } void fill_ctdb_transdb(TALLOC_CTX *mem_ctx, struct ctdb_transdb *p) { p->db_id = rand32(); p->tid = rand32(); } void verify_ctdb_transdb(struct ctdb_transdb *p1, struct ctdb_transdb *p2) { assert(p1->db_id == p2->db_id); assert(p1->tid == p2->tid); } void fill_ctdb_uptime(TALLOC_CTX *mem_ctx, struct ctdb_uptime *p) { fill_ctdb_timeval(&p->current_time); fill_ctdb_timeval(&p->ctdbd_start_time); fill_ctdb_timeval(&p->last_recovery_started); fill_ctdb_timeval(&p->last_recovery_finished); } void verify_ctdb_uptime(struct ctdb_uptime *p1, struct ctdb_uptime *p2) { verify_ctdb_timeval(&p1->current_time, &p2->current_time); verify_ctdb_timeval(&p1->ctdbd_start_time, &p2->ctdbd_start_time); verify_ctdb_timeval(&p1->last_recovery_started, &p2->last_recovery_started); verify_ctdb_timeval(&p1->last_recovery_finished, &p2->last_recovery_finished); } void fill_ctdb_public_ip(TALLOC_CTX *mem_ctx, struct ctdb_public_ip *p) { p->pnn = rand32(); fill_ctdb_sock_addr(mem_ctx, &p->addr); } void verify_ctdb_public_ip(struct ctdb_public_ip *p1, struct ctdb_public_ip *p2) { assert(p1->pnn == p2->pnn); verify_ctdb_sock_addr(&p1->addr, &p2->addr); } void fill_ctdb_public_ip_list(TALLOC_CTX *mem_ctx, struct ctdb_public_ip_list *p) { unsigned int i; p->num = rand_int(32); if (p->num > 0) { p->ip = talloc_array(mem_ctx, struct ctdb_public_ip, p->num); assert(p->ip != NULL); for (i=0; inum; i++) { fill_ctdb_public_ip(mem_ctx, &p->ip[i]); } } else { p->ip = NULL; } } void verify_ctdb_public_ip_list(struct ctdb_public_ip_list *p1, struct ctdb_public_ip_list *p2) { unsigned int i; assert(p1->num == p2->num); for (i=0; inum; i++) { verify_ctdb_public_ip(&p1->ip[i], &p2->ip[i]); } } void fill_ctdb_node_and_flags(TALLOC_CTX *mem_ctx, struct ctdb_node_and_flags *p) { p->pnn = rand32(); p->flags = rand32(); fill_ctdb_sock_addr(mem_ctx, &p->addr); } void verify_ctdb_node_and_flags(struct ctdb_node_and_flags *p1, struct ctdb_node_and_flags *p2) { assert(p1->pnn == p2->pnn); assert(p1->flags == p2->flags); verify_ctdb_sock_addr(&p1->addr, &p2->addr); } void fill_ctdb_node_map(TALLOC_CTX *mem_ctx, struct ctdb_node_map *p) { unsigned int i; p->num = rand_int(32); if (p->num > 0) { p->node = talloc_array(mem_ctx, struct ctdb_node_and_flags, p->num); assert(p->node != NULL); for (i=0; inum; i++) { fill_ctdb_node_and_flags(mem_ctx, &p->node[i]); } } else { p->node = NULL; } } void verify_ctdb_node_map(struct ctdb_node_map *p1, struct ctdb_node_map *p2) { unsigned int i; assert(p1->num == p2->num); for (i=0; inum; i++) { verify_ctdb_node_and_flags(&p1->node[i], &p2->node[i]); } } void fill_ctdb_script(TALLOC_CTX *mem_ctx, struct ctdb_script *p) { fill_string(p->name, MAX_SCRIPT_NAME+1); fill_ctdb_timeval(&p->start); fill_ctdb_timeval(&p->finished); p->status = rand32i(); fill_string(p->output, MAX_SCRIPT_OUTPUT+1); } void verify_ctdb_script(struct ctdb_script *p1, struct ctdb_script *p2) { verify_string(p1->name, p2->name); verify_ctdb_timeval(&p1->start, &p2->start); verify_ctdb_timeval(&p1->finished, &p2->finished); assert(p1->status == p2->status); verify_string(p1->output, p2->output); } void fill_ctdb_script_list(TALLOC_CTX *mem_ctx, struct ctdb_script_list *p) { unsigned int i; p->num_scripts = rand_int(32); if (p->num_scripts > 0) { p->script = talloc_zero_array(mem_ctx, struct ctdb_script, p->num_scripts); assert(p->script != NULL); for (i=0; inum_scripts; i++) { fill_ctdb_script(mem_ctx, &p->script[i]); } } else { p->script = NULL; } } void verify_ctdb_script_list(struct ctdb_script_list *p1, struct ctdb_script_list *p2) { unsigned int i; assert(p1->num_scripts == p2->num_scripts); for (i=0; inum_scripts; i++) { verify_ctdb_script(&p1->script[i], &p2->script[i]); } } void fill_ctdb_ban_state(TALLOC_CTX *mem_ctx, struct ctdb_ban_state *p) { p->pnn = rand32(); p->time = rand32(); } void verify_ctdb_ban_state(struct ctdb_ban_state *p1, struct ctdb_ban_state *p2) { assert(p1->pnn == p2->pnn); assert(p1->time == p2->time); } void fill_ctdb_notify_data(TALLOC_CTX *mem_ctx, struct ctdb_notify_data *p) { p->srvid = rand64(); fill_tdb_data(mem_ctx, &p->data); } void verify_ctdb_notify_data(struct ctdb_notify_data *p1, struct ctdb_notify_data *p2) { assert(p1->srvid == p2->srvid); verify_tdb_data(&p1->data, &p2->data); } void fill_ctdb_iface(TALLOC_CTX *mem_ctx, struct ctdb_iface *p) { fill_string(p->name, CTDB_IFACE_SIZE+2); p->link_state = rand16(); p->references = rand32(); } void verify_ctdb_iface(struct ctdb_iface *p1, struct ctdb_iface *p2) { verify_string(p1->name, p2->name); assert(p1->link_state == p2->link_state); assert(p1->references == p2->references); } void fill_ctdb_iface_list(TALLOC_CTX *mem_ctx, struct ctdb_iface_list *p) { unsigned int i; p->num = rand_int(32); if (p->num > 0) { p->iface = talloc_array(mem_ctx, struct ctdb_iface, p->num); assert(p->iface != NULL); for (i=0; inum; i++) { fill_ctdb_iface(mem_ctx, &p->iface[i]); } } else { p->iface = NULL; } } void verify_ctdb_iface_list(struct ctdb_iface_list *p1, struct ctdb_iface_list *p2) { unsigned int i; assert(p1->num == p2->num); for (i=0; inum; i++) { verify_ctdb_iface(&p1->iface[i], &p2->iface[i]); } } void fill_ctdb_public_ip_info(TALLOC_CTX *mem_ctx, struct ctdb_public_ip_info *p) { fill_ctdb_public_ip(mem_ctx, &p->ip); p->active_idx = rand_int(32) + 1; p->ifaces = talloc(mem_ctx, struct ctdb_iface_list); assert(p->ifaces != NULL); fill_ctdb_iface_list(mem_ctx, p->ifaces); } void verify_ctdb_public_ip_info(struct ctdb_public_ip_info *p1, struct ctdb_public_ip_info *p2) { verify_ctdb_public_ip(&p1->ip, &p2->ip); assert(p1->active_idx == p2->active_idx); verify_ctdb_iface_list(p1->ifaces, p2->ifaces); } void fill_ctdb_statistics_list(TALLOC_CTX *mem_ctx, struct ctdb_statistics_list *p) { int i; p->num = rand_int(10); if (p->num > 0) { p->stats = talloc_zero_array(mem_ctx, struct ctdb_statistics, p->num); assert(p->stats != NULL); for (i=0; inum; i++) { fill_ctdb_statistics(mem_ctx, &p->stats[i]); } } else { p->stats = NULL; } } void verify_ctdb_statistics_list(struct ctdb_statistics_list *p1, struct ctdb_statistics_list *p2) { int i; assert(p1->num == p2->num); for (i=0; inum; i++) { verify_ctdb_statistics(&p1->stats[i], &p2->stats[i]); } } void fill_ctdb_key_data(TALLOC_CTX *mem_ctx, struct ctdb_key_data *p) { p->db_id = rand32(); fill_ctdb_ltdb_header(&p->header); fill_tdb_data_nonnull(mem_ctx, &p->key); } void verify_ctdb_key_data(struct ctdb_key_data *p1, struct ctdb_key_data *p2) { assert(p1->db_id == p2->db_id); verify_ctdb_ltdb_header(&p1->header, &p2->header); verify_tdb_data(&p1->key, &p2->key); } void fill_ctdb_db_statistics(TALLOC_CTX *mem_ctx, struct ctdb_db_statistics *p) { unsigned int i; p->locks.num_calls = rand32(); p->locks.num_current = rand32(); p->locks.num_pending = rand32(); p->locks.num_failed = rand32(); fill_ctdb_latency_counter(&p->locks.latency); for (i=0; ilocks.buckets[i] = rand32(); } fill_ctdb_latency_counter(&p->vacuum.latency); p->db_ro_delegations = rand32(); p->db_ro_revokes = rand32(); for (i=0; ihop_count_bucket[i] = rand32(); } p->num_hot_keys = MAX_HOT_KEYS; for (i=0; inum_hot_keys; i++) { p->hot_keys[i].count = rand32(); fill_tdb_data(mem_ctx, &p->hot_keys[i].key); } } void verify_ctdb_db_statistics(struct ctdb_db_statistics *p1, struct ctdb_db_statistics *p2) { unsigned int i; assert(p1->locks.num_calls == p2->locks.num_calls); assert(p1->locks.num_current == p2->locks.num_current); assert(p1->locks.num_pending == p2->locks.num_pending); assert(p1->locks.num_failed == p2->locks.num_failed); verify_ctdb_latency_counter(&p1->locks.latency, &p2->locks.latency); for (i=0; ilocks.buckets[i] == p2->locks.buckets[i]); } verify_ctdb_latency_counter(&p1->vacuum.latency, &p2->vacuum.latency); assert(p1->db_ro_delegations == p2->db_ro_delegations); assert(p1->db_ro_revokes == p2->db_ro_revokes); for (i=0; ihop_count_bucket[i] == p2->hop_count_bucket[i]); } assert(p1->num_hot_keys == p2->num_hot_keys); for (i=0; inum_hot_keys; i++) { assert(p1->hot_keys[i].count == p2->hot_keys[i].count); verify_tdb_data(&p1->hot_keys[i].key, &p2->hot_keys[i].key); } } void fill_ctdb_pid_srvid(TALLOC_CTX *mem_ctx, struct ctdb_pid_srvid *p) { p->pid = rand32(); p->srvid = rand64(); } void verify_ctdb_pid_srvid(struct ctdb_pid_srvid *p1, struct ctdb_pid_srvid *p2) { assert(p1->pid == p2->pid); assert(p1->srvid == p2->srvid); } void fill_ctdb_election_message(TALLOC_CTX *mem_ctx, struct ctdb_election_message *p) { p->num_connected = rand_int(32); fill_ctdb_timeval(&p->priority_time); p->pnn = rand_int(32); p->node_flags = rand32(); } void verify_ctdb_election_message(struct ctdb_election_message *p1, struct ctdb_election_message *p2) { assert(p1->num_connected == p2->num_connected); verify_ctdb_timeval(&p1->priority_time, &p2->priority_time); assert(p1->pnn == p2->pnn); assert(p1->node_flags == p2->node_flags); } void fill_ctdb_srvid_message(TALLOC_CTX *mem_ctx, struct ctdb_srvid_message *p) { p->pnn = rand_int(32); p->srvid = rand64(); } void verify_ctdb_srvid_message(struct ctdb_srvid_message *p1, struct ctdb_srvid_message *p2) { assert(p1->pnn == p2->pnn); assert(p1->srvid == p2->srvid); } void fill_ctdb_disable_message(TALLOC_CTX *mem_ctx, struct ctdb_disable_message *p) { p->pnn = rand_int(32); p->srvid = rand64(); p->timeout = rand32(); } void verify_ctdb_disable_message(struct ctdb_disable_message *p1, struct ctdb_disable_message *p2) { assert(p1->pnn == p2->pnn); assert(p1->srvid == p2->srvid); assert(p1->timeout == p2->timeout); } void fill_ctdb_server_id(struct ctdb_server_id *p) { p->pid = rand64(); p->task_id = rand32(); p->vnn = rand_int(32); p->unique_id = rand64(); } void verify_ctdb_server_id(struct ctdb_server_id *p1, struct ctdb_server_id *p2) { assert(p1->pid == p2->pid); assert(p1->task_id == p2->task_id); assert(p1->vnn == p2->vnn); assert(p1->unique_id == p2->unique_id); } void fill_ctdb_g_lock(struct ctdb_g_lock *p) { p->type = rand_int(2); fill_ctdb_server_id(&p->sid); } void verify_ctdb_g_lock(struct ctdb_g_lock *p1, struct ctdb_g_lock *p2) { assert(p1->type == p2->type); verify_ctdb_server_id(&p1->sid, &p2->sid); } void fill_ctdb_g_lock_list(TALLOC_CTX *mem_ctx, struct ctdb_g_lock_list *p) { unsigned int i; p->num = rand_int(20) + 1; p->lock = talloc_zero_array(mem_ctx, struct ctdb_g_lock, p->num); assert(p->lock != NULL); for (i=0; inum; i++) { fill_ctdb_g_lock(&p->lock[i]); } } void verify_ctdb_g_lock_list(struct ctdb_g_lock_list *p1, struct ctdb_g_lock_list *p2) { unsigned int i; assert(p1->num == p2->num); for (i=0; inum; i++) { verify_ctdb_g_lock(&p1->lock[i], &p2->lock[i]); } } void fill_sock_packet_header(struct sock_packet_header *p) { p->length = rand32(); p->reqid = rand32(); } void verify_sock_packet_header(struct sock_packet_header *p1, struct sock_packet_header *p2) { assert(p1->length == p2->length); assert(p1->reqid == p2->reqid); }