/*
CTDB control tool
Copyright (C) Amitay Isaacs 2015
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see .
*/
#include "replace.h"
#include "system/network.h"
#include "system/filesys.h"
#include "system/time.h"
#include "system/wait.h"
#include "system/dir.h"
#include
#include
#include
#include
#include
#include "version.h"
#include "lib/util/debug.h"
#include "lib/util/samba_util.h"
#include "lib/util/sys_rw.h"
#include "lib/util/smb_strtox.h"
#include "common/db_hash.h"
#include "common/logging.h"
#include "common/path.h"
#include "protocol/protocol.h"
#include "protocol/protocol_basic.h"
#include "protocol/protocol_api.h"
#include "protocol/protocol_util.h"
#include "common/system_socket.h"
#include "client/client.h"
#include "client/client_sync.h"
#define TIMEOUT() timeval_current_ofs(options.timelimit, 0)
#define SRVID_CTDB_TOOL (CTDB_SRVID_TOOL_RANGE | 0x0001000000000000LL)
#define SRVID_CTDB_PUSHDB (CTDB_SRVID_TOOL_RANGE | 0x0002000000000000LL)
#define NODE_FLAGS_UNKNOWN 0x00000040
static struct {
const char *debuglevelstr;
int timelimit;
int pnn;
int machinereadable;
const char *sep;
int machineparsable;
int verbose;
int maxruntime;
int printemptyrecords;
int printdatasize;
int printlmaster;
int printhash;
int printrecordflags;
} options;
static poptContext pc;
struct ctdb_context {
struct tevent_context *ev;
struct ctdb_client_context *client;
struct ctdb_node_map *nodemap;
uint32_t pnn, cmd_pnn, leader_pnn;
uint64_t srvid;
};
static void usage(const char *command);
static int disable_takeover_runs(TALLOC_CTX *mem_ctx,
struct ctdb_context *ctdb,
uint32_t timeout,
uint32_t *pnn_list,
int count);
static int send_ipreallocated_control_to_nodes(TALLOC_CTX *mem_ctx,
struct ctdb_context *ctdb,
uint32_t *pnn_list,
int count);
/*
* Utility Functions
*/
static double timeval_delta(struct timeval *tv2, struct timeval *tv)
{
return (tv2->tv_sec - tv->tv_sec) +
(tv2->tv_usec - tv->tv_usec) * 1.0e-6;
}
static struct ctdb_node_and_flags *get_node_by_pnn(
struct ctdb_node_map *nodemap,
uint32_t pnn)
{
unsigned int i;
for (i=0; inum; i++) {
if (nodemap->node[i].pnn == pnn) {
return &nodemap->node[i];
}
}
return NULL;
}
static const char *pretty_print_flags(TALLOC_CTX *mem_ctx, uint32_t flags)
{
static const struct {
uint32_t flag;
const char *name;
} flag_names[] = {
{ NODE_FLAGS_DISCONNECTED, "DISCONNECTED" },
{ NODE_FLAGS_UNKNOWN, "UNKNOWN" },
{ NODE_FLAGS_PERMANENTLY_DISABLED, "DISABLED" },
{ NODE_FLAGS_BANNED, "BANNED" },
{ NODE_FLAGS_UNHEALTHY, "UNHEALTHY" },
{ NODE_FLAGS_DELETED, "DELETED" },
{ NODE_FLAGS_STOPPED, "STOPPED" },
{ NODE_FLAGS_INACTIVE, "INACTIVE" },
};
char *flags_str = NULL;
size_t i;
for (i=0; isrvid += 1;
return ctdb->srvid;
}
/*
* Get consistent nodemap information.
*
* If nodemap is already cached, use that. If not get it.
* If the current node is BANNED, then get nodemap from "better" node.
*/
static struct ctdb_node_map *get_nodemap(struct ctdb_context *ctdb, bool force)
{
TALLOC_CTX *tmp_ctx;
struct ctdb_node_map *nodemap;
struct ctdb_node_and_flags *node;
uint32_t current_node;
int ret;
if (force) {
TALLOC_FREE(ctdb->nodemap);
}
if (ctdb->nodemap != NULL) {
return ctdb->nodemap;
}
tmp_ctx = talloc_new(ctdb);
if (tmp_ctx == NULL) {
return false;
}
current_node = ctdb->pnn;
again:
ret = ctdb_ctrl_get_nodemap(tmp_ctx, ctdb->ev, ctdb->client,
current_node, TIMEOUT(), &nodemap);
if (ret != 0) {
fprintf(stderr, "Failed to get nodemap from node %u\n",
current_node);
goto failed;
}
node = get_node_by_pnn(nodemap, current_node);
if (node->flags & NODE_FLAGS_BANNED) {
/* Pick next node */
do {
current_node = (current_node + 1) % nodemap->num;
node = get_node_by_pnn(nodemap, current_node);
if (! (node->flags &
(NODE_FLAGS_DELETED|NODE_FLAGS_DISCONNECTED))) {
break;
}
} while (current_node != ctdb->pnn);
if (current_node == ctdb->pnn) {
/* Tried all nodes in the cluster */
fprintf(stderr, "Warning: All nodes are banned.\n");
goto failed;
}
goto again;
}
ctdb->nodemap = talloc_steal(ctdb, nodemap);
return nodemap;
failed:
talloc_free(tmp_ctx);
return NULL;
}
static void print_pnn(uint32_t pnn)
{
if (pnn == CTDB_UNKNOWN_PNN) {
printf("UNKNOWN\n");
return;
}
printf("%u\n", pnn);
}
static bool verify_pnn(struct ctdb_context *ctdb, int pnn)
{
struct ctdb_node_map *nodemap;
bool found;
unsigned int i;
if (pnn == -1) {
return false;
}
nodemap = get_nodemap(ctdb, false);
if (nodemap == NULL) {
return false;
}
found = false;
for (i=0; inum; i++) {
if (nodemap->node[i].pnn == (uint32_t)pnn) {
found = true;
break;
}
}
if (! found) {
fprintf(stderr, "Node %u does not exist\n", pnn);
return false;
}
if (nodemap->node[i].flags &
(NODE_FLAGS_DISCONNECTED|NODE_FLAGS_DELETED)) {
fprintf(stderr, "Node %u has status %s\n", pnn,
pretty_print_flags(ctdb, nodemap->node[i].flags));
return false;
}
return true;
}
static struct ctdb_node_map *talloc_nodemap(TALLOC_CTX *mem_ctx,
struct ctdb_node_map *nodemap)
{
struct ctdb_node_map *nodemap2;
nodemap2 = talloc_zero(mem_ctx, struct ctdb_node_map);
if (nodemap2 == NULL) {
return NULL;
}
nodemap2->node = talloc_array(nodemap2, struct ctdb_node_and_flags,
nodemap->num);
if (nodemap2->node == NULL) {
talloc_free(nodemap2);
return NULL;
}
return nodemap2;
}
/*
* Get the number and the list of matching nodes
*
* nodestring := NULL | all | pnn,[pnn,...]
*
* If nodestring is NULL, use the current node.
*/
static bool parse_nodestring(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
const char *nodestring,
struct ctdb_node_map **out)
{
struct ctdb_node_map *nodemap, *nodemap2;
struct ctdb_node_and_flags *node;
unsigned int i;
nodemap = get_nodemap(ctdb, false);
if (nodemap == NULL) {
return false;
}
nodemap2 = talloc_nodemap(mem_ctx, nodemap);
if (nodemap2 == NULL) {
return false;
}
if (nodestring == NULL) {
for (i=0; inum; i++) {
if (nodemap->node[i].pnn == ctdb->cmd_pnn) {
nodemap2->node[0] = nodemap->node[i];
break;
}
}
nodemap2->num = 1;
goto done;
}
if (strcmp(nodestring, "all") == 0) {
for (i=0; inum; i++) {
nodemap2->node[i] = nodemap->node[i];
}
nodemap2->num = nodemap->num;
goto done;
} else {
char *ns, *tok;
int error = 0;
ns = talloc_strdup(mem_ctx, nodestring);
if (ns == NULL) {
return false;
}
tok = strtok(ns, ",");
while (tok != NULL) {
uint32_t pnn;
pnn = (uint32_t)smb_strtoul(tok,
NULL,
0,
&error,
SMB_STR_STANDARD);
if (error != 0) {
fprintf(stderr, "Invalid node %s\n", tok);
return false;
}
node = get_node_by_pnn(nodemap, pnn);
if (node == NULL) {
fprintf(stderr, "Node %u does not exist\n",
pnn);
return false;
}
nodemap2->node[nodemap2->num] = *node;
nodemap2->num += 1;
tok = strtok(NULL, ",");
}
}
done:
*out = nodemap2;
return true;
}
/*
* Remote nodes are initialised as UNHEALTHY in the daemon and their
* true status is updated after they are connected. However, there
* is a small window when a healthy node may be shown as unhealthy
* between connecting and the status update. Hide this for nodes
* that are not DISCONNECTED nodes by reporting them as UNKNOWN until
* the runstate passes FIRST_RECOVERY. Code paths where this is used
* do not make any control decisions depending upon unknown/unhealthy
* state.
*/
static struct ctdb_node_map *get_nodemap_unknown(
TALLOC_CTX *mem_ctx,
struct ctdb_context *ctdb,
struct ctdb_node_map *nodemap_in)
{
unsigned int i;
int ret;
enum ctdb_runstate runstate;
struct ctdb_node_map *nodemap;
ret = ctdb_ctrl_get_runstate(mem_ctx,
ctdb->ev,
ctdb->client,
ctdb->cmd_pnn,
TIMEOUT(),
&runstate);
if (ret != 0 ) {
printf("Unable to get runstate");
return NULL;
}
nodemap = talloc_nodemap(mem_ctx, nodemap_in);
if (nodemap == NULL) {
printf("Unable to get nodemap");
return NULL;
}
nodemap->num = nodemap_in->num;
for (i=0; inum; i++) {
struct ctdb_node_and_flags *node_in = &nodemap_in->node[i];
struct ctdb_node_and_flags *node = &nodemap->node[i];
*node = *node_in;
if (node->flags & NODE_FLAGS_DELETED) {
continue;
}
if ((runstate <= CTDB_RUNSTATE_FIRST_RECOVERY) &&
!(node->flags & NODE_FLAGS_DISCONNECTED) &&
(node->pnn != ctdb->cmd_pnn)) {
node->flags = NODE_FLAGS_UNKNOWN;
}
}
return nodemap;
}
/* Compare IP address */
static bool ctdb_same_ip(ctdb_sock_addr *ip1, ctdb_sock_addr *ip2)
{
bool ret = false;
if (ip1->sa.sa_family != ip2->sa.sa_family) {
return false;
}
switch (ip1->sa.sa_family) {
case AF_INET:
ret = (memcmp(&ip1->ip.sin_addr, &ip2->ip.sin_addr,
sizeof(struct in_addr)) == 0);
break;
case AF_INET6:
ret = (memcmp(&ip1->ip6.sin6_addr, &ip2->ip6.sin6_addr,
sizeof(struct in6_addr)) == 0);
break;
}
return ret;
}
/* Append a node to a node map with given address and flags */
static bool node_map_add(struct ctdb_node_map *nodemap,
const char *nstr, uint32_t flags)
{
ctdb_sock_addr addr;
uint32_t num;
struct ctdb_node_and_flags *n;
int ret;
ret = ctdb_sock_addr_from_string(nstr, &addr, false);
if (ret != 0) {
fprintf(stderr, "Invalid IP address %s\n", nstr);
return false;
}
num = nodemap->num;
nodemap->node = talloc_realloc(nodemap, nodemap->node,
struct ctdb_node_and_flags, num+1);
if (nodemap->node == NULL) {
return false;
}
n = &nodemap->node[num];
n->addr = addr;
n->pnn = num;
n->flags = flags;
nodemap->num = num+1;
return true;
}
/* Read a nodes file into a node map */
static struct ctdb_node_map *ctdb_read_nodes_file(TALLOC_CTX *mem_ctx,
const char *nlist)
{
char **lines;
int nlines;
int i;
struct ctdb_node_map *nodemap;
nodemap = talloc_zero(mem_ctx, struct ctdb_node_map);
if (nodemap == NULL) {
return NULL;
}
lines = file_lines_load(nlist, &nlines, 0, mem_ctx);
if (lines == NULL) {
return NULL;
}
while (nlines > 0 && strcmp(lines[nlines-1], "") == 0) {
nlines--;
}
for (i=0; i 1) &&
((node[len-1] == ' ') || (node[len-1] == '\t')))
{
node[len-1] = '\0';
len--;
}
if (len == 0) {
continue;
}
if (*node == '#') {
/* A "deleted" node is a node that is
commented out in the nodes file. This is
used instead of removing a line, which
would cause subsequent nodes to change
their PNN. */
flags = NODE_FLAGS_DELETED;
node = discard_const("0.0.0.0");
} else {
flags = 0;
}
if (! node_map_add(nodemap, node, flags)) {
talloc_free(lines);
TALLOC_FREE(nodemap);
return NULL;
}
}
talloc_free(lines);
return nodemap;
}
static struct ctdb_node_map *read_nodes_file(TALLOC_CTX *mem_ctx, uint32_t pnn)
{
struct ctdb_node_map *nodemap;
const char *nodes_list = NULL;
const char *basedir = getenv("CTDB_BASE");
if (basedir == NULL) {
basedir = CTDB_ETCDIR;
}
nodes_list = talloc_asprintf(mem_ctx, "%s/nodes", basedir);
if (nodes_list == NULL) {
fprintf(stderr, "Memory allocation error\n");
return NULL;
}
nodemap = ctdb_read_nodes_file(mem_ctx, nodes_list);
if (nodemap == NULL) {
fprintf(stderr, "Failed to read nodes file \"%s\"\n",
nodes_list);
return NULL;
}
return nodemap;
}
static struct ctdb_dbid *db_find(TALLOC_CTX *mem_ctx,
struct ctdb_context *ctdb,
struct ctdb_dbid_map *dbmap,
const char *db_name)
{
struct ctdb_dbid *db = NULL;
const char *name;
unsigned int i;
int ret;
for (i=0; inum; i++) {
ret = ctdb_ctrl_get_dbname(mem_ctx, ctdb->ev, ctdb->client,
ctdb->pnn, TIMEOUT(),
dbmap->dbs[i].db_id, &name);
if (ret != 0) {
return false;
}
if (strcmp(db_name, name) == 0) {
talloc_free(discard_const(name));
db = &dbmap->dbs[i];
break;
}
}
return db;
}
static bool db_exists(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
const char *db_arg, uint32_t *db_id,
const char **db_name, uint8_t *db_flags)
{
struct ctdb_dbid_map *dbmap;
struct ctdb_dbid *db = NULL;
uint32_t id = 0;
const char *name = NULL;
unsigned int i;
int ret = 0;
ret = ctdb_ctrl_get_dbmap(mem_ctx, ctdb->ev, ctdb->client,
ctdb->pnn, TIMEOUT(), &dbmap);
if (ret != 0) {
return false;
}
if (strncmp(db_arg, "0x", 2) == 0) {
id = smb_strtoul(db_arg, NULL, 0, &ret, SMB_STR_STANDARD);
if (ret != 0) {
return false;
}
for (i=0; inum; i++) {
if (id == dbmap->dbs[i].db_id) {
db = &dbmap->dbs[i];
break;
}
}
} else {
name = db_arg;
db = db_find(mem_ctx, ctdb, dbmap, name);
}
if (db == NULL) {
fprintf(stderr, "No database matching '%s' found\n", db_arg);
return false;
}
if (name == NULL) {
ret = ctdb_ctrl_get_dbname(mem_ctx, ctdb->ev, ctdb->client,
ctdb->pnn, TIMEOUT(), id, &name);
if (ret != 0) {
return false;
}
}
if (db_id != NULL) {
*db_id = db->db_id;
}
if (db_name != NULL) {
*db_name = talloc_strdup(mem_ctx, name);
}
if (db_flags != NULL) {
*db_flags = db->flags;
}
return true;
}
static int hex_to_data(const char *str, size_t len, TALLOC_CTX *mem_ctx,
TDB_DATA *out)
{
unsigned int i;
TDB_DATA data;
if (len & 0x01) {
fprintf(stderr, "Key (%s) contains odd number of hex digits\n",
str);
return EINVAL;
}
data.dsize = len / 2;
data.dptr = talloc_size(mem_ctx, data.dsize);
if (data.dptr == NULL) {
return ENOMEM;
}
for (i=0; i= 64 && pstatus < 255) {
fprintf(stderr, "%s failed with error %d\n",
command, pstatus-64);
ret = pstatus - 64;
} else {
ret = pstatus;
}
return ret;
} else if (WIFSIGNALED(status)) {
fprintf(stderr, "%s terminated with signal %d\n",
command, WTERMSIG(status));
return EINTR;
}
return 0;
}
static void leader_handler(uint64_t srvid,
TDB_DATA data,
void *private_data)
{
struct ctdb_context *ctdb = talloc_get_type_abort(
private_data, struct ctdb_context);
uint32_t leader_pnn;
size_t np;
int ret;
ret = ctdb_uint32_pull(data.dptr, data.dsize, &leader_pnn, &np);
if (ret != 0) {
/* Ignore packet */
return;
}
ctdb->leader_pnn = leader_pnn;
}
static bool get_leader_done(void *private_data)
{
struct ctdb_context *ctdb = talloc_get_type_abort(
private_data, struct ctdb_context);
return ctdb->leader_pnn != CTDB_UNKNOWN_PNN;
}
static int get_leader(TALLOC_CTX *mem_ctx,
struct ctdb_context *ctdb,
uint32_t *leader)
{
int ret;
ret = ctdb_client_wait_func_timeout(ctdb->ev,
get_leader_done,
ctdb,
TIMEOUT());
/*
* If ETIMEDOUT then assume there is no leader and succeed so
* initial value of CTDB_UNKNOWN_PNN is returned
*/
if (ret == ETIMEDOUT) {
ret = 0;
} else if (ret != 0) {
fprintf(stderr, "Error getting leader\n");
return ret;
}
*leader = ctdb->leader_pnn;
return 0;
}
/*
* Command Functions
*/
static int control_version(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
printf("%s\n", SAMBA_VERSION_STRING);
return 0;
}
static bool partially_online(TALLOC_CTX *mem_ctx,
struct ctdb_context *ctdb,
struct ctdb_node_and_flags *node)
{
struct ctdb_iface_list *iface_list;
unsigned int i;
int ret;
bool status = false;
if (node->flags != 0) {
return false;
}
ret = ctdb_ctrl_get_ifaces(mem_ctx, ctdb->ev, ctdb->client,
node->pnn, TIMEOUT(), &iface_list);
if (ret != 0) {
return false;
}
status = false;
for (i=0; i < iface_list->num; i++) {
if (iface_list->iface[i].link_state == 0) {
status = true;
break;
}
}
return status;
}
static void print_nodemap_machine(TALLOC_CTX *mem_ctx,
struct ctdb_context *ctdb,
struct ctdb_node_map *nodemap,
uint32_t mypnn)
{
struct ctdb_node_and_flags *node;
unsigned int i;
printf("%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
options.sep,
"Node", options.sep,
"IP", options.sep,
"Disconnected", options.sep,
"Unknown", options.sep,
"Banned", options.sep,
"Disabled", options.sep,
"Unhealthy", options.sep,
"Stopped", options.sep,
"Inactive", options.sep,
"PartiallyOnline", options.sep,
"ThisNode", options.sep);
for (i=0; inum; i++) {
node = &nodemap->node[i];
if (node->flags & NODE_FLAGS_DELETED) {
continue;
}
printf("%s%u%s%s%s%d%s%d%s%d%s%d%s%d%s%d%s%d%s%d%s%c%s\n",
options.sep,
node->pnn, options.sep,
ctdb_sock_addr_to_string(mem_ctx, &node->addr, false),
options.sep,
!! (node->flags & NODE_FLAGS_DISCONNECTED), options.sep,
!! (node->flags & NODE_FLAGS_UNKNOWN), options.sep,
!! (node->flags & NODE_FLAGS_BANNED), options.sep,
!! (node->flags & NODE_FLAGS_PERMANENTLY_DISABLED),
options.sep,
!! (node->flags & NODE_FLAGS_UNHEALTHY), options.sep,
!! (node->flags & NODE_FLAGS_STOPPED), options.sep,
!! (node->flags & NODE_FLAGS_INACTIVE), options.sep,
partially_online(mem_ctx, ctdb, node), options.sep,
(node->pnn == mypnn)?'Y':'N', options.sep);
}
}
static void print_nodemap(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
struct ctdb_node_map *nodemap, uint32_t mypnn,
bool print_header)
{
struct ctdb_node_and_flags *node;
int num_deleted_nodes = 0;
unsigned int i;
for (i=0; inum; i++) {
if (nodemap->node[i].flags & NODE_FLAGS_DELETED) {
num_deleted_nodes++;
}
}
if (print_header) {
if (num_deleted_nodes == 0) {
printf("Number of nodes:%d\n", nodemap->num);
} else {
printf("Number of nodes:%d "
"(including %d deleted nodes)\n",
nodemap->num, num_deleted_nodes);
}
}
for (i=0; inum; i++) {
node = &nodemap->node[i];
if (node->flags & NODE_FLAGS_DELETED) {
continue;
}
printf("pnn:%u %-16s %s%s\n",
node->pnn,
ctdb_sock_addr_to_string(mem_ctx, &node->addr, false),
partially_online(mem_ctx, ctdb, node) ?
"PARTIALLYONLINE" :
pretty_print_flags(mem_ctx, node->flags),
node->pnn == mypnn ? " (THIS NODE)" : "");
}
}
static void print_status(TALLOC_CTX *mem_ctx,
struct ctdb_context *ctdb,
struct ctdb_node_map *nodemap,
uint32_t mypnn,
struct ctdb_vnn_map *vnnmap,
int recmode,
uint32_t leader)
{
unsigned int i;
print_nodemap(mem_ctx, ctdb, nodemap, mypnn, true);
if (vnnmap->generation == INVALID_GENERATION) {
printf("Generation:INVALID\n");
} else {
printf("Generation:%u\n", vnnmap->generation);
}
printf("Size:%d\n", vnnmap->size);
for (i=0; isize; i++) {
printf("hash:%d lmaster:%d\n", i, vnnmap->map[i]);
}
printf("Recovery mode:%s (%d)\n",
recmode == CTDB_RECOVERY_NORMAL ? "NORMAL" : "RECOVERY",
recmode);
printf("Leader:");
print_pnn(leader);
}
static int control_status(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
struct ctdb_node_map *nodemap_in;
struct ctdb_node_map *nodemap;
struct ctdb_vnn_map *vnnmap;
int recmode;
uint32_t leader;
int ret;
if (argc != 0) {
usage("status");
}
nodemap_in = get_nodemap(ctdb, false);
if (nodemap_in == NULL) {
return 1;
}
nodemap = get_nodemap_unknown(mem_ctx, ctdb, nodemap_in);
if (nodemap == NULL) {
return 1;
}
if (options.machinereadable == 1) {
print_nodemap_machine(mem_ctx, ctdb, nodemap, ctdb->cmd_pnn);
return 0;
}
ret = ctdb_ctrl_getvnnmap(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), &vnnmap);
if (ret != 0) {
return ret;
}
ret = ctdb_ctrl_get_recmode(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), &recmode);
if (ret != 0) {
return ret;
}
ret = get_leader(mem_ctx, ctdb, &leader);
if (ret != 0) {
return ret;
}
print_status(mem_ctx,
ctdb,
nodemap,
ctdb->cmd_pnn,
vnnmap,
recmode,
leader);
return 0;
}
static int control_uptime(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
struct ctdb_uptime *uptime;
int ret, tmp, days, hours, minutes, seconds;
ret = ctdb_ctrl_uptime(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), &uptime);
if (ret != 0) {
return ret;
}
printf("Current time of node %-4u : %s",
ctdb->cmd_pnn, ctime(&uptime->current_time.tv_sec));
tmp = uptime->current_time.tv_sec - uptime->ctdbd_start_time.tv_sec;
seconds = tmp % 60; tmp /= 60;
minutes = tmp % 60; tmp /= 60;
hours = tmp % 24; tmp /= 24;
days = tmp;
printf("Ctdbd start time : (%03d %02d:%02d:%02d) %s",
days, hours, minutes, seconds,
ctime(&uptime->ctdbd_start_time.tv_sec));
tmp = uptime->current_time.tv_sec - uptime->last_recovery_finished.tv_sec;
seconds = tmp % 60; tmp /= 60;
minutes = tmp % 60; tmp /= 60;
hours = tmp % 24; tmp /= 24;
days = tmp;
printf("Time of last recovery/failover: (%03d %02d:%02d:%02d) %s",
days, hours, minutes, seconds,
ctime(&uptime->last_recovery_finished.tv_sec));
printf("Duration of last recovery/failover: %lf seconds\n",
timeval_delta(&uptime->last_recovery_finished,
&uptime->last_recovery_started));
return 0;
}
static int control_ping(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
struct timeval tv;
int ret, num_clients;
tv = timeval_current();
ret = ctdb_ctrl_ping(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), &num_clients);
if (ret != 0) {
return ret;
}
printf("response from %u time=%.6f sec (%d clients)\n",
ctdb->cmd_pnn, timeval_elapsed(&tv), num_clients);
return 0;
}
const char *runstate_to_string(enum ctdb_runstate runstate);
enum ctdb_runstate runstate_from_string(const char *runstate_str);
static int control_runstate(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
enum ctdb_runstate runstate;
bool found;
int ret, i;
ret = ctdb_ctrl_get_runstate(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), &runstate);
if (ret != 0) {
return ret;
}
found = true;
for (i=0; iev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), &tun_var_list);
if (ret != 0) {
fprintf(stderr,
"Failed to get list of variables from node %u\n",
ctdb->cmd_pnn);
return ret;
}
found = false;
for (i=0; icount; i++) {
if (strcasecmp(tun_var_list->var[i], argv[0]) == 0) {
found = true;
break;
}
}
if (! found) {
printf("No such tunable %s\n", argv[0]);
return 1;
}
ret = ctdb_ctrl_get_tunable(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), argv[0], &value);
if (ret != 0) {
return ret;
}
printf("%-26s = %u\n", argv[0], value);
return 0;
}
static int control_setvar(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
struct ctdb_var_list *tun_var_list;
struct ctdb_tunable tunable;
bool found;
int i;
int ret = 0;
if (argc != 2) {
usage("setvar");
}
ret = ctdb_ctrl_list_tunables(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), &tun_var_list);
if (ret != 0) {
fprintf(stderr,
"Failed to get list of variables from node %u\n",
ctdb->cmd_pnn);
return ret;
}
found = false;
for (i=0; icount; i++) {
if (strcasecmp(tun_var_list->var[i], argv[0]) == 0) {
found = true;
break;
}
}
if (! found) {
printf("No such tunable %s\n", argv[0]);
return 1;
}
tunable.name = argv[0];
tunable.value = smb_strtoul(argv[1], NULL, 0, &ret, SMB_STR_STANDARD);
if (ret != 0) {
return ret;
}
ret = ctdb_ctrl_set_tunable(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), &tunable);
if (ret != 0) {
if (ret == 1) {
fprintf(stderr,
"Setting obsolete tunable variable '%s'\n",
tunable.name);
return 0;
}
}
return ret;
}
static int control_listvars(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
struct ctdb_var_list *tun_var_list;
int ret, i;
if (argc != 0) {
usage("listvars");
}
ret = ctdb_ctrl_list_tunables(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), &tun_var_list);
if (ret != 0) {
return ret;
}
for (i=0; icount; i++) {
control_getvar(mem_ctx, ctdb, 1, &tun_var_list->var[i]);
}
return 0;
}
const struct {
const char *name;
uint32_t offset;
} stats_fields[] = {
#define STATISTICS_FIELD(n) { #n, offsetof(struct ctdb_statistics, n) }
STATISTICS_FIELD(num_clients),
STATISTICS_FIELD(frozen),
STATISTICS_FIELD(recovering),
STATISTICS_FIELD(num_recoveries),
STATISTICS_FIELD(client_packets_sent),
STATISTICS_FIELD(client_packets_recv),
STATISTICS_FIELD(node_packets_sent),
STATISTICS_FIELD(node_packets_recv),
STATISTICS_FIELD(keepalive_packets_sent),
STATISTICS_FIELD(keepalive_packets_recv),
STATISTICS_FIELD(node.req_call),
STATISTICS_FIELD(node.reply_call),
STATISTICS_FIELD(node.req_dmaster),
STATISTICS_FIELD(node.reply_dmaster),
STATISTICS_FIELD(node.reply_error),
STATISTICS_FIELD(node.req_message),
STATISTICS_FIELD(node.req_control),
STATISTICS_FIELD(node.reply_control),
STATISTICS_FIELD(node.req_tunnel),
STATISTICS_FIELD(client.req_call),
STATISTICS_FIELD(client.req_message),
STATISTICS_FIELD(client.req_control),
STATISTICS_FIELD(client.req_tunnel),
STATISTICS_FIELD(timeouts.call),
STATISTICS_FIELD(timeouts.control),
STATISTICS_FIELD(timeouts.traverse),
STATISTICS_FIELD(locks.num_calls),
STATISTICS_FIELD(locks.num_current),
STATISTICS_FIELD(locks.num_pending),
STATISTICS_FIELD(locks.num_failed),
STATISTICS_FIELD(total_calls),
STATISTICS_FIELD(pending_calls),
STATISTICS_FIELD(childwrite_calls),
STATISTICS_FIELD(pending_childwrite_calls),
STATISTICS_FIELD(memory_used),
STATISTICS_FIELD(max_hop_count),
STATISTICS_FIELD(total_ro_delegations),
STATISTICS_FIELD(total_ro_revokes),
};
#define LATENCY_AVG(v) ((v).num ? (v).total / (v).num : 0.0 )
static void print_statistics_machine(struct ctdb_statistics *s,
bool show_header)
{
size_t i;
if (show_header) {
printf("CTDB version%s", options.sep);
printf("Current time of statistics%s", options.sep);
printf("Statistics collected since%s", options.sep);
for (i=0; istatistics_current_time.tv_sec, options.sep);
printf("%u%s", (uint32_t)s->statistics_start_time.tv_sec, options.sep);
for (i=0;ireclock.ctdbd.num, options.sep);
printf("%.6f%s", s->reclock.ctdbd.min, options.sep);
printf("%.6f%s", LATENCY_AVG(s->reclock.ctdbd), options.sep);
printf("%.6f%s", s->reclock.ctdbd.max, options.sep);
printf("%u%s", s->reclock.recd.num, options.sep);
printf("%.6f%s", s->reclock.recd.min, options.sep);
printf("%.6f%s", LATENCY_AVG(s->reclock.recd), options.sep);
printf("%.6f%s", s->reclock.recd.max, options.sep);
printf("%d%s", s->call_latency.num, options.sep);
printf("%.6f%s", s->call_latency.min, options.sep);
printf("%.6f%s", LATENCY_AVG(s->call_latency), options.sep);
printf("%.6f%s", s->call_latency.max, options.sep);
printf("%u%s", s->locks.latency.num, options.sep);
printf("%.6f%s", s->locks.latency.min, options.sep);
printf("%.6f%s", LATENCY_AVG(s->locks.latency), options.sep);
printf("%.6f%s", s->locks.latency.max, options.sep);
printf("%d%s", s->childwrite_latency.num, options.sep);
printf("%.6f%s", s->childwrite_latency.min, options.sep);
printf("%.6f%s", LATENCY_AVG(s->childwrite_latency), options.sep);
printf("%.6f%s", s->childwrite_latency.max, options.sep);
printf("\n");
}
static void print_statistics(struct ctdb_statistics *s)
{
int tmp, days, hours, minutes, seconds;
size_t i;
const char *prefix = NULL;
int preflen = 0;
tmp = s->statistics_current_time.tv_sec -
s->statistics_start_time.tv_sec;
seconds = tmp % 60; tmp /= 60;
minutes = tmp % 60; tmp /= 60;
hours = tmp % 24; tmp /= 24;
days = tmp;
printf("CTDB version %u\n", CTDB_PROTOCOL);
printf("Current time of statistics : %s",
ctime(&s->statistics_current_time.tv_sec));
printf("Statistics collected since : (%03d %02d:%02d:%02d) %s",
days, hours, minutes, seconds,
ctime(&s->statistics_start_time.tv_sec));
for (i=0; ihop_count_bucket[i]);
}
printf("\n");
printf(" lock_buckets:");
for (i=0; ilocks.buckets[i]);
}
printf("\n");
printf(" %-30s %.6f/%.6f/%.6f sec out of %d\n",
"locks_latency MIN/AVG/MAX",
s->locks.latency.min, LATENCY_AVG(s->locks.latency),
s->locks.latency.max, s->locks.latency.num);
printf(" %-30s %.6f/%.6f/%.6f sec out of %d\n",
"reclock_ctdbd MIN/AVG/MAX",
s->reclock.ctdbd.min, LATENCY_AVG(s->reclock.ctdbd),
s->reclock.ctdbd.max, s->reclock.ctdbd.num);
printf(" %-30s %.6f/%.6f/%.6f sec out of %d\n",
"reclock_recd MIN/AVG/MAX",
s->reclock.recd.min, LATENCY_AVG(s->reclock.recd),
s->reclock.recd.max, s->reclock.recd.num);
printf(" %-30s %.6f/%.6f/%.6f sec out of %d\n",
"call_latency MIN/AVG/MAX",
s->call_latency.min, LATENCY_AVG(s->call_latency),
s->call_latency.max, s->call_latency.num);
printf(" %-30s %.6f/%.6f/%.6f sec out of %d\n",
"childwrite_latency MIN/AVG/MAX",
s->childwrite_latency.min,
LATENCY_AVG(s->childwrite_latency),
s->childwrite_latency.max, s->childwrite_latency.num);
}
static int control_statistics(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
struct ctdb_statistics *stats;
int ret;
if (argc != 0) {
usage("statistics");
}
ret = ctdb_ctrl_statistics(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), &stats);
if (ret != 0) {
return ret;
}
if (options.machinereadable) {
print_statistics_machine(stats, true);
} else {
print_statistics(stats);
}
return 0;
}
static int control_statistics_reset(TALLOC_CTX *mem_ctx,
struct ctdb_context *ctdb,
int argc, const char **argv)
{
int ret;
if (argc != 0) {
usage("statisticsreset");
}
ret = ctdb_ctrl_statistics_reset(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT());
if (ret != 0) {
return ret;
}
return 0;
}
static int control_stats(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
struct ctdb_statistics_list *slist;
int ret, count = 0, i;
bool show_header = true;
if (argc > 1) {
usage("stats");
}
if (argc == 1) {
count = atoi(argv[0]);
}
ret = ctdb_ctrl_get_stat_history(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), &slist);
if (ret != 0) {
return ret;
}
for (i=0; inum; i++) {
if (slist->stats[i].statistics_start_time.tv_sec == 0) {
continue;
}
if (options.machinereadable == 1) {
print_statistics_machine(&slist->stats[i],
show_header);
show_header = false;
} else {
print_statistics(&slist->stats[i]);
}
if (count > 0 && i == count) {
break;
}
}
return 0;
}
static int ctdb_public_ip_cmp(const void *a, const void *b)
{
const struct ctdb_public_ip *ip_a = a;
const struct ctdb_public_ip *ip_b = b;
return ctdb_sock_addr_cmp(&ip_a->addr, &ip_b->addr);
}
static void print_ip(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
struct ctdb_public_ip_list *ips,
struct ctdb_public_ip_info **ipinfo,
bool all_nodes)
{
unsigned int i, j;
char *conf, *avail, *active;
if (options.machinereadable == 1) {
printf("%s%s%s%s%s", options.sep,
"Public IP", options.sep,
"Node", options.sep);
if (options.verbose == 1) {
printf("%s%s%s%s%s%s\n",
"ActiveInterfaces", options.sep,
"AvailableInterfaces", options.sep,
"ConfiguredInterfaces", options.sep);
} else {
printf("\n");
}
} else {
if (all_nodes) {
printf("Public IPs on ALL nodes\n");
} else {
printf("Public IPs on node %u\n", ctdb->cmd_pnn);
}
}
for (i = 0; i < ips->num; i++) {
if (options.machinereadable == 1) {
printf("%s%s%s%d%s", options.sep,
ctdb_sock_addr_to_string(
mem_ctx, &ips->ip[i].addr, false),
options.sep,
(int)ips->ip[i].pnn, options.sep);
} else {
printf("%s", ctdb_sock_addr_to_string(
mem_ctx, &ips->ip[i].addr, false));
}
if (options.verbose == 0) {
if (options.machinereadable == 1) {
printf("\n");
} else {
printf(" %d\n", (int)ips->ip[i].pnn);
}
continue;
}
conf = NULL;
avail = NULL;
active = NULL;
if (ipinfo[i] == NULL) {
goto skip_ipinfo;
}
for (j=0; jifaces->num; j++) {
struct ctdb_iface *iface;
iface = &ipinfo[i]->ifaces->iface[j];
if (conf == NULL) {
conf = talloc_strdup(mem_ctx, iface->name);
} else {
conf = talloc_asprintf_append(
conf, ",%s", iface->name);
}
if (ipinfo[i]->active_idx == j) {
active = iface->name;
}
if (iface->link_state == 0) {
continue;
}
if (avail == NULL) {
avail = talloc_strdup(mem_ctx, iface->name);
} else {
avail = talloc_asprintf_append(
avail, ",%s", iface->name);
}
}
skip_ipinfo:
if (options.machinereadable == 1) {
printf("%s%s%s%s%s%s\n",
active ? active : "", options.sep,
avail ? avail : "", options.sep,
conf ? conf : "", options.sep);
} else {
printf(" node[%d] active[%s] available[%s]"
" configured[%s]\n",
(int)ips->ip[i].pnn, active ? active : "",
avail ? avail : "", conf ? conf : "");
}
}
}
static int collect_ips(uint8_t *keybuf, size_t keylen, uint8_t *databuf,
size_t datalen, void *private_data)
{
struct ctdb_public_ip_list *ips = talloc_get_type_abort(
private_data, struct ctdb_public_ip_list);
struct ctdb_public_ip *ip;
ip = (struct ctdb_public_ip *)databuf;
ips->ip[ips->num] = *ip;
ips->num += 1;
return 0;
}
static int get_all_public_ips(struct ctdb_context *ctdb, TALLOC_CTX *mem_ctx,
struct ctdb_public_ip_list **out)
{
struct ctdb_node_map *nodemap;
struct ctdb_public_ip_list *ips;
struct db_hash_context *ipdb;
uint32_t *pnn_list;
unsigned int j;
int ret, count, i;
nodemap = get_nodemap(ctdb, false);
if (nodemap == NULL) {
return 1;
}
ret = db_hash_init(mem_ctx, "ips", 101, DB_HASH_COMPLEX, &ipdb);
if (ret != 0) {
goto failed;
}
count = list_of_active_nodes(nodemap, CTDB_UNKNOWN_PNN, mem_ctx,
&pnn_list);
if (count <= 0) {
goto failed;
}
for (i=0; iev, ctdb->client,
pnn_list[i], TIMEOUT(),
false, &ips);
if (ret != 0) {
goto failed;
}
for (j=0; jnum; j++) {
struct ctdb_public_ip ip;
ip.pnn = ips->ip[j].pnn;
ip.addr = ips->ip[j].addr;
if (pnn_list[i] == ip.pnn) {
/* Node claims IP is hosted on it, so
* save that information
*/
ret = db_hash_add(ipdb, (uint8_t *)&ip.addr,
sizeof(ip.addr),
(uint8_t *)&ip, sizeof(ip));
if (ret != 0) {
goto failed;
}
} else {
/* Node thinks IP is hosted elsewhere,
* so overwrite with CTDB_UNKNOWN_PNN
* if there's no existing entry
*/
ret = db_hash_exists(ipdb, (uint8_t *)&ip.addr,
sizeof(ip.addr));
if (ret == ENOENT) {
ip.pnn = CTDB_UNKNOWN_PNN;
ret = db_hash_add(ipdb,
(uint8_t *)&ip.addr,
sizeof(ip.addr),
(uint8_t *)&ip,
sizeof(ip));
if (ret != 0) {
goto failed;
}
}
}
}
TALLOC_FREE(ips);
}
talloc_free(pnn_list);
ret = db_hash_traverse(ipdb, NULL, NULL, &count);
if (ret != 0) {
goto failed;
}
ips = talloc_zero(mem_ctx, struct ctdb_public_ip_list);
if (ips == NULL) {
goto failed;
}
ips->ip = talloc_array(ips, struct ctdb_public_ip, count);
if (ips->ip == NULL) {
goto failed;
}
ret = db_hash_traverse(ipdb, collect_ips, ips, &count);
if (ret != 0) {
goto failed;
}
if ((unsigned int)count != ips->num) {
goto failed;
}
talloc_free(ipdb);
*out = ips;
return 0;
failed:
talloc_free(ipdb);
return 1;
}
static int control_ip(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
struct ctdb_public_ip_list *ips;
struct ctdb_public_ip_info **ipinfo;
unsigned int i;
int ret;
bool do_all = false;
if (argc > 1) {
usage("ip");
}
if (argc == 1) {
if (strcmp(argv[0], "all") == 0) {
do_all = true;
} else {
usage("ip");
}
}
if (do_all) {
ret = get_all_public_ips(ctdb, mem_ctx, &ips);
} else {
ret = ctdb_ctrl_get_public_ips(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(),
false, &ips);
}
if (ret != 0) {
return ret;
}
qsort(ips->ip, ips->num, sizeof(struct ctdb_public_ip),
ctdb_public_ip_cmp);
ipinfo = talloc_array(mem_ctx, struct ctdb_public_ip_info *, ips->num);
if (ipinfo == NULL) {
return 1;
}
for (i=0; inum; i++) {
uint32_t pnn;
if (do_all) {
pnn = ips->ip[i].pnn;
} else {
pnn = ctdb->cmd_pnn;
}
if (pnn == CTDB_UNKNOWN_PNN) {
ipinfo[i] = NULL;
continue;
}
ret = ctdb_ctrl_get_public_ip_info(mem_ctx, ctdb->ev,
ctdb->client, pnn,
TIMEOUT(), &ips->ip[i].addr,
&ipinfo[i]);
if (ret != 0) {
return ret;
}
}
print_ip(mem_ctx, ctdb, ips, ipinfo, do_all);
return 0;
}
static int control_ipinfo(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
struct ctdb_public_ip_info *ipinfo;
ctdb_sock_addr addr;
unsigned int i;
int ret;
if (argc != 1) {
usage("ipinfo");
}
ret = ctdb_sock_addr_from_string(argv[0], &addr, false);
if (ret != 0) {
fprintf(stderr, "Invalid IP address %s\n", argv[0]);
return 1;
}
ret = ctdb_ctrl_get_public_ip_info(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), &addr,
&ipinfo);
if (ret != 0) {
if (ret == -1) {
printf("Node %u does not know about IP %s\n",
ctdb->cmd_pnn, argv[0]);
}
return ret;
}
printf("Public IP[%s] info on node %u\n",
ctdb_sock_addr_to_string(mem_ctx, &ipinfo->ip.addr, false),
ctdb->cmd_pnn);
printf("IP:%s\nCurrentNode:%u\nNumInterfaces:%u\n",
ctdb_sock_addr_to_string(mem_ctx, &ipinfo->ip.addr, false),
ipinfo->ip.pnn, ipinfo->ifaces->num);
for (i=0; iifaces->num; i++) {
struct ctdb_iface *iface;
iface = &ipinfo->ifaces->iface[i];
iface->name[CTDB_IFACE_SIZE] = '\0';
printf("Interface[%u]: Name:%s Link:%s References:%u%s\n",
i+1, iface->name,
iface->link_state == 0 ? "down" : "up",
iface->references,
(i == ipinfo->active_idx) ? " (active)" : "");
}
return 0;
}
static int control_ifaces(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
struct ctdb_iface_list *ifaces;
unsigned int i;
int ret;
if (argc != 0) {
usage("ifaces");
}
ret = ctdb_ctrl_get_ifaces(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), &ifaces);
if (ret != 0) {
return ret;
}
if (ifaces->num == 0) {
printf("No interfaces configured on node %u\n",
ctdb->cmd_pnn);
return 0;
}
if (options.machinereadable) {
printf("%s%s%s%s%s%s%s\n", options.sep,
"Name", options.sep,
"LinkStatus", options.sep,
"References", options.sep);
} else {
printf("Interfaces on node %u\n", ctdb->cmd_pnn);
}
for (i=0; inum; i++) {
if (options.machinereadable) {
printf("%s%s%s%u%s%u%s\n", options.sep,
ifaces->iface[i].name, options.sep,
ifaces->iface[i].link_state, options.sep,
ifaces->iface[i].references, options.sep);
} else {
printf("name:%s link:%s references:%u\n",
ifaces->iface[i].name,
ifaces->iface[i].link_state ? "up" : "down",
ifaces->iface[i].references);
}
}
return 0;
}
static int control_setifacelink(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
struct ctdb_iface_list *ifaces;
struct ctdb_iface *iface;
unsigned int i;
int ret;
if (argc != 2) {
usage("setifacelink");
}
if (strlen(argv[0]) > CTDB_IFACE_SIZE) {
fprintf(stderr, "Interface name '%s' too long\n", argv[0]);
return 1;
}
ret = ctdb_ctrl_get_ifaces(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), &ifaces);
if (ret != 0) {
fprintf(stderr,
"Failed to get interface information from node %u\n",
ctdb->cmd_pnn);
return ret;
}
iface = NULL;
for (i=0; inum; i++) {
if (strcmp(ifaces->iface[i].name, argv[0]) == 0) {
iface = &ifaces->iface[i];
break;
}
}
if (iface == NULL) {
printf("Interface %s not configured on node %u\n",
argv[0], ctdb->cmd_pnn);
return 1;
}
if (strcmp(argv[1], "up") == 0) {
iface->link_state = 1;
} else if (strcmp(argv[1], "down") == 0) {
iface->link_state = 0;
} else {
usage("setifacelink");
return 1;
}
iface->references = 0;
ret = ctdb_ctrl_set_iface_link_state(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), iface);
if (ret != 0) {
return ret;
}
return 0;
}
static int control_process_exists(TALLOC_CTX *mem_ctx,
struct ctdb_context *ctdb,
int argc, const char **argv)
{
pid_t pid;
uint64_t srvid = 0;
int status;
int ret = 0;
if (argc != 1 && argc != 2) {
usage("process-exists");
}
pid = atoi(argv[0]);
if (argc == 2) {
srvid = smb_strtoull(argv[1], NULL, 0, &ret, SMB_STR_STANDARD);
if (ret != 0) {
return ret;
}
}
if (srvid == 0) {
ret = ctdb_ctrl_process_exists(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), pid, &status);
} else {
struct ctdb_pid_srvid pid_srvid;
pid_srvid.pid = pid;
pid_srvid.srvid = srvid;
ret = ctdb_ctrl_check_pid_srvid(mem_ctx, ctdb->ev,
ctdb->client, ctdb->cmd_pnn,
TIMEOUT(), &pid_srvid,
&status);
}
if (ret != 0) {
return ret;
}
if (srvid == 0) {
printf("PID %d %s\n", pid,
(status == 0 ? "exists" : "does not exist"));
} else {
printf("PID %d with SRVID 0x%"PRIx64" %s\n", pid, srvid,
(status == 0 ? "exists" : "does not exist"));
}
return status;
}
static int control_getdbmap(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
struct ctdb_dbid_map *dbmap;
unsigned int i;
int ret;
if (argc != 0) {
usage("getdbmap");
}
ret = ctdb_ctrl_get_dbmap(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), &dbmap);
if (ret != 0) {
return ret;
}
if (options.machinereadable == 1) {
printf("%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
options.sep,
"ID", options.sep,
"Name", options.sep,
"Path", options.sep,
"Persistent", options.sep,
"Sticky", options.sep,
"Unhealthy", options.sep,
"Readonly", options.sep,
"Replicated", options.sep);
} else {
printf("Number of databases:%d\n", dbmap->num);
}
for (i=0; inum; i++) {
const char *name;
const char *path;
const char *health;
bool persistent;
bool readonly;
bool sticky;
bool replicated;
uint32_t db_id;
db_id = dbmap->dbs[i].db_id;
ret = ctdb_ctrl_get_dbname(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), db_id,
&name);
if (ret != 0) {
return ret;
}
ret = ctdb_ctrl_getdbpath(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), db_id,
&path);
if (ret != 0) {
return ret;
}
ret = ctdb_ctrl_db_get_health(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), db_id,
&health);
if (ret != 0) {
return ret;
}
persistent = dbmap->dbs[i].flags & CTDB_DB_FLAGS_PERSISTENT;
readonly = dbmap->dbs[i].flags & CTDB_DB_FLAGS_READONLY;
sticky = dbmap->dbs[i].flags & CTDB_DB_FLAGS_STICKY;
replicated = dbmap->dbs[i].flags & CTDB_DB_FLAGS_REPLICATED;
if (options.machinereadable == 1) {
printf("%s0x%08X%s%s%s%s%s%d%s%d%s%d%s%d%s%d%s\n",
options.sep,
db_id, options.sep,
name, options.sep,
path, options.sep,
!! (persistent), options.sep,
!! (sticky), options.sep,
!! (health), options.sep,
!! (readonly), options.sep,
!! (replicated), options.sep);
} else {
printf("dbid:0x%08x name:%s path:%s%s%s%s%s%s\n",
db_id, name, path,
persistent ? " PERSISTENT" : "",
sticky ? " STICKY" : "",
readonly ? " READONLY" : "",
replicated ? " REPLICATED" : "",
health ? " UNHEALTHY" : "");
}
talloc_free(discard_const(name));
talloc_free(discard_const(path));
talloc_free(discard_const(health));
}
return 0;
}
static int control_getdbstatus(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
uint32_t db_id;
const char *db_name, *db_path, *db_health;
uint8_t db_flags;
int ret;
if (argc != 1) {
usage("getdbstatus");
}
if (! db_exists(mem_ctx, ctdb, argv[0], &db_id, &db_name, &db_flags)) {
return 1;
}
ret = ctdb_ctrl_getdbpath(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), db_id,
&db_path);
if (ret != 0) {
return ret;
}
ret = ctdb_ctrl_db_get_health(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), db_id,
&db_health);
if (ret != 0) {
return ret;
}
printf("dbid: 0x%08x\nname: %s\npath: %s\n", db_id, db_name, db_path);
printf("PERSISTENT: %s\nREPLICATED: %s\nSTICKY: %s\nREADONLY: %s\n",
(db_flags & CTDB_DB_FLAGS_PERSISTENT ? "yes" : "no"),
(db_flags & CTDB_DB_FLAGS_REPLICATED ? "yes" : "no"),
(db_flags & CTDB_DB_FLAGS_STICKY ? "yes" : "no"),
(db_flags & CTDB_DB_FLAGS_READONLY ? "yes" : "no"));
printf("HEALTH: %s\n", (db_health ? db_health : "OK"));
return 0;
}
struct dump_record_state {
uint32_t count;
};
#define ISASCII(x) (isprint(x) && ! strchr("\"\\", (x)))
static void dump_tdb_data(const char *name, TDB_DATA val)
{
size_t i;
fprintf(stdout, "%s(%zu) = \"", name, val.dsize);
for (i=0; idmaster);
fprintf(stdout, "rsn: %" PRIu64 "\n", header->rsn);
fprintf(stdout, "flags: 0x%08x", header->flags);
if (header->flags & CTDB_REC_FLAG_MIGRATED_WITH_DATA) {
fprintf(stdout, " MIGRATED_WITH_DATA");
}
if (header->flags & CTDB_REC_FLAG_VACUUM_MIGRATED) {
fprintf(stdout, " VACUUM_MIGRATED");
}
if (header->flags & CTDB_REC_FLAG_AUTOMATIC) {
fprintf(stdout, " AUTOMATIC");
}
if (header->flags & CTDB_REC_RO_HAVE_DELEGATIONS) {
fprintf(stdout, " RO_HAVE_DELEGATIONS");
}
if (header->flags & CTDB_REC_RO_HAVE_READONLY) {
fprintf(stdout, " RO_HAVE_READONLY");
}
if (header->flags & CTDB_REC_RO_REVOKING_READONLY) {
fprintf(stdout, " RO_REVOKING_READONLY");
}
if (header->flags & CTDB_REC_RO_REVOKE_COMPLETE) {
fprintf(stdout, " RO_REVOKE_COMPLETE");
}
fprintf(stdout, "\n");
}
static int dump_record(uint32_t reqid, struct ctdb_ltdb_header *header,
TDB_DATA key, TDB_DATA data, void *private_data)
{
struct dump_record_state *state =
(struct dump_record_state *)private_data;
state->count += 1;
dump_tdb_data("key", key);
dump_ltdb_header(header);
dump_tdb_data("data", data);
fprintf(stdout, "\n");
return 0;
}
static int control_catdb(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
struct ctdb_db_context *db;
const char *db_name;
uint32_t db_id;
uint8_t db_flags;
struct dump_record_state state;
int ret;
if (argc != 1) {
usage("catdb");
}
if (! db_exists(mem_ctx, ctdb, argv[0], &db_id, &db_name, &db_flags)) {
return 1;
}
ret = ctdb_attach(ctdb->ev, ctdb->client, TIMEOUT(), db_name,
db_flags, &db);
if (ret != 0) {
fprintf(stderr, "Failed to attach to DB %s\n", db_name);
return ret;
}
state.count = 0;
ret = ctdb_db_traverse(mem_ctx, ctdb->ev, ctdb->client, db,
ctdb->cmd_pnn, TIMEOUT(),
dump_record, &state);
printf("Dumped %u records\n", state.count);
return ret;
}
static int control_cattdb(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
struct ctdb_db_context *db;
const char *db_name;
uint32_t db_id;
uint8_t db_flags;
struct dump_record_state state;
int ret;
if (argc != 1) {
usage("cattdb");
}
if (! db_exists(mem_ctx, ctdb, argv[0], &db_id, &db_name, &db_flags)) {
return 1;
}
ret = ctdb_attach(ctdb->ev, ctdb->client, TIMEOUT(), db_name,
db_flags, &db);
if (ret != 0) {
fprintf(stderr, "Failed to attach to DB %s\n", db_name);
return ret;
}
state.count = 0;
ret = ctdb_db_traverse_local(db, true, true, dump_record, &state);
printf("Dumped %u record(s)\n", state.count);
return ret;
}
static int control_getcapabilities(TALLOC_CTX *mem_ctx,
struct ctdb_context *ctdb,
int argc, const char **argv)
{
uint32_t caps;
int ret;
if (argc != 0) {
usage("getcapabilities");
}
ret = ctdb_ctrl_get_capabilities(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), &caps);
if (ret != 0) {
return ret;
}
if (options.machinereadable == 1) {
printf("%s%s%s%s%s\n",
options.sep,
"LEADER", options.sep,
"LMASTER", options.sep);
printf("%s%d%s%d%s\n", options.sep,
!! (caps & CTDB_CAP_RECMASTER), options.sep,
!! (caps & CTDB_CAP_LMASTER), options.sep);
} else {
printf("LEADER: %s\n",
(caps & CTDB_CAP_RECMASTER) ? "YES" : "NO");
printf("LMASTER: %s\n",
(caps & CTDB_CAP_LMASTER) ? "YES" : "NO");
}
return 0;
}
static int control_pnn(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
printf("%u\n", ctdb_client_pnn(ctdb->client));
return 0;
}
static int control_lvs(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
char *t, *lvs_helper = NULL;
if (argc != 1) {
usage("lvs");
}
t = getenv("CTDB_LVS_HELPER");
if (t != NULL) {
lvs_helper = talloc_strdup(mem_ctx, t);
} else {
lvs_helper = talloc_asprintf(mem_ctx, "%s/ctdb_lvs",
CTDB_HELPER_BINDIR);
}
if (lvs_helper == NULL) {
fprintf(stderr, "Unable to set LVS helper\n");
return 1;
}
return run_helper(mem_ctx, "LVS helper", lvs_helper, argc, argv);
}
static int control_setdebug(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
int log_level;
int ret;
bool found;
if (argc != 1) {
usage("setdebug");
}
found = debug_level_parse(argv[0], &log_level);
if (! found) {
fprintf(stderr,
"Invalid debug level '%s'. Valid levels are:\n",
argv[0]);
fprintf(stderr, "\tERROR | WARNING | NOTICE | INFO | DEBUG\n");
return 1;
}
ret = ctdb_ctrl_setdebug(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), log_level);
if (ret != 0) {
return ret;
}
return 0;
}
static int control_getdebug(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
int loglevel;
const char *log_str;
int ret;
if (argc != 0) {
usage("getdebug");
}
ret = ctdb_ctrl_getdebug(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), &loglevel);
if (ret != 0) {
return ret;
}
log_str = debug_level_to_string(loglevel);
printf("%s\n", log_str);
return 0;
}
static int control_attach(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
const char *db_name;
uint8_t db_flags = 0;
int ret;
if (argc < 1 || argc > 2) {
usage("attach");
}
db_name = argv[0];
if (argc == 2) {
if (strcmp(argv[1], "persistent") == 0) {
db_flags = CTDB_DB_FLAGS_PERSISTENT;
} else if (strcmp(argv[1], "readonly") == 0) {
db_flags = CTDB_DB_FLAGS_READONLY;
} else if (strcmp(argv[1], "sticky") == 0) {
db_flags = CTDB_DB_FLAGS_STICKY;
} else if (strcmp(argv[1], "replicated") == 0) {
db_flags = CTDB_DB_FLAGS_REPLICATED;
} else {
usage("attach");
}
}
ret = ctdb_attach(ctdb->ev, ctdb->client, TIMEOUT(), db_name,
db_flags, NULL);
if (ret != 0) {
return ret;
}
return 0;
}
static int control_detach(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
const char *db_name;
uint32_t db_id;
uint8_t db_flags;
struct ctdb_node_map *nodemap;
int recmode;
unsigned int j;
int ret, ret2, i;
if (argc < 1) {
usage("detach");
}
ret = ctdb_ctrl_get_recmode(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), &recmode);
if (ret != 0) {
return ret;
}
if (recmode == CTDB_RECOVERY_ACTIVE) {
fprintf(stderr, "Database cannot be detached"
" when recovery is active\n");
return 1;
}
nodemap = get_nodemap(ctdb, false);
if (nodemap == NULL) {
return 1;
}
for (j=0; jnum; j++) {
uint32_t value;
if (nodemap->node[j].flags & NODE_FLAGS_DISCONNECTED) {
continue;
}
if (nodemap->node[j].flags & NODE_FLAGS_DELETED) {
continue;
}
if (nodemap->node[j].flags & NODE_FLAGS_INACTIVE) {
fprintf(stderr, "Database cannot be detached on"
" inactive (stopped or banned) node %u\n",
nodemap->node[j].pnn);
return 1;
}
ret = ctdb_ctrl_get_tunable(mem_ctx, ctdb->ev, ctdb->client,
nodemap->node[j].pnn, TIMEOUT(),
"AllowClientDBAttach", &value);
if (ret != 0) {
fprintf(stderr,
"Unable to get tunable AllowClientDBAttach"
" from node %u\n", nodemap->node[j].pnn);
return ret;
}
if (value == 1) {
fprintf(stderr,
"Database access is still active on node %u."
" Set AllowclientDBAttach=0 on all nodes.\n",
nodemap->node[j].pnn);
return 1;
}
}
ret2 = 0;
for (i=0; iev, ctdb->client, TIMEOUT(), db_id);
if (ret != 0) {
fprintf(stderr, "Database %s detach failed\n", db_name);
ret2 = ret;
}
}
return ret2;
}
static int control_dumpmemory(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
const char *mem_str;
ssize_t n;
int ret;
ret = ctdb_ctrl_dump_memory(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), &mem_str);
if (ret != 0) {
return ret;
}
n = write(1, mem_str, strlen(mem_str));
if (n < 0 || (size_t)n != strlen(mem_str)) {
fprintf(stderr, "Failed to write talloc summary\n");
return 1;
}
return 0;
}
static void dump_memory(uint64_t srvid, TDB_DATA data, void *private_data)
{
bool *done = (bool *)private_data;
size_t len;
ssize_t n;
len = strnlen((const char *)data.dptr, data.dsize);
n = write(1, data.dptr, len);
if (n < 0 || (size_t)n != len) {
fprintf(stderr, "Failed to write talloc summary\n");
}
*done = true;
}
static int control_rddumpmemory(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
struct ctdb_srvid_message msg = { 0 };
int ret;
bool done = false;
msg.pnn = ctdb->pnn;
msg.srvid = next_srvid(ctdb);
ret = ctdb_client_set_message_handler(ctdb->ev, ctdb->client,
msg.srvid, dump_memory, &done);
if (ret != 0) {
return ret;
}
ret = ctdb_message_mem_dump(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, &msg);
if (ret != 0) {
return ret;
}
ctdb_client_wait(ctdb->ev, &done);
return 0;
}
static int control_getpid(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
pid_t pid;
int ret;
ret = ctdb_ctrl_get_pid(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), &pid);
if (ret != 0) {
return ret;
}
printf("%u\n", pid);
return 0;
}
static int check_flags(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
const char *desc, uint32_t flag, bool set_flag)
{
struct ctdb_node_map *nodemap;
bool flag_is_set;
nodemap = get_nodemap(ctdb, false);
if (nodemap == NULL) {
return 1;
}
flag_is_set = nodemap->node[ctdb->cmd_pnn].flags & flag;
if (set_flag == flag_is_set) {
if (set_flag) {
fprintf(stderr, "Node %u is already %s\n",
ctdb->cmd_pnn, desc);
} else {
fprintf(stderr, "Node %u is not %s\n",
ctdb->cmd_pnn, desc);
}
return 0;
}
return 1;
}
static void wait_for_flags(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
uint32_t flag, bool set_flag)
{
struct ctdb_node_map *nodemap;
bool flag_is_set;
while (1) {
nodemap = get_nodemap(ctdb, true);
if (nodemap == NULL) {
fprintf(stderr,
"Failed to get nodemap, trying again\n");
sleep(1);
continue;
}
flag_is_set = nodemap->node[ctdb->cmd_pnn].flags & flag;
if (flag_is_set == set_flag) {
break;
}
sleep(1);
}
}
struct ipreallocate_state {
int status;
bool done;
};
static void ipreallocate_handler(uint64_t srvid, TDB_DATA data,
void *private_data)
{
struct ipreallocate_state *state =
(struct ipreallocate_state *)private_data;
if (data.dsize != sizeof(int)) {
/* Ignore packet */
return;
}
state->status = *(int *)data.dptr;
state->done = true;
}
static int ipreallocate(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb)
{
struct ctdb_srvid_message msg = { 0 };
struct ipreallocate_state state;
int ret;
msg.pnn = ctdb->pnn;
msg.srvid = next_srvid(ctdb);
state.done = false;
ret = ctdb_client_set_message_handler(ctdb->ev, ctdb->client,
msg.srvid,
ipreallocate_handler, &state);
if (ret != 0) {
return ret;
}
while (true) {
ret = ctdb_message_takeover_run(mem_ctx, ctdb->ev,
ctdb->client,
CTDB_BROADCAST_CONNECTED,
&msg);
if (ret != 0) {
goto fail;
}
ret = ctdb_client_wait_timeout(ctdb->ev, &state.done,
TIMEOUT());
if (ret != 0) {
continue;
}
if (state.status >= 0) {
ret = 0;
} else {
ret = state.status;
}
break;
}
fail:
ctdb_client_remove_message_handler(ctdb->ev, ctdb->client,
msg.srvid, &state);
return ret;
}
static int control_disable(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
int ret;
if (argc != 0) {
usage("disable");
}
ret = check_flags(mem_ctx, ctdb, "disabled",
NODE_FLAGS_PERMANENTLY_DISABLED, true);
if (ret == 0) {
return 0;
}
ret = ctdb_ctrl_disable_node(mem_ctx,
ctdb->ev,
ctdb->client,
ctdb->cmd_pnn,
TIMEOUT());
if (ret != 0) {
fprintf(stderr, "Failed to disable node %u\n", ctdb->cmd_pnn);
return ret;
}
wait_for_flags(mem_ctx, ctdb, NODE_FLAGS_PERMANENTLY_DISABLED, true);
return ipreallocate(mem_ctx, ctdb);
}
static int control_enable(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
int ret;
if (argc != 0) {
usage("enable");
}
ret = check_flags(mem_ctx, ctdb, "disabled",
NODE_FLAGS_PERMANENTLY_DISABLED, false);
if (ret == 0) {
return 0;
}
ret = ctdb_ctrl_enable_node(mem_ctx,
ctdb->ev,
ctdb->client,
ctdb->cmd_pnn,
TIMEOUT());
if (ret != 0) {
fprintf(stderr, "Failed to enable node %u\n", ctdb->cmd_pnn);
return ret;
}
wait_for_flags(mem_ctx, ctdb, NODE_FLAGS_PERMANENTLY_DISABLED, false);
return ipreallocate(mem_ctx, ctdb);
}
static int control_stop(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
int ret;
if (argc != 0) {
usage("stop");
}
ret = check_flags(mem_ctx, ctdb, "stopped",
NODE_FLAGS_STOPPED, true);
if (ret == 0) {
return 0;
}
ret = ctdb_ctrl_stop_node(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT());
if (ret != 0) {
fprintf(stderr, "Failed to stop node %u\n", ctdb->cmd_pnn);
return ret;
}
wait_for_flags(mem_ctx, ctdb, NODE_FLAGS_STOPPED, true);
return ipreallocate(mem_ctx, ctdb);
}
static int control_continue(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
int ret;
if (argc != 0) {
usage("continue");
}
ret = check_flags(mem_ctx, ctdb, "stopped",
NODE_FLAGS_STOPPED, false);
if (ret == 0) {
return 0;
}
ret = ctdb_ctrl_continue_node(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT());
if (ret != 0) {
fprintf(stderr, "Failed to continue stopped node %u\n",
ctdb->cmd_pnn);
return ret;
}
wait_for_flags(mem_ctx, ctdb, NODE_FLAGS_STOPPED, false);
return ipreallocate(mem_ctx, ctdb);
}
static int control_ban(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
struct ctdb_ban_state ban_state;
int ret = 0;
if (argc != 1) {
usage("ban");
}
ret = check_flags(mem_ctx, ctdb, "banned",
NODE_FLAGS_BANNED, true);
if (ret == 0) {
return 0;
}
ban_state.pnn = ctdb->cmd_pnn;
ban_state.time = smb_strtoul(argv[0], NULL, 0, &ret, SMB_STR_STANDARD);
if (ret != 0) {
return ret;
}
if (ban_state.time == 0) {
fprintf(stderr, "Ban time cannot be zero\n");
return EINVAL;
}
ret = ctdb_ctrl_set_ban_state(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), &ban_state);
if (ret != 0) {
fprintf(stderr, "Failed to ban node %u\n", ctdb->cmd_pnn);
return ret;
}
wait_for_flags(mem_ctx, ctdb, NODE_FLAGS_BANNED, true);
return ipreallocate(mem_ctx, ctdb);
}
static int control_unban(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
struct ctdb_ban_state ban_state;
int ret;
if (argc != 0) {
usage("unban");
}
ret = check_flags(mem_ctx, ctdb, "banned",
NODE_FLAGS_BANNED, false);
if (ret == 0) {
return 0;
}
ban_state.pnn = ctdb->cmd_pnn;
ban_state.time = 0;
ret = ctdb_ctrl_set_ban_state(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), &ban_state);
if (ret != 0) {
fprintf(stderr, "Failed to unban node %u\n", ctdb->cmd_pnn);
return ret;
}
wait_for_flags(mem_ctx, ctdb, NODE_FLAGS_BANNED, false);
return ipreallocate(mem_ctx, ctdb);
}
static void wait_for_shutdown(void *private_data)
{
bool *done = (bool *)private_data;
*done = true;
}
static int control_shutdown(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
int ret;
bool done = false;
if (argc != 0) {
usage("shutdown");
}
if (ctdb->pnn == ctdb->cmd_pnn) {
ctdb_client_set_disconnect_callback(ctdb->client,
wait_for_shutdown,
&done);
}
ret = ctdb_ctrl_shutdown(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT());
if (ret != 0) {
fprintf(stderr, "Unable to shutdown node %u\n", ctdb->cmd_pnn);
return ret;
}
if (ctdb->pnn == ctdb->cmd_pnn) {
ctdb_client_wait(ctdb->ev, &done);
}
return 0;
}
static int get_generation(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
uint32_t *generation)
{
uint32_t leader;
int recmode;
struct ctdb_vnn_map *vnnmap;
int ret;
again:
ret = get_leader(mem_ctx, ctdb, &leader);
if (ret != 0) {
fprintf(stderr, "Failed to find leader\n");
return ret;
}
ret = ctdb_ctrl_get_recmode(mem_ctx,
ctdb->ev,
ctdb->client,
leader,
TIMEOUT(),
&recmode);
if (ret != 0) {
fprintf(stderr,
"Failed to get recovery mode from node %u\n",
leader);
return ret;
}
if (recmode == CTDB_RECOVERY_ACTIVE) {
sleep(1);
goto again;
}
ret = ctdb_ctrl_getvnnmap(mem_ctx,
ctdb->ev,
ctdb->client,
leader,
TIMEOUT(),
&vnnmap);
if (ret != 0) {
fprintf(stderr,
"Failed to get generation from node %u\n",
leader);
return ret;
}
if (vnnmap->generation == INVALID_GENERATION) {
talloc_free(vnnmap);
sleep(1);
goto again;
}
*generation = vnnmap->generation;
talloc_free(vnnmap);
return 0;
}
static int control_recover(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
uint32_t generation, next_generation;
int ret;
if (argc != 0) {
usage("recover");
}
ret = get_generation(mem_ctx, ctdb, &generation);
if (ret != 0) {
return ret;
}
ret = ctdb_ctrl_set_recmode(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(),
CTDB_RECOVERY_ACTIVE);
if (ret != 0) {
fprintf(stderr, "Failed to set recovery mode active\n");
return ret;
}
while (1) {
ret = get_generation(mem_ctx, ctdb, &next_generation);
if (ret != 0) {
fprintf(stderr,
"Failed to confirm end of recovery\n");
return ret;
}
if (next_generation != generation) {
break;
}
sleep (1);
}
return 0;
}
static int control_ipreallocate(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
if (argc != 0) {
usage("ipreallocate");
}
return ipreallocate(mem_ctx, ctdb);
}
static int control_gratarp(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
struct ctdb_addr_info addr_info;
int ret;
if (argc != 2) {
usage("gratarp");
}
ret = ctdb_sock_addr_from_string(argv[0], &addr_info.addr, false);
if (ret != 0) {
fprintf(stderr, "Invalid IP address %s\n", argv[0]);
return 1;
}
addr_info.iface = argv[1];
ret = ctdb_ctrl_send_gratuitous_arp(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(),
&addr_info);
if (ret != 0) {
fprintf(stderr, "Unable to send gratuitous arp from node %u\n",
ctdb->cmd_pnn);
return ret;
}
return 0;
}
static int control_tickle(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
ctdb_sock_addr src, dst;
int ret;
if (argc != 0 && argc != 2) {
usage("tickle");
}
if (argc == 0) {
struct ctdb_connection_list *clist;
unsigned int i;
unsigned int num_failed;
/* Client first but the src/dst logic is confused */
ret = ctdb_connection_list_read(mem_ctx, 0, false, &clist);
if (ret != 0) {
return ret;
}
num_failed = 0;
for (i = 0; i < clist->num; i++) {
ret = ctdb_sys_send_tcp(&clist->conn[i].src,
&clist->conn[i].dst,
0, 0, 0);
if (ret != 0) {
num_failed += 1;
}
}
TALLOC_FREE(clist);
if (num_failed > 0) {
fprintf(stderr, "Failed to send %d tickles\n",
num_failed);
return 1;
}
return 0;
}
ret = ctdb_sock_addr_from_string(argv[0], &src, true);
if (ret != 0) {
fprintf(stderr, "Invalid IP address %s\n", argv[0]);
return 1;
}
ret = ctdb_sock_addr_from_string(argv[1], &dst, true);
if (ret != 0) {
fprintf(stderr, "Invalid IP address %s\n", argv[1]);
return 1;
}
ret = ctdb_sys_send_tcp(&src, &dst, 0, 0, 0);
if (ret != 0) {
fprintf(stderr, "Failed to send tickle ack\n");
return ret;
}
return 0;
}
static int control_gettickles(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
ctdb_sock_addr addr;
struct ctdb_tickle_list *tickles;
unsigned port = 0;
unsigned int i;
int ret = 0;
if (argc < 1 || argc > 2) {
usage("gettickles");
}
if (argc == 2) {
port = smb_strtoul(argv[1], NULL, 10, &ret, SMB_STR_STANDARD);
if (ret != 0) {
return ret;
}
}
ret = ctdb_sock_addr_from_string(argv[0], &addr, false);
if (ret != 0) {
fprintf(stderr, "Invalid IP address %s\n", argv[0]);
return 1;
}
ctdb_sock_addr_set_port(&addr, port);
ret = ctdb_ctrl_get_tcp_tickle_list(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), &addr,
&tickles);
if (ret != 0) {
fprintf(stderr, "Failed to get list of connections\n");
return ret;
}
if (options.machinereadable) {
printf("%s%s%s%s%s%s%s%s%s\n",
options.sep,
"Source IP", options.sep,
"Port", options.sep,
"Destination IP", options.sep,
"Port", options.sep);
for (i=0; inum; i++) {
printf("%s%s%s%u%s%s%s%u%s\n", options.sep,
ctdb_sock_addr_to_string(
mem_ctx, &tickles->conn[i].src, false),
options.sep,
ntohs(tickles->conn[i].src.ip.sin_port),
options.sep,
ctdb_sock_addr_to_string(
mem_ctx, &tickles->conn[i].dst, false),
options.sep,
ntohs(tickles->conn[i].dst.ip.sin_port),
options.sep);
}
} else {
printf("Connections for IP: %s\n",
ctdb_sock_addr_to_string(mem_ctx,
&tickles->addr, false));
printf("Num connections: %u\n", tickles->num);
for (i=0; inum; i++) {
printf("SRC: %s DST: %s\n",
ctdb_sock_addr_to_string(
mem_ctx, &tickles->conn[i].src, true),
ctdb_sock_addr_to_string(
mem_ctx, &tickles->conn[i].dst, true));
}
}
talloc_free(tickles);
return 0;
}
typedef void (*clist_request_func)(struct ctdb_req_control *request,
struct ctdb_connection *conn);
typedef int (*clist_reply_func)(struct ctdb_reply_control *reply);
struct process_clist_state {
struct ctdb_connection_list *clist;
int count;
unsigned int num_failed, num_total;
clist_reply_func reply_func;
};
static void process_clist_done(struct tevent_req *subreq);
static struct tevent_req *process_clist_send(
TALLOC_CTX *mem_ctx,
struct ctdb_context *ctdb,
struct ctdb_connection_list *clist,
clist_request_func request_func,
clist_reply_func reply_func)
{
struct tevent_req *req, *subreq;
struct process_clist_state *state;
struct ctdb_req_control request;
unsigned int i;
req = tevent_req_create(mem_ctx, &state, struct process_clist_state);
if (req == NULL) {
return NULL;
}
state->clist = clist;
state->reply_func = reply_func;
for (i = 0; i < clist->num; i++) {
request_func(&request, &clist->conn[i]);
subreq = ctdb_client_control_send(state, ctdb->ev,
ctdb->client, ctdb->cmd_pnn,
TIMEOUT(), &request);
if (tevent_req_nomem(subreq, req)) {
return tevent_req_post(req, ctdb->ev);
}
tevent_req_set_callback(subreq, process_clist_done, req);
}
return req;
}
static void process_clist_done(struct tevent_req *subreq)
{
struct tevent_req *req = tevent_req_callback_data(
subreq, struct tevent_req);
struct process_clist_state *state = tevent_req_data(
req, struct process_clist_state);
struct ctdb_reply_control *reply;
int ret;
bool status;
status = ctdb_client_control_recv(subreq, NULL, state, &reply);
TALLOC_FREE(subreq);
if (! status) {
state->num_failed += 1;
goto done;
}
ret = state->reply_func(reply);
if (ret != 0) {
state->num_failed += 1;
goto done;
}
done:
state->num_total += 1;
if (state->num_total == state->clist->num) {
tevent_req_done(req);
}
}
static int process_clist_recv(struct tevent_req *req)
{
struct process_clist_state *state = tevent_req_data(
req, struct process_clist_state);
return state->num_failed;
}
static int control_addtickle(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
struct ctdb_connection conn;
int ret;
if (argc != 0 && argc != 2) {
usage("addtickle");
}
if (argc == 0) {
struct ctdb_connection_list *clist;
struct tevent_req *req;
/* Client first but the src/dst logic is confused */
ret = ctdb_connection_list_read(mem_ctx, 0, false, &clist);
if (ret != 0) {
return ret;
}
if (clist->num == 0) {
return 0;
}
req = process_clist_send(mem_ctx, ctdb, clist,
ctdb_req_control_tcp_add_delayed_update,
ctdb_reply_control_tcp_add_delayed_update);
if (req == NULL) {
talloc_free(clist);
return ENOMEM;
}
tevent_req_poll(req, ctdb->ev);
talloc_free(clist);
ret = process_clist_recv(req);
if (ret != 0) {
fprintf(stderr, "Failed to add %d tickles\n", ret);
return 1;
}
return 0;
}
ret = ctdb_sock_addr_from_string(argv[0], &conn.src, true);
if (ret != 0) {
fprintf(stderr, "Invalid IP address %s\n", argv[0]);
return 1;
}
ret = ctdb_sock_addr_from_string(argv[1], &conn.dst, true);
if (ret != 0) {
fprintf(stderr, "Invalid IP address %s\n", argv[1]);
return 1;
}
ret = ctdb_ctrl_tcp_add_delayed_update(mem_ctx, ctdb->ev,
ctdb->client, ctdb->cmd_pnn,
TIMEOUT(), &conn);
if (ret != 0) {
fprintf(stderr, "Failed to register connection\n");
return ret;
}
return 0;
}
static int control_deltickle(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
struct ctdb_connection conn;
int ret;
if (argc != 0 && argc != 2) {
usage("deltickle");
}
if (argc == 0) {
struct ctdb_connection_list *clist;
struct tevent_req *req;
/* Client first but the src/dst logic is confused */
ret = ctdb_connection_list_read(mem_ctx, 0, false, &clist);
if (ret != 0) {
return ret;
}
if (clist->num == 0) {
return 0;
}
req = process_clist_send(mem_ctx, ctdb, clist,
ctdb_req_control_tcp_remove,
ctdb_reply_control_tcp_remove);
if (req == NULL) {
talloc_free(clist);
return ENOMEM;
}
tevent_req_poll(req, ctdb->ev);
talloc_free(clist);
ret = process_clist_recv(req);
if (ret != 0) {
fprintf(stderr, "Failed to remove %d tickles\n", ret);
return 1;
}
return 0;
}
ret = ctdb_sock_addr_from_string(argv[0], &conn.src, true);
if (ret != 0) {
fprintf(stderr, "Invalid IP address %s\n", argv[0]);
return 1;
}
ret = ctdb_sock_addr_from_string(argv[1], &conn.dst, true);
if (ret != 0) {
fprintf(stderr, "Invalid IP address %s\n", argv[1]);
return 1;
}
ret = ctdb_ctrl_tcp_remove(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), &conn);
if (ret != 0) {
fprintf(stderr, "Failed to unregister connection\n");
return ret;
}
return 0;
}
static int control_listnodes(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
struct ctdb_node_map *nodemap;
unsigned int i;
if (argc != 0) {
usage("listnodes");
}
nodemap = read_nodes_file(mem_ctx, CTDB_UNKNOWN_PNN);
if (nodemap == NULL) {
return 1;
}
for (i=0; inum; i++) {
if (nodemap->node[i].flags & NODE_FLAGS_DELETED) {
continue;
}
if (options.machinereadable) {
printf("%s%u%s%s%s\n", options.sep,
nodemap->node[i].pnn, options.sep,
ctdb_sock_addr_to_string(
mem_ctx, &nodemap->node[i].addr, false),
options.sep);
} else {
printf("%s\n",
ctdb_sock_addr_to_string(
mem_ctx, &nodemap->node[i].addr, false));
}
}
return 0;
}
static bool nodemap_identical(struct ctdb_node_map *nodemap1,
struct ctdb_node_map *nodemap2)
{
unsigned int i;
if (nodemap1->num != nodemap2->num) {
return false;
}
for (i=0; inum; i++) {
struct ctdb_node_and_flags *n1, *n2;
n1 = &nodemap1->node[i];
n2 = &nodemap2->node[i];
if ((n1->pnn != n2->pnn) ||
(n1->flags != n2->flags) ||
! ctdb_sock_addr_same_ip(&n1->addr, &n2->addr)) {
return false;
}
}
return true;
}
static int check_node_file_changes(TALLOC_CTX *mem_ctx,
struct ctdb_node_map *nm,
struct ctdb_node_map *fnm,
bool *reload)
{
unsigned int i;
bool check_failed = false;
*reload = false;
for (i=0; inum; i++) {
if (i >= fnm->num) {
fprintf(stderr,
"Node %u (%s) missing from nodes file\n",
nm->node[i].pnn,
ctdb_sock_addr_to_string(
mem_ctx, &nm->node[i].addr, false));
check_failed = true;
continue;
}
if (nm->node[i].flags & NODE_FLAGS_DELETED &&
fnm->node[i].flags & NODE_FLAGS_DELETED) {
/* Node remains deleted */
continue;
}
if (! (nm->node[i].flags & NODE_FLAGS_DELETED) &&
! (fnm->node[i].flags & NODE_FLAGS_DELETED)) {
/* Node not newly nor previously deleted */
if (! ctdb_same_ip(&nm->node[i].addr,
&fnm->node[i].addr)) {
fprintf(stderr,
"Node %u has changed IP address"
" (was %s, now %s)\n",
nm->node[i].pnn,
ctdb_sock_addr_to_string(
mem_ctx,
&nm->node[i].addr, false),
ctdb_sock_addr_to_string(
mem_ctx,
&fnm->node[i].addr, false));
check_failed = true;
} else {
if (nm->node[i].flags & NODE_FLAGS_DISCONNECTED) {
fprintf(stderr,
"WARNING: Node %u is disconnected."
" You MUST fix this node manually!\n",
nm->node[i].pnn);
}
}
continue;
}
if (fnm->node[i].flags & NODE_FLAGS_DELETED) {
/* Node is being deleted */
printf("Node %u is DELETED\n", nm->node[i].pnn);
*reload = true;
if (! (nm->node[i].flags & NODE_FLAGS_DISCONNECTED)) {
fprintf(stderr,
"ERROR: Node %u is still connected\n",
nm->node[i].pnn);
check_failed = true;
}
continue;
}
if (nm->node[i].flags & NODE_FLAGS_DELETED) {
/* Node was previously deleted */
printf("Node %u is UNDELETED\n", nm->node[i].pnn);
*reload = true;
}
}
if (check_failed) {
fprintf(stderr,
"ERROR: Nodes will not be reloaded due to previous error\n");
return 1;
}
/* Leftover nodes in file are NEW */
for (; i < fnm->num; i++) {
printf("Node %u is NEW\n", fnm->node[i].pnn);
*reload = true;
}
return 0;
}
struct disable_recoveries_state {
uint32_t *pnn_list;
unsigned int node_count;
bool *reply;
int status;
bool done;
};
static void disable_recoveries_handler(uint64_t srvid, TDB_DATA data,
void *private_data)
{
struct disable_recoveries_state *state =
(struct disable_recoveries_state *)private_data;
unsigned int i;
int ret;
if (data.dsize != sizeof(int)) {
/* Ignore packet */
return;
}
/* ret will be a PNN (i.e. >=0) on success, or negative on error */
ret = *(int *)data.dptr;
if (ret < 0) {
state->status = ret;
state->done = true;
return;
}
for (i=0; inode_count; i++) {
if (state->pnn_list[i] == (uint32_t)ret) {
state->reply[i] = true;
break;
}
}
state->done = true;
for (i=0; inode_count; i++) {
if (! state->reply[i]) {
state->done = false;
break;
}
}
}
static int disable_recoveries(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
uint32_t timeout, uint32_t *pnn_list, int count)
{
struct ctdb_disable_message disable = { 0 };
struct disable_recoveries_state state;
int ret, i;
disable.pnn = ctdb->pnn;
disable.srvid = next_srvid(ctdb);
disable.timeout = timeout;
state.pnn_list = pnn_list;
state.node_count = count;
state.done = false;
state.status = 0;
state.reply = talloc_zero_array(mem_ctx, bool, count);
if (state.reply == NULL) {
return ENOMEM;
}
ret = ctdb_client_set_message_handler(ctdb->ev, ctdb->client,
disable.srvid,
disable_recoveries_handler,
&state);
if (ret != 0) {
return ret;
}
for (i=0; iev,
ctdb->client,
pnn_list[i],
&disable);
if (ret != 0) {
goto fail;
}
}
ret = ctdb_client_wait_timeout(ctdb->ev, &state.done, TIMEOUT());
if (ret == ETIME) {
fprintf(stderr, "Timed out waiting to disable recoveries\n");
} else {
ret = (state.status >= 0 ? 0 : 1);
}
fail:
ctdb_client_remove_message_handler(ctdb->ev, ctdb->client,
disable.srvid, &state);
return ret;
}
static int control_reloadnodes(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
struct ctdb_node_map *nodemap = NULL;
struct ctdb_node_map *file_nodemap;
struct ctdb_node_map *remote_nodemap;
struct ctdb_req_control request;
struct ctdb_reply_control **reply;
bool reload;
unsigned int i;
int count;
int ret;
uint32_t *pnn_list;
nodemap = get_nodemap(ctdb, false);
if (nodemap == NULL) {
return 1;
}
file_nodemap = read_nodes_file(mem_ctx, ctdb->pnn);
if (file_nodemap == NULL) {
return 1;
}
for (i=0; inum; i++) {
if (nodemap->node[i].flags & NODE_FLAGS_DISCONNECTED) {
continue;
}
ret = ctdb_ctrl_get_nodes_file(mem_ctx, ctdb->ev, ctdb->client,
nodemap->node[i].pnn, TIMEOUT(),
&remote_nodemap);
if (ret != 0) {
fprintf(stderr,
"ERROR: Failed to get nodes file from node %u\n",
nodemap->node[i].pnn);
return ret;
}
if (! nodemap_identical(file_nodemap, remote_nodemap)) {
fprintf(stderr,
"ERROR: Nodes file on node %u differs"
" from current node (%u)\n",
nodemap->node[i].pnn, ctdb->pnn);
return 1;
}
}
ret = check_node_file_changes(mem_ctx, nodemap, file_nodemap, &reload);
if (ret != 0) {
return ret;
}
if (! reload) {
fprintf(stderr, "No change in nodes file,"
" skipping unnecessary reload\n");
return 0;
}
count = list_of_connected_nodes(nodemap, CTDB_UNKNOWN_PNN,
mem_ctx, &pnn_list);
if (count <= 0) {
fprintf(stderr, "Memory allocation error\n");
return 1;
}
ret = disable_recoveries(mem_ctx, ctdb, 2*options.timelimit,
pnn_list, count);
if (ret != 0) {
fprintf(stderr, "Failed to disable recoveries\n");
return ret;
}
ctdb_req_control_reload_nodes_file(&request);
ret = ctdb_client_control_multi(mem_ctx, ctdb->ev, ctdb->client,
pnn_list, count, TIMEOUT(),
&request, NULL, &reply);
if (ret != 0) {
bool failed = false;
int j;
for (j=0; jev, ctdb->client,
pnn, TIMEOUT(), false, &pubip_list);
if (ret != 0) {
fprintf(stderr, "Failed to get Public IPs from node %u\n",
pnn);
return ret;
}
for (i=0; inum; i++) {
if (ctdb_same_ip(addr, &pubip_list->ip[i].addr)) {
break;
}
}
if (i == pubip_list->num) {
fprintf(stderr, "Node %u CANNOT host IP address %s\n",
pnn, ctdb_sock_addr_to_string(mem_ctx, addr, false));
return 1;
}
nodemap = get_nodemap(ctdb, false);
if (nodemap == NULL) {
return 1;
}
count = list_of_active_nodes(nodemap, pnn, mem_ctx, &pnn_list);
if (count <= 0) {
fprintf(stderr, "Memory allocation error\n");
return 1;
}
connected_count = list_of_connected_nodes(nodemap,
CTDB_UNKNOWN_PNN,
mem_ctx,
&connected_pnn);
if (connected_count <= 0) {
fprintf(stderr, "Memory allocation error\n");
return 1;
}
/*
* Disable takeover runs on all connected nodes. A reply
* indicating success is needed from each node so all nodes
* will need to be active.
*
* A check could be added to not allow reloading of IPs when
* there are disconnected nodes. However, this should
* probably be left up to the administrator.
*/
ret = disable_takeover_runs(mem_ctx,
ctdb,
2*options.timelimit,
connected_pnn,
connected_count);
if (ret != 0) {
fprintf(stderr, "Failed to disable takeover runs\n");
return ret;
}
pubip.pnn = pnn;
pubip.addr = *addr;
ctdb_req_control_release_ip(&request, &pubip);
ret = ctdb_client_control_multi(mem_ctx, ctdb->ev, ctdb->client,
pnn_list, count, TIMEOUT(),
&request, NULL, NULL);
if (ret != 0) {
fprintf(stderr, "Failed to release IP on nodes\n");
return ret;
}
ret = ctdb_ctrl_takeover_ip(mem_ctx, ctdb->ev, ctdb->client,
pnn, TIMEOUT(), &pubip);
if (ret != 0) {
fprintf(stderr, "Failed to takeover IP on node %u\n", pnn);
return ret;
}
/*
* It isn't strictly necessary to wait until takeover runs are
* re-enabled but doing so can't hurt.
*/
ret = disable_takeover_runs(mem_ctx,
ctdb,
0,
connected_pnn,
connected_count);
if (ret != 0) {
fprintf(stderr, "Failed to enable takeover runs\n");
return ret;
}
return send_ipreallocated_control_to_nodes(mem_ctx,
ctdb,
connected_pnn,
connected_count);
}
static int control_moveip(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
ctdb_sock_addr addr;
uint32_t pnn;
int retries = 0;
int ret = 0;
if (argc != 2) {
usage("moveip");
}
ret = ctdb_sock_addr_from_string(argv[0], &addr, false);
if (ret != 0) {
fprintf(stderr, "Invalid IP address %s\n", argv[0]);
return 1;
}
pnn = smb_strtoul(argv[1], NULL, 10, &ret, SMB_STR_STANDARD);
if (pnn == CTDB_UNKNOWN_PNN || ret != 0) {
fprintf(stderr, "Invalid PNN %s\n", argv[1]);
return 1;
}
while (retries < 5) {
ret = moveip(mem_ctx, ctdb, &addr, pnn);
if (ret == 0) {
break;
}
sleep(3);
retries++;
}
if (ret != 0) {
fprintf(stderr, "Failed to move IP %s to node %u\n",
argv[0], pnn);
return ret;
}
return 0;
}
static int rebalancenode(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
uint32_t pnn)
{
int ret;
ret = ctdb_message_rebalance_node(mem_ctx, ctdb->ev, ctdb->client,
CTDB_BROADCAST_CONNECTED, pnn);
if (ret != 0) {
fprintf(stderr,
"Failed to ask leader to distribute IPs\n");
return ret;
}
return 0;
}
static int control_addip(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
ctdb_sock_addr addr;
struct ctdb_public_ip_list *pubip_list;
struct ctdb_addr_info addr_info;
unsigned int mask, i;
int ret, retries = 0;
if (argc != 2) {
usage("addip");
}
ret = ctdb_sock_addr_mask_from_string(argv[0], &addr, &mask);
if (ret != 0) {
fprintf(stderr, "Invalid IP/Mask %s\n", argv[0]);
return 1;
}
ret = ctdb_ctrl_get_public_ips(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(),
false, &pubip_list);
if (ret != 0) {
fprintf(stderr, "Failed to get Public IPs from node %u\n",
ctdb->cmd_pnn);
return 1;
}
for (i=0; inum; i++) {
if (ctdb_same_ip(&addr, &pubip_list->ip[i].addr)) {
fprintf(stderr, "Node already knows about IP %s\n",
ctdb_sock_addr_to_string(mem_ctx,
&addr, false));
return 0;
}
}
addr_info.addr = addr;
addr_info.mask = mask;
addr_info.iface = argv[1];
while (retries < 5) {
ret = ctdb_ctrl_add_public_ip(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(),
&addr_info);
if (ret == 0) {
break;
}
sleep(3);
retries++;
}
if (ret != 0) {
fprintf(stderr, "Failed to add public IP to node %u."
" Giving up\n", ctdb->cmd_pnn);
return ret;
}
ret = rebalancenode(mem_ctx, ctdb, ctdb->cmd_pnn);
if (ret != 0) {
return ret;
}
/*
* CTDB_CONTROL_ADD_PUBLIC_IP will implicitly trigger
* CTDB_SRVID_TAKEOVER_RUN broadcast to all connected nodes.
*
* That means CTDB_{CONTROL,EVENT,SRVID}_IPREALLOCATED is
* triggered at the end of the takeover run...
*
* So we don't need to call ipreallocate() nor
* send_ipreallocated_control_to_nodes() here...
*/
return 0;
}
static int control_delip(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
ctdb_sock_addr addr;
struct ctdb_public_ip_list *pubip_list;
struct ctdb_addr_info addr_info;
unsigned int i;
int ret;
if (argc != 1) {
usage("delip");
}
ret = ctdb_sock_addr_from_string(argv[0], &addr, false);
if (ret != 0) {
fprintf(stderr, "Invalid IP address %s\n", argv[0]);
return 1;
}
ret = ctdb_ctrl_get_public_ips(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(),
false, &pubip_list);
if (ret != 0) {
fprintf(stderr, "Failed to get Public IPs from node %u\n",
ctdb->cmd_pnn);
return 1;
}
for (i=0; inum; i++) {
if (ctdb_same_ip(&addr, &pubip_list->ip[i].addr)) {
break;
}
}
if (i == pubip_list->num) {
fprintf(stderr, "Node does not know about IP address %s\n",
ctdb_sock_addr_to_string(mem_ctx, &addr, false));
return 0;
}
addr_info.addr = addr;
addr_info.mask = 0;
addr_info.iface = NULL;
ret = ctdb_ctrl_del_public_ip(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), &addr_info);
if (ret != 0) {
fprintf(stderr, "Failed to delete public IP from node %u\n",
ctdb->cmd_pnn);
return ret;
}
/*
* CTDB_CONTROL_DEL_PUBLIC_IP only marks the public ip
* with pending_delete if it's still in use.
*
* Any later takeover run will really move the public ip
* away from the local node and finally removes it.
*
* That means CTDB_{CONTROL,EVENT,SRVID}_IPREALLOCATED is
* triggered at the end of the takeover run that actually
* moves the public ip away.
*
* So we don't need to call ipreallocate() nor
* send_ipreallocated_control_to_nodes() here...
*/
return 0;
}
#define DB_VERSION 3
#define MAX_DB_NAME 64
#define MAX_REC_BUFFER_SIZE (100*1000)
struct db_header {
unsigned long version;
time_t timestamp;
unsigned long flags;
unsigned long nbuf;
unsigned long nrec;
char name[MAX_DB_NAME];
};
struct backup_state {
TALLOC_CTX *mem_ctx;
struct ctdb_rec_buffer *recbuf;
uint32_t db_id;
int fd;
unsigned int nbuf, nrec;
};
static int backup_handler(uint32_t reqid, struct ctdb_ltdb_header *header,
TDB_DATA key, TDB_DATA data, void *private_data)
{
struct backup_state *state = (struct backup_state *)private_data;
size_t len;
int ret;
if (state->recbuf == NULL) {
state->recbuf = ctdb_rec_buffer_init(state->mem_ctx,
state->db_id);
if (state->recbuf == NULL) {
return ENOMEM;
}
}
ret = ctdb_rec_buffer_add(state->recbuf, state->recbuf, reqid,
header, key, data);
if (ret != 0) {
return ret;
}
len = ctdb_rec_buffer_len(state->recbuf);
if (len < MAX_REC_BUFFER_SIZE) {
return 0;
}
ret = ctdb_rec_buffer_write(state->recbuf, state->fd);
if (ret != 0) {
fprintf(stderr, "Failed to write records to backup file\n");
return ret;
}
state->nbuf += 1;
state->nrec += state->recbuf->count;
TALLOC_FREE(state->recbuf);
return 0;
}
static int control_backupdb(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
const char *db_name;
struct ctdb_db_context *db;
uint32_t db_id;
uint8_t db_flags;
struct backup_state state;
struct db_header db_hdr;
int fd, ret;
if (argc != 2) {
usage("backupdb");
}
if (! db_exists(mem_ctx, ctdb, argv[0], &db_id, &db_name, &db_flags)) {
return 1;
}
ret = ctdb_attach(ctdb->ev, ctdb->client, TIMEOUT(), db_name,
db_flags, &db);
if (ret != 0) {
fprintf(stderr, "Failed to attach to DB %s\n", db_name);
return ret;
}
fd = open(argv[1], O_RDWR|O_CREAT, 0600);
if (fd == -1) {
ret = errno;
fprintf(stderr, "Failed to open file %s for writing\n",
argv[1]);
return ret;
}
/* Write empty header first */
ZERO_STRUCT(db_hdr);
ret = write(fd, &db_hdr, sizeof(struct db_header));
if (ret == -1) {
ret = errno;
close(fd);
fprintf(stderr, "Failed to write header to file %s\n", argv[1]);
return ret;
}
state.mem_ctx = mem_ctx;
state.recbuf = NULL;
state.fd = fd;
state.nbuf = 0;
state.nrec = 0;
ret = ctdb_db_traverse_local(db, true, false, backup_handler, &state);
if (ret != 0) {
fprintf(stderr, "Failed to collect records from DB %s\n",
db_name);
close(fd);
return ret;
}
if (state.recbuf != NULL) {
ret = ctdb_rec_buffer_write(state.recbuf, state.fd);
if (ret != 0) {
fprintf(stderr,
"Failed to write records to backup file\n");
close(fd);
return ret;
}
state.nbuf += 1;
state.nrec += state.recbuf->count;
TALLOC_FREE(state.recbuf);
}
db_hdr.version = DB_VERSION;
db_hdr.timestamp = time(NULL);
db_hdr.flags = db_flags;
db_hdr.nbuf = state.nbuf;
db_hdr.nrec = state.nrec;
strncpy(db_hdr.name, db_name, MAX_DB_NAME-1);
lseek(fd, 0, SEEK_SET);
ret = write(fd, &db_hdr, sizeof(struct db_header));
if (ret == -1) {
ret = errno;
close(fd);
fprintf(stderr, "Failed to write header to file %s\n", argv[1]);
return ret;
}
close(fd);
printf("Database backed up to %s\n", argv[1]);
return 0;
}
static int control_restoredb(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
const char *db_name = NULL;
struct ctdb_db_context *db;
struct db_header db_hdr;
struct ctdb_node_map *nodemap;
struct ctdb_req_control request;
struct ctdb_reply_control **reply;
struct ctdb_transdb wipedb;
struct ctdb_pulldb_ext pulldb;
struct ctdb_rec_buffer *recbuf;
uint32_t generation;
uint32_t *pnn_list;
char timebuf[128];
ssize_t n;
int fd;
unsigned long i, count;
int ret;
uint8_t db_flags;
if (argc < 1 || argc > 2) {
usage("restoredb");
}
fd = open(argv[0], O_RDONLY, 0600);
if (fd == -1) {
ret = errno;
fprintf(stderr, "Failed to open file %s for reading\n",
argv[0]);
return ret;
}
if (argc == 2) {
db_name = argv[1];
}
n = read(fd, &db_hdr, sizeof(struct db_header));
if (n == -1) {
ret = errno;
close(fd);
fprintf(stderr, "Failed to read db header from file %s\n",
argv[0]);
return ret;
}
db_hdr.name[sizeof(db_hdr.name)-1] = '\0';
if (db_hdr.version != DB_VERSION) {
fprintf(stderr,
"Wrong version of backup file, expected %u, got %lu\n",
DB_VERSION, db_hdr.version);
close(fd);
return EINVAL;
}
if (db_name == NULL) {
db_name = db_hdr.name;
}
strftime(timebuf, sizeof(timebuf)-1, "%Y/%m/%d %H:%M:%S",
localtime(&db_hdr.timestamp));
printf("Restoring database %s from backup @ %s\n", db_name, timebuf);
db_flags = db_hdr.flags & 0xff;
ret = ctdb_attach(ctdb->ev, ctdb->client, TIMEOUT(), db_name,
db_flags, &db);
if (ret != 0) {
fprintf(stderr, "Failed to attach to DB %s\n", db_name);
close(fd);
return ret;
}
nodemap = get_nodemap(ctdb, false);
if (nodemap == NULL) {
fprintf(stderr, "Failed to get nodemap\n");
close(fd);
return ENOMEM;
}
ret = get_generation(mem_ctx, ctdb, &generation);
if (ret != 0) {
fprintf(stderr, "Failed to get current generation\n");
close(fd);
return ret;
}
count = list_of_active_nodes(nodemap, CTDB_UNKNOWN_PNN, mem_ctx,
&pnn_list);
if (count <= 0) {
close(fd);
return ENOMEM;
}
wipedb.db_id = ctdb_db_id(db);
wipedb.tid = generation;
ctdb_req_control_db_freeze(&request, wipedb.db_id);
ret = ctdb_client_control_multi(mem_ctx, ctdb->ev,
ctdb->client, pnn_list, count,
TIMEOUT(), &request, NULL, NULL);
if (ret != 0) {
goto failed;
}
ctdb_req_control_db_transaction_start(&request, &wipedb);
ret = ctdb_client_control_multi(mem_ctx, ctdb->ev, ctdb->client,
pnn_list, count, TIMEOUT(),
&request, NULL, NULL);
if (ret != 0) {
goto failed;
}
ctdb_req_control_wipe_database(&request, &wipedb);
ret = ctdb_client_control_multi(mem_ctx, ctdb->ev, ctdb->client,
pnn_list, count, TIMEOUT(),
&request, NULL, NULL);
if (ret != 0) {
goto failed;
}
pulldb.db_id = ctdb_db_id(db);
pulldb.lmaster = 0;
pulldb.srvid = SRVID_CTDB_PUSHDB;
ctdb_req_control_db_push_start(&request, &pulldb);
ret = ctdb_client_control_multi(mem_ctx, ctdb->ev, ctdb->client,
pnn_list, count, TIMEOUT(),
&request, NULL, NULL);
if (ret != 0) {
goto failed;
}
for (i=0; iev,
ctdb->client,
pnn_list, count,
&message, NULL);
if (ret != 0) {
goto failed;
}
talloc_free(recbuf);
talloc_free(data.dptr);
}
ctdb_req_control_db_push_confirm(&request, pulldb.db_id);
ret = ctdb_client_control_multi(mem_ctx, ctdb->ev, ctdb->client,
pnn_list, count, TIMEOUT(),
&request, NULL, &reply);
if (ret != 0) {
goto failed;
}
for (i=0; iev, ctdb->client,
pnn_list, count, TIMEOUT(),
&request, NULL, NULL);
if (ret != 0) {
goto failed;
}
ctdb_req_control_db_transaction_commit(&request, &wipedb);
ret = ctdb_client_control_multi(mem_ctx, ctdb->ev, ctdb->client,
pnn_list, count, TIMEOUT(),
&request, NULL, NULL);
if (ret != 0) {
goto failed;
}
ctdb_req_control_db_thaw(&request, wipedb.db_id);
ret = ctdb_client_control_multi(mem_ctx, ctdb->ev,
ctdb->client, pnn_list, count,
TIMEOUT(), &request, NULL, NULL);
if (ret != 0) {
goto failed;
}
printf("Database %s restored\n", db_name);
close(fd);
return 0;
failed:
close(fd);
ctdb_ctrl_set_recmode(mem_ctx, ctdb->ev, ctdb->client,
ctdb->pnn, TIMEOUT(), CTDB_RECOVERY_ACTIVE);
return ret;
}
struct dumpdbbackup_state {
ctdb_rec_parser_func_t parser;
struct dump_record_state sub_state;
};
static int dumpdbbackup_handler(uint32_t reqid,
struct ctdb_ltdb_header *header,
TDB_DATA key, TDB_DATA data,
void *private_data)
{
struct dumpdbbackup_state *state =
(struct dumpdbbackup_state *)private_data;
struct ctdb_ltdb_header hdr;
int ret;
ret = ctdb_ltdb_header_extract(&data, &hdr);
if (ret != 0) {
return ret;
}
return state->parser(reqid, &hdr, key, data, &state->sub_state);
}
static int control_dumpdbbackup(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
struct db_header db_hdr;
char timebuf[128];
struct dumpdbbackup_state state;
ssize_t n;
unsigned long i;
int fd, ret;
if (argc != 1) {
usage("dumpbackup");
}
fd = open(argv[0], O_RDONLY, 0600);
if (fd == -1) {
ret = errno;
fprintf(stderr, "Failed to open file %s for reading\n",
argv[0]);
return ret;
}
n = read(fd, &db_hdr, sizeof(struct db_header));
if (n == -1) {
ret = errno;
close(fd);
fprintf(stderr, "Failed to read db header from file %s\n",
argv[0]);
return ret;
}
db_hdr.name[sizeof(db_hdr.name)-1] = '\0';
if (db_hdr.version != DB_VERSION) {
fprintf(stderr,
"Wrong version of backup file, expected %u, got %lu\n",
DB_VERSION, db_hdr.version);
close(fd);
return EINVAL;
}
strftime(timebuf, sizeof(timebuf)-1, "%Y/%m/%d %H:%M:%S",
localtime(&db_hdr.timestamp));
printf("Dumping database %s from backup @ %s\n",
db_hdr.name, timebuf);
state.parser = dump_record;
state.sub_state.count = 0;
for (i=0; iev, ctdb->client, TIMEOUT(), db_name,
db_flags, &db);
if (ret != 0) {
fprintf(stderr, "Failed to attach to DB %s\n", db_name);
return ret;
}
nodemap = get_nodemap(ctdb, false);
if (nodemap == NULL) {
fprintf(stderr, "Failed to get nodemap\n");
return ENOMEM;
}
ret = get_generation(mem_ctx, ctdb, &generation);
if (ret != 0) {
fprintf(stderr, "Failed to get current generation\n");
return ret;
}
count = list_of_active_nodes(nodemap, CTDB_UNKNOWN_PNN, mem_ctx,
&pnn_list);
if (count <= 0) {
return ENOMEM;
}
ctdb_req_control_db_freeze(&request, db_id);
ret = ctdb_client_control_multi(mem_ctx, ctdb->ev,
ctdb->client, pnn_list, count,
TIMEOUT(), &request, NULL, NULL);
if (ret != 0) {
goto failed;
}
wipedb.db_id = db_id;
wipedb.tid = generation;
ctdb_req_control_db_transaction_start(&request, &wipedb);
ret = ctdb_client_control_multi(mem_ctx, ctdb->ev, ctdb->client,
pnn_list, count, TIMEOUT(),
&request, NULL, NULL);
if (ret != 0) {
goto failed;
}
ctdb_req_control_wipe_database(&request, &wipedb);
ret = ctdb_client_control_multi(mem_ctx, ctdb->ev, ctdb->client,
pnn_list, count, TIMEOUT(),
&request, NULL, NULL);
if (ret != 0) {
goto failed;
}
ctdb_req_control_db_set_healthy(&request, db_id);
ret = ctdb_client_control_multi(mem_ctx, ctdb->ev, ctdb->client,
pnn_list, count, TIMEOUT(),
&request, NULL, NULL);
if (ret != 0) {
goto failed;
}
ctdb_req_control_db_transaction_commit(&request, &wipedb);
ret = ctdb_client_control_multi(mem_ctx, ctdb->ev, ctdb->client,
pnn_list, count, TIMEOUT(),
&request, NULL, NULL);
if (ret != 0) {
goto failed;
}
ctdb_req_control_db_thaw(&request, db_id);
ret = ctdb_client_control_multi(mem_ctx, ctdb->ev,
ctdb->client, pnn_list, count,
TIMEOUT(), &request, NULL, NULL);
if (ret != 0) {
goto failed;
}
printf("Database %s wiped\n", db_name);
return 0;
failed:
ctdb_ctrl_set_recmode(mem_ctx, ctdb->ev, ctdb->client,
ctdb->pnn, TIMEOUT(), CTDB_RECOVERY_ACTIVE);
return ret;
}
static int control_leader(TALLOC_CTX *mem_ctx,
struct ctdb_context *ctdb,
int argc,
const char **argv)
{
uint32_t leader;
int ret;
ret = get_leader(mem_ctx, ctdb, &leader);
if (ret != 0) {
return ret;
}
print_pnn(leader);
return 0;
}
static int control_event(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
char *t, *event_helper = NULL;
t = getenv("CTDB_EVENT_HELPER");
if (t != NULL) {
event_helper = talloc_strdup(mem_ctx, t);
} else {
event_helper = talloc_asprintf(mem_ctx, "%s/ctdb-event",
CTDB_HELPER_BINDIR);
}
if (event_helper == NULL) {
fprintf(stderr, "Unable to set event daemon helper\n");
return 1;
}
return run_helper(mem_ctx, "event daemon helper", event_helper,
argc, argv);
}
static int control_scriptstatus(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
const char *new_argv[4];
if (argc > 1) {
usage("scriptstatus");
}
new_argv[0] = "status";
new_argv[1] = "legacy";
new_argv[2] = (argc == 0) ? "monitor" : argv[0];
new_argv[3] = NULL;
(void) control_event(mem_ctx, ctdb, 3, new_argv);
return 0;
}
static int control_natgw(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
char *t, *natgw_helper = NULL;
if (argc != 1) {
usage("natgw");
}
t = getenv("CTDB_NATGW_HELPER");
if (t != NULL) {
natgw_helper = talloc_strdup(mem_ctx, t);
} else {
natgw_helper = talloc_asprintf(mem_ctx, "%s/ctdb_natgw",
CTDB_HELPER_BINDIR);
}
if (natgw_helper == NULL) {
fprintf(stderr, "Unable to set NAT gateway helper\n");
return 1;
}
return run_helper(mem_ctx, "NAT gateway helper", natgw_helper,
argc, argv);
}
/*
* Find the PNN of the current node
* discover the pnn by loading the nodes file and try to bind
* to all addresses one at a time until the ip address is found.
*/
static bool find_node_xpnn(TALLOC_CTX *mem_ctx, uint32_t *pnn)
{
struct ctdb_node_map *nodemap;
unsigned int i;
nodemap = read_nodes_file(mem_ctx, CTDB_UNKNOWN_PNN);
if (nodemap == NULL) {
return false;
}
for (i=0; inum; i++) {
if (nodemap->node[i].flags & NODE_FLAGS_DELETED) {
continue;
}
if (ctdb_sys_have_ip(&nodemap->node[i].addr)) {
if (pnn != NULL) {
*pnn = nodemap->node[i].pnn;
}
talloc_free(nodemap);
return true;
}
}
fprintf(stderr, "Failed to detect PNN of the current node.\n");
talloc_free(nodemap);
return false;
}
static int control_getreclock(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
const char *reclock;
int ret;
if (argc != 0) {
usage("getreclock");
}
ret = ctdb_ctrl_get_reclock_file(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), &reclock);
if (ret != 0) {
return ret;
}
if (reclock != NULL) {
printf("%s\n", reclock);
}
return 0;
}
static int control_setlmasterrole(TALLOC_CTX *mem_ctx,
struct ctdb_context *ctdb,
int argc, const char **argv)
{
uint32_t lmasterrole = 0;
int ret;
if (argc != 1) {
usage("setlmasterrole");
}
if (strcmp(argv[0], "on") == 0) {
lmasterrole = 1;
} else if (strcmp(argv[0], "off") == 0) {
lmasterrole = 0;
} else {
usage("setlmasterrole");
}
ret = ctdb_ctrl_set_lmasterrole(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), lmasterrole);
if (ret != 0) {
return ret;
}
return 0;
}
static int control_setleaderrole(TALLOC_CTX *mem_ctx,
struct ctdb_context *ctdb,
int argc,
const char **argv)
{
uint32_t leaderrole = 0;
int ret;
if (argc != 1) {
usage("setleaderrole");
}
if (strcmp(argv[0], "on") == 0) {
leaderrole = 1;
} else if (strcmp(argv[0], "off") == 0) {
leaderrole = 0;
} else {
usage("setleaderrole");
}
ret = ctdb_ctrl_set_recmasterrole(mem_ctx,
ctdb->ev,
ctdb->client,
ctdb->cmd_pnn,
TIMEOUT(),
leaderrole);
if (ret != 0) {
return ret;
}
return 0;
}
static int control_setdbreadonly(TALLOC_CTX *mem_ctx,
struct ctdb_context *ctdb,
int argc, const char **argv)
{
uint32_t db_id;
uint8_t db_flags;
int ret;
if (argc != 1) {
usage("setdbreadonly");
}
if (! db_exists(mem_ctx, ctdb, argv[0], &db_id, NULL, &db_flags)) {
return 1;
}
if (db_flags & (CTDB_DB_FLAGS_PERSISTENT | CTDB_DB_FLAGS_REPLICATED)) {
fprintf(stderr, "READONLY can be set only on volatile DB\n");
return 1;
}
ret = ctdb_ctrl_set_db_readonly(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), db_id);
if (ret != 0) {
return ret;
}
return 0;
}
static int control_setdbsticky(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
uint32_t db_id;
uint8_t db_flags;
int ret;
if (argc != 1) {
usage("setdbsticky");
}
if (! db_exists(mem_ctx, ctdb, argv[0], &db_id, NULL, &db_flags)) {
return 1;
}
if (db_flags & (CTDB_DB_FLAGS_PERSISTENT | CTDB_DB_FLAGS_REPLICATED)) {
fprintf(stderr, "STICKY can be set only on volatile DB\n");
return 1;
}
ret = ctdb_ctrl_set_db_sticky(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), db_id);
if (ret != 0) {
return ret;
}
return 0;
}
static int control_pfetch(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
const char *db_name;
struct ctdb_db_context *db;
struct ctdb_transaction_handle *h;
uint8_t db_flags;
TDB_DATA key, data;
int ret;
if (argc != 2) {
usage("pfetch");
}
if (! db_exists(mem_ctx, ctdb, argv[0], NULL, &db_name, &db_flags)) {
return 1;
}
if (! (db_flags &
(CTDB_DB_FLAGS_PERSISTENT | CTDB_DB_FLAGS_REPLICATED))) {
fprintf(stderr, "Transactions not supported on DB %s\n",
db_name);
return 1;
}
ret = ctdb_attach(ctdb->ev, ctdb->client, TIMEOUT(), db_name,
db_flags, &db);
if (ret != 0) {
fprintf(stderr, "Failed to attach to DB %s\n", db_name);
return ret;
}
ret = str_to_data(argv[1], strlen(argv[1]), mem_ctx, &key);
if (ret != 0) {
fprintf(stderr, "Failed to parse key %s\n", argv[1]);
return ret;
}
ret = ctdb_transaction_start(mem_ctx, ctdb->ev, ctdb->client,
TIMEOUT(), db, true, &h);
if (ret != 0) {
fprintf(stderr, "Failed to start transaction on db %s\n",
db_name);
return ret;
}
ret = ctdb_transaction_fetch_record(h, key, mem_ctx, &data);
if (ret != 0) {
fprintf(stderr, "Failed to read record for key %s\n",
argv[1]);
ctdb_transaction_cancel(h);
return ret;
}
printf("%.*s\n", (int)data.dsize, data.dptr);
ctdb_transaction_cancel(h);
return 0;
}
static int control_pstore(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
const char *db_name;
struct ctdb_db_context *db;
struct ctdb_transaction_handle *h;
uint8_t db_flags;
TDB_DATA key, data;
int ret;
if (argc != 3) {
usage("pstore");
}
if (! db_exists(mem_ctx, ctdb, argv[0], NULL, &db_name, &db_flags)) {
return 1;
}
if (! (db_flags &
(CTDB_DB_FLAGS_PERSISTENT | CTDB_DB_FLAGS_REPLICATED))) {
fprintf(stderr, "Transactions not supported on DB %s\n",
db_name);
return 1;
}
ret = ctdb_attach(ctdb->ev, ctdb->client, TIMEOUT(), db_name,
db_flags, &db);
if (ret != 0) {
fprintf(stderr, "Failed to attach to DB %s\n", db_name);
return ret;
}
ret = str_to_data(argv[1], strlen(argv[1]), mem_ctx, &key);
if (ret != 0) {
fprintf(stderr, "Failed to parse key %s\n", argv[1]);
return ret;
}
ret = str_to_data(argv[2], strlen(argv[2]), mem_ctx, &data);
if (ret != 0) {
fprintf(stderr, "Failed to parse value %s\n", argv[2]);
return ret;
}
ret = ctdb_transaction_start(mem_ctx, ctdb->ev, ctdb->client,
TIMEOUT(), db, false, &h);
if (ret != 0) {
fprintf(stderr, "Failed to start transaction on db %s\n",
db_name);
return ret;
}
ret = ctdb_transaction_store_record(h, key, data);
if (ret != 0) {
fprintf(stderr, "Failed to store record for key %s\n",
argv[1]);
ctdb_transaction_cancel(h);
return ret;
}
ret = ctdb_transaction_commit(h);
if (ret != 0) {
fprintf(stderr, "Failed to commit transaction on db %s\n",
db_name);
ctdb_transaction_cancel(h);
return ret;
}
return 0;
}
static int control_pdelete(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
const char *db_name;
struct ctdb_db_context *db;
struct ctdb_transaction_handle *h;
uint8_t db_flags;
TDB_DATA key;
int ret;
if (argc != 2) {
usage("pdelete");
}
if (! db_exists(mem_ctx, ctdb, argv[0], NULL, &db_name, &db_flags)) {
return 1;
}
if (! (db_flags &
(CTDB_DB_FLAGS_PERSISTENT | CTDB_DB_FLAGS_REPLICATED))) {
fprintf(stderr, "Transactions not supported on DB %s\n",
db_name);
return 1;
}
ret = ctdb_attach(ctdb->ev, ctdb->client, TIMEOUT(), db_name,
db_flags, &db);
if (ret != 0) {
fprintf(stderr, "Failed to attach to DB %s\n", db_name);
return ret;
}
ret = str_to_data(argv[1], strlen(argv[1]), mem_ctx, &key);
if (ret != 0) {
fprintf(stderr, "Failed to parse key %s\n", argv[1]);
return ret;
}
ret = ctdb_transaction_start(mem_ctx, ctdb->ev, ctdb->client,
TIMEOUT(), db, false, &h);
if (ret != 0) {
fprintf(stderr, "Failed to start transaction on db %s\n",
db_name);
return ret;
}
ret = ctdb_transaction_delete_record(h, key);
if (ret != 0) {
fprintf(stderr, "Failed to delete record for key %s\n",
argv[1]);
ctdb_transaction_cancel(h);
return ret;
}
ret = ctdb_transaction_commit(h);
if (ret != 0) {
fprintf(stderr, "Failed to commit transaction on db %s\n",
db_name);
ctdb_transaction_cancel(h);
return ret;
}
return 0;
}
static int ptrans_parse_string(TALLOC_CTX *mem_ctx, const char **ptr, TDB_DATA *data)
{
const char *t;
size_t n;
int ret;
*data = tdb_null;
/* Skip whitespace */
n = strspn(*ptr, " \t");
t = *ptr + n;
if (t[0] == '"') {
/* Quoted ASCII string - no wide characters! */
t++;
n = strcspn(t, "\"");
if (t[n] == '"') {
if (n > 0) {
ret = str_to_data(t, n, mem_ctx, data);
if (ret != 0) {
return ret;
}
}
*ptr = t + n + 1;
} else {
fprintf(stderr, "Unmatched \" in input %s\n", *ptr);
return 1;
}
} else {
fprintf(stderr, "Unsupported input format in %s\n", *ptr);
return 1;
}
return 0;
}
#define MAX_LINE_SIZE 1024
static bool ptrans_get_key_value(TALLOC_CTX *mem_ctx, FILE *file,
TDB_DATA *key, TDB_DATA *value)
{
char line [MAX_LINE_SIZE]; /* FIXME: make this more flexible? */
const char *ptr;
int ret;
ptr = fgets(line, MAX_LINE_SIZE, file);
if (ptr == NULL) {
return false;
}
/* Get key */
ret = ptrans_parse_string(mem_ctx, &ptr, key);
if (ret != 0 || ptr == NULL || key->dptr == NULL) {
/* Line Ignored but not EOF */
*key = tdb_null;
return true;
}
/* Get value */
ret = ptrans_parse_string(mem_ctx, &ptr, value);
if (ret != 0) {
/* Line Ignored but not EOF */
talloc_free(key->dptr);
*key = tdb_null;
return true;
}
return true;
}
static int control_ptrans(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
const char *db_name;
struct ctdb_db_context *db;
struct ctdb_transaction_handle *h;
uint8_t db_flags;
FILE *file;
TDB_DATA key = tdb_null, value = tdb_null;
int ret;
if (argc < 1 || argc > 2) {
usage("ptrans");
}
if (! db_exists(mem_ctx, ctdb, argv[0], NULL, &db_name, &db_flags)) {
return 1;
}
if (! (db_flags &
(CTDB_DB_FLAGS_PERSISTENT | CTDB_DB_FLAGS_REPLICATED))) {
fprintf(stderr, "Transactions not supported on DB %s\n",
db_name);
return 1;
}
if (argc == 2) {
file = fopen(argv[1], "r");
if (file == NULL) {
fprintf(stderr, "Failed to open file %s\n", argv[1]);
return 1;
}
} else {
file = stdin;
}
ret = ctdb_attach(ctdb->ev, ctdb->client, TIMEOUT(), db_name,
db_flags, &db);
if (ret != 0) {
fprintf(stderr, "Failed to attach to DB %s\n", db_name);
goto done;
}
ret = ctdb_transaction_start(mem_ctx, ctdb->ev, ctdb->client,
TIMEOUT(), db, false, &h);
if (ret != 0) {
fprintf(stderr, "Failed to start transaction on db %s\n",
db_name);
goto done;
}
while (ptrans_get_key_value(mem_ctx, file, &key, &value)) {
if (key.dsize != 0) {
ret = ctdb_transaction_store_record(h, key, value);
if (ret != 0) {
fprintf(stderr, "Failed to store record\n");
ctdb_transaction_cancel(h);
goto done;
}
talloc_free(key.dptr);
talloc_free(value.dptr);
}
}
ret = ctdb_transaction_commit(h);
if (ret != 0) {
fprintf(stderr, "Failed to commit transaction on db %s\n",
db_name);
ctdb_transaction_cancel(h);
}
done:
if (file != stdin) {
fclose(file);
}
return ret;
}
static int control_tfetch(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
struct tdb_context *tdb;
TDB_DATA key, data;
struct ctdb_ltdb_header header;
int ret;
if (argc < 2 || argc > 3) {
usage("tfetch");
}
tdb = tdb_open(argv[0], 0, 0, O_RDWR, 0);
if (tdb == NULL) {
fprintf(stderr, "Failed to open TDB file %s\n", argv[0]);
return 1;
}
ret = str_to_data(argv[1], strlen(argv[1]), mem_ctx, &key);
if (ret != 0) {
fprintf(stderr, "Failed to parse key %s\n", argv[1]);
tdb_close(tdb);
return ret;
}
data = tdb_fetch(tdb, key);
if (data.dptr == NULL) {
fprintf(stderr, "No record for key %s\n", argv[1]);
tdb_close(tdb);
return 1;
}
if (data.dsize < sizeof(struct ctdb_ltdb_header)) {
fprintf(stderr, "Invalid record for key %s\n", argv[1]);
tdb_close(tdb);
return 1;
}
tdb_close(tdb);
if (argc == 3) {
int fd;
ssize_t nwritten;
fd = open(argv[2], O_WRONLY|O_CREAT|O_TRUNC, 0600);
if (fd == -1) {
fprintf(stderr, "Failed to open output file %s\n",
argv[2]);
goto fail;
}
nwritten = sys_write(fd, data.dptr, data.dsize);
if (nwritten == -1 ||
(size_t)nwritten != data.dsize) {
fprintf(stderr, "Failed to write record to file\n");
close(fd);
goto fail;
}
close(fd);
}
fail:
ret = ctdb_ltdb_header_extract(&data, &header);
if (ret != 0) {
fprintf(stderr, "Failed to parse header from data\n");
return 1;
}
dump_ltdb_header(&header);
dump_tdb_data("data", data);
return 0;
}
static int control_tstore(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
struct tdb_context *tdb;
TDB_DATA key, data[2], value;
struct ctdb_ltdb_header header;
uint8_t header_buf[sizeof(struct ctdb_ltdb_header)];
size_t np;
int ret = 0;
if (argc < 3 || argc > 5) {
usage("tstore");
}
tdb = tdb_open(argv[0], 0, 0, O_RDWR, 0);
if (tdb == NULL) {
fprintf(stderr, "Failed to open TDB file %s\n", argv[0]);
return 1;
}
ret = str_to_data(argv[1], strlen(argv[1]), mem_ctx, &key);
if (ret != 0) {
fprintf(stderr, "Failed to parse key %s\n", argv[1]);
tdb_close(tdb);
return ret;
}
ret = str_to_data(argv[2], strlen(argv[2]), mem_ctx, &value);
if (ret != 0) {
fprintf(stderr, "Failed to parse value %s\n", argv[2]);
tdb_close(tdb);
return ret;
}
ZERO_STRUCT(header);
if (argc > 3) {
header.rsn = (uint64_t)smb_strtoull(argv[3],
NULL,
0,
&ret,
SMB_STR_STANDARD);
if (ret != 0) {
return ret;
}
}
if (argc > 4) {
header.dmaster = (uint32_t)atol(argv[4]);
}
if (argc > 5) {
header.flags = (uint32_t)atol(argv[5]);
}
ctdb_ltdb_header_push(&header, header_buf, &np);
data[0].dsize = np;
data[0].dptr = header_buf;
data[1].dsize = value.dsize;
data[1].dptr = value.dptr;
ret = tdb_storev(tdb, key, data, 2, TDB_REPLACE);
if (ret != 0) {
fprintf(stderr, "Failed to write record %s to file %s\n",
argv[1], argv[0]);
}
tdb_close(tdb);
return ret;
}
static int control_readkey(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
const char *db_name;
struct ctdb_db_context *db;
struct ctdb_record_handle *h;
uint8_t db_flags;
TDB_DATA key, data;
bool readonly = false;
int ret;
if (argc < 2 || argc > 3) {
usage("readkey");
}
if (argc == 3) {
if (strcmp(argv[2], "readonly") == 0) {
readonly = true;
} else {
usage("readkey");
}
}
if (! db_exists(mem_ctx, ctdb, argv[0], NULL, &db_name, &db_flags)) {
return 1;
}
if (db_flags & (CTDB_DB_FLAGS_PERSISTENT | CTDB_DB_FLAGS_REPLICATED)) {
fprintf(stderr, "DB %s is not a volatile database\n",
db_name);
return 1;
}
ret = ctdb_attach(ctdb->ev, ctdb->client, TIMEOUT(), db_name,
db_flags, &db);
if (ret != 0) {
fprintf(stderr, "Failed to attach to DB %s\n", db_name);
return ret;
}
ret = str_to_data(argv[1], strlen(argv[1]), mem_ctx, &key);
if (ret != 0) {
fprintf(stderr, "Failed to parse key %s\n", argv[1]);
return ret;
}
ret = ctdb_fetch_lock(mem_ctx, ctdb->ev, ctdb->client,
db, key, readonly, &h, NULL, &data);
if (ret != 0) {
fprintf(stderr, "Failed to read record for key %s\n",
argv[1]);
} else {
printf("Data: size:%zu ptr:[%.*s]\n", data.dsize,
(int)data.dsize, data.dptr);
}
talloc_free(h);
return ret;
}
static int control_writekey(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
const char *db_name;
struct ctdb_db_context *db;
struct ctdb_record_handle *h;
uint8_t db_flags;
TDB_DATA key, data;
int ret;
if (argc != 3) {
usage("writekey");
}
if (! db_exists(mem_ctx, ctdb, argv[0], NULL, &db_name, &db_flags)) {
return 1;
}
if (db_flags & (CTDB_DB_FLAGS_PERSISTENT | CTDB_DB_FLAGS_REPLICATED)) {
fprintf(stderr, "DB %s is not a volatile database\n",
db_name);
return 1;
}
ret = ctdb_attach(ctdb->ev, ctdb->client, TIMEOUT(), db_name,
db_flags, &db);
if (ret != 0) {
fprintf(stderr, "Failed to attach to DB %s\n", db_name);
return ret;
}
ret = str_to_data(argv[1], strlen(argv[1]), mem_ctx, &key);
if (ret != 0) {
fprintf(stderr, "Failed to parse key %s\n", argv[1]);
return ret;
}
ret = str_to_data(argv[2], strlen(argv[2]), mem_ctx, &data);
if (ret != 0) {
fprintf(stderr, "Failed to parse value %s\n", argv[2]);
return ret;
}
ret = ctdb_fetch_lock(mem_ctx, ctdb->ev, ctdb->client,
db, key, false, &h, NULL, NULL);
if (ret != 0) {
fprintf(stderr, "Failed to lock record for key %s\n", argv[0]);
return ret;
}
ret = ctdb_store_record(h, data);
if (ret != 0) {
fprintf(stderr, "Failed to store record for key %s\n",
argv[1]);
}
talloc_free(h);
return ret;
}
static int control_deletekey(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
const char *db_name;
struct ctdb_db_context *db;
struct ctdb_record_handle *h;
uint8_t db_flags;
TDB_DATA key, data;
int ret;
if (argc != 2) {
usage("deletekey");
}
if (! db_exists(mem_ctx, ctdb, argv[0], NULL, &db_name, &db_flags)) {
return 1;
}
if (db_flags & (CTDB_DB_FLAGS_PERSISTENT | CTDB_DB_FLAGS_REPLICATED)) {
fprintf(stderr, "DB %s is not a volatile database\n",
db_name);
return 1;
}
ret = ctdb_attach(ctdb->ev, ctdb->client, TIMEOUT(), db_name,
db_flags, &db);
if (ret != 0) {
fprintf(stderr, "Failed to attach to DB %s\n", db_name);
return ret;
}
ret = str_to_data(argv[1], strlen(argv[1]), mem_ctx, &key);
if (ret != 0) {
fprintf(stderr, "Failed to parse key %s\n", argv[1]);
return ret;
}
ret = ctdb_fetch_lock(mem_ctx, ctdb->ev, ctdb->client,
db, key, false, &h, NULL, &data);
if (ret != 0) {
fprintf(stderr, "Failed to fetch record for key %s\n",
argv[1]);
return ret;
}
ret = ctdb_delete_record(h);
if (ret != 0) {
fprintf(stderr, "Failed to delete record for key %s\n",
argv[1]);
}
talloc_free(h);
return ret;
}
static int control_checktcpport(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
struct sockaddr_in sin;
unsigned int port;
int s, v;
int ret;
if (argc != 1) {
usage("chktcpport");
}
port = atoi(argv[0]);
s = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);
if (s == -1) {
fprintf(stderr, "Failed to open local socket\n");
return errno;
}
v = fcntl(s, F_GETFL, 0);
if (v == -1 || fcntl(s, F_SETFL, v | O_NONBLOCK)) {
fprintf(stderr, "Unable to set socket non-blocking\n");
close(s);
return errno;
}
bzero(&sin, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_port = htons(port);
ret = bind(s, (struct sockaddr *)&sin, sizeof(sin));
close(s);
if (ret == -1) {
fprintf(stderr, "Failed to bind to TCP port %u\n", port);
return errno;
}
return 0;
}
static int control_getdbseqnum(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
uint32_t db_id;
const char *db_name;
uint64_t seqnum;
int ret;
if (argc != 1) {
usage("getdbseqnum");
}
if (! db_exists(mem_ctx, ctdb, argv[0], &db_id, &db_name, NULL)) {
return 1;
}
ret = ctdb_ctrl_get_db_seqnum(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), db_id,
&seqnum);
if (ret != 0) {
fprintf(stderr, "Failed to get sequence number for DB %s\n",
db_name);
return ret;
}
printf("0x%"PRIx64"\n", seqnum);
return 0;
}
static int control_nodestatus(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
const char *nodestring = NULL;
struct ctdb_node_map *nodemap_in;
struct ctdb_node_map *nodemap;
unsigned int i;
int ret;
bool print_hdr = false;
if (argc > 1) {
usage("nodestatus");
}
if (argc == 1) {
nodestring = argv[0];
if (strcmp(nodestring, "all") == 0) {
print_hdr = true;
}
}
if (! parse_nodestring(mem_ctx, ctdb, nodestring, &nodemap_in)) {
return 1;
}
nodemap = get_nodemap_unknown(mem_ctx, ctdb, nodemap_in);
if (nodemap == NULL) {
return 1;
}
if (options.machinereadable) {
print_nodemap_machine(mem_ctx, ctdb, nodemap, ctdb->cmd_pnn);
} else {
print_nodemap(mem_ctx, ctdb, nodemap, ctdb->cmd_pnn, print_hdr);
}
ret = 0;
for (i=0; inum; i++) {
uint32_t flags = nodemap->node[i].flags;
if ((flags & NODE_FLAGS_DELETED) != 0) {
continue;
}
ret |= flags;
}
return ret;
}
const struct {
const char *name;
uint32_t offset;
} db_stats_fields[] = {
#define DBSTATISTICS_FIELD(n) { #n, offsetof(struct ctdb_db_statistics, n) }
DBSTATISTICS_FIELD(db_ro_delegations),
DBSTATISTICS_FIELD(db_ro_revokes),
DBSTATISTICS_FIELD(locks.num_calls),
DBSTATISTICS_FIELD(locks.num_current),
DBSTATISTICS_FIELD(locks.num_pending),
DBSTATISTICS_FIELD(locks.num_failed),
};
static void print_dbstatistics(const char *db_name,
struct ctdb_db_statistics *s)
{
size_t i;
const char *prefix = NULL;
int preflen = 0;
printf("DB Statistics %s\n", db_name);
for (i=0; ihop_count_bucket[i]);
}
printf("\n");
printf(" lock_buckets:");
for (i=0; ilocks.buckets[i]);
}
printf("\n");
printf(" %-30s %.6f/%.6f/%.6f sec out of %d\n",
"locks_latency MIN/AVG/MAX",
s->locks.latency.min, LATENCY_AVG(s->locks.latency),
s->locks.latency.max, s->locks.latency.num);
printf(" %-30s %.6f/%.6f/%.6f sec out of %d\n",
"vacuum_latency MIN/AVG/MAX",
s->vacuum.latency.min, LATENCY_AVG(s->vacuum.latency),
s->vacuum.latency.max, s->vacuum.latency.num);
printf(" Num Hot Keys: %d\n", s->num_hot_keys);
for (i=0; inum_hot_keys; i++) {
size_t j;
printf(" Count:%d Key:", s->hot_keys[i].count);
for (j=0; jhot_keys[i].key.dsize; j++) {
printf("%02x", s->hot_keys[i].key.dptr[j] & 0xff);
}
printf("\n");
}
}
static int control_dbstatistics(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
uint32_t db_id;
const char *db_name;
struct ctdb_db_statistics *dbstats;
int ret;
if (argc != 1) {
usage("dbstatistics");
}
if (! db_exists(mem_ctx, ctdb, argv[0], &db_id, &db_name, NULL)) {
return 1;
}
ret = ctdb_ctrl_get_db_statistics(mem_ctx, ctdb->ev, ctdb->client,
ctdb->cmd_pnn, TIMEOUT(), db_id,
&dbstats);
if (ret != 0) {
fprintf(stderr, "Failed to get statistics for DB %s\n",
db_name);
return ret;
}
print_dbstatistics(db_name, dbstats);
return 0;
}
struct disable_takeover_runs_state {
uint32_t *pnn_list;
unsigned int node_count;
bool *reply;
int status;
bool done;
};
static void disable_takeover_run_handler(uint64_t srvid, TDB_DATA data,
void *private_data)
{
struct disable_takeover_runs_state *state =
(struct disable_takeover_runs_state *)private_data;
unsigned int i;
int ret;
if (data.dsize != sizeof(int)) {
/* Ignore packet */
return;
}
/* ret will be a PNN (i.e. >=0) on success, or negative on error */
ret = *(int *)data.dptr;
if (ret < 0) {
state->status = ret;
state->done = true;
return;
}
for (i=0; inode_count; i++) {
if (state->pnn_list[i] == (uint32_t)ret) {
state->reply[i] = true;
break;
}
}
state->done = true;
for (i=0; inode_count; i++) {
if (! state->reply[i]) {
state->done = false;
break;
}
}
}
static int disable_takeover_runs(TALLOC_CTX *mem_ctx,
struct ctdb_context *ctdb, uint32_t timeout,
uint32_t *pnn_list, int count)
{
struct ctdb_disable_message disable = { 0 };
struct disable_takeover_runs_state state;
int ret, i;
disable.pnn = ctdb->pnn;
disable.srvid = next_srvid(ctdb);
disable.timeout = timeout;
state.pnn_list = pnn_list;
state.node_count = count;
state.done = false;
state.status = 0;
state.reply = talloc_zero_array(mem_ctx, bool, count);
if (state.reply == NULL) {
return ENOMEM;
}
ret = ctdb_client_set_message_handler(ctdb->ev, ctdb->client,
disable.srvid,
disable_takeover_run_handler,
&state);
if (ret != 0) {
return ret;
}
for (i=0; iev,
ctdb->client,
pnn_list[i],
&disable);
if (ret != 0) {
goto fail;
}
}
ret = ctdb_client_wait_timeout(ctdb->ev, &state.done, TIMEOUT());
if (ret == ETIME) {
fprintf(stderr, "Timed out waiting to disable takeover runs\n");
} else {
ret = (state.status >= 0 ? 0 : 1);
}
fail:
ctdb_client_remove_message_handler(ctdb->ev, ctdb->client,
disable.srvid, &state);
return ret;
}
static int send_ipreallocated_control_to_nodes(TALLOC_CTX *mem_ctx,
struct ctdb_context *ctdb,
uint32_t *pnn_list,
int count)
{
struct ctdb_req_control request;
int ret;
ctdb_req_control_ipreallocated(&request);
ret = ctdb_client_control_multi(mem_ctx,
ctdb->ev,
ctdb->client,
pnn_list,
count,
TIMEOUT(),
&request,
NULL, /* perr_list */
NULL); /* preply */
if (ret != 0) {
fprintf(stderr, "Failed to send ipreallocated\n");
return ret;
}
return 0;
}
static int control_reloadips(TALLOC_CTX *mem_ctx, struct ctdb_context *ctdb,
int argc, const char **argv)
{
const char *nodestring = NULL;
struct ctdb_node_map *nodemap, *nodemap2;
struct ctdb_req_control request;
uint32_t *pnn_list, *pnn_list2;
int ret, count, count2;
if (argc > 1) {
usage("reloadips");
}
if (argc == 1) {
nodestring = argv[0];
}
nodemap = get_nodemap(ctdb, false);
if (nodemap == NULL) {
return 1;
}
if (! parse_nodestring(mem_ctx, ctdb, nodestring, &nodemap2)) {
return 1;
}
count = list_of_connected_nodes(nodemap, CTDB_UNKNOWN_PNN,
mem_ctx, &pnn_list);
if (count <= 0) {
fprintf(stderr, "Memory allocation error\n");
return 1;
}
count2 = list_of_active_nodes(nodemap2, CTDB_UNKNOWN_PNN,
mem_ctx, &pnn_list2);
if (count2 <= 0) {
fprintf(stderr, "Memory allocation error\n");
return 1;
}
/* Disable takeover runs on all connected nodes. A reply
* indicating success is needed from each node so all nodes
* will need to be active.
*
* A check could be added to not allow reloading of IPs when
* there are disconnected nodes. However, this should
* probably be left up to the administrator.
*/
ret = disable_takeover_runs(mem_ctx, ctdb, 2*options.timelimit,
pnn_list, count);
if (ret != 0) {
fprintf(stderr, "Failed to disable takeover runs\n");
return ret;
}
/* Now tell all the desired nodes to reload their public IPs.
* Keep trying this until it succeeds. This assumes all
* failures are transient, which might not be true...
*/
ctdb_req_control_reload_public_ips(&request);
ret = ctdb_client_control_multi(mem_ctx, ctdb->ev, ctdb->client,
pnn_list2, count2, TIMEOUT(),
&request, NULL, NULL);
if (ret != 0) {
fprintf(stderr, "Failed to reload IPs on some nodes.\n");
}
/* It isn't strictly necessary to wait until takeover runs are
* re-enabled but doing so can't hurt.
*/
ret = disable_takeover_runs(mem_ctx, ctdb, 0, pnn_list, count);
if (ret != 0) {
fprintf(stderr, "Failed to enable takeover runs\n");
return ret;
}
return ipreallocate(mem_ctx, ctdb);
}
static const struct ctdb_cmd {
const char *name;
int (*fn)(TALLOC_CTX *, struct ctdb_context *, int, const char **);
bool without_daemon; /* can be run without daemon running ? */
bool remote; /* can be run on remote nodes */
const char *msg;
const char *args;
} ctdb_commands[] = {
{ "version", control_version, true, false,
"show version of ctdb", NULL },
{ "status", control_status, false, true,
"show node status", NULL },
{ "uptime", control_uptime, false, true,
"show node uptime", NULL },
{ "ping", control_ping, false, true,
"ping a node", NULL },
{ "runstate", control_runstate, false, true,
"get/check runstate of a node",
"[setup|first_recovery|startup|running]" },
{ "getvar", control_getvar, false, true,
"get a tunable variable", "" },
{ "setvar", control_setvar, false, true,
"set a tunable variable", " " },
{ "listvars", control_listvars, false, true,
"list tunable variables", NULL },
{ "statistics", control_statistics, false, true,
"show ctdb statistics", NULL },
{ "statisticsreset", control_statistics_reset, false, true,
"reset ctdb statistics", NULL },
{ "stats", control_stats, false, true,
"show rolling statistics", "[count]" },
{ "ip", control_ip, false, true,
"show public ips", "[all]" },
{ "ipinfo", control_ipinfo, false, true,
"show public ip details", "" },
{ "ifaces", control_ifaces, false, true,
"show interfaces", NULL },
{ "setifacelink", control_setifacelink, false, true,
"set interface link status", " up|down" },
{ "process-exists", control_process_exists, false, true,
"check if a process exists on a node", " []" },
{ "getdbmap", control_getdbmap, false, true,
"show attached databases", NULL },
{ "getdbstatus", control_getdbstatus, false, true,
"show database status", "" },
{ "catdb", control_catdb, false, false,
"dump cluster-wide ctdb database", "" },
{ "cattdb", control_cattdb, false, false,
"dump local ctdb database", "" },
{ "getcapabilities", control_getcapabilities, false, true,
"show node capabilities", NULL },
{ "pnn", control_pnn, false, false,
"show the pnn of the current node", NULL },
{ "lvs", control_lvs, false, false,
"show lvs configuration", "leader|list|status" },
{ "setdebug", control_setdebug, false, true,
"set debug level", "ERROR|WARNING|NOTICE|INFO|DEBUG" },
{ "getdebug", control_getdebug, false, true,
"get debug level", NULL },
{ "attach", control_attach, false, false,
"attach a database", " [persistent|replicated]" },
{ "detach", control_detach, false, false,
"detach database(s)", " ..." },
{ "dumpmemory", control_dumpmemory, false, true,
"dump ctdbd memory map", NULL },
{ "rddumpmemory", control_rddumpmemory, false, true,
"dump recoverd memory map", NULL },
{ "getpid", control_getpid, false, true,
"get ctdbd process ID", NULL },
{ "disable", control_disable, false, true,
"disable a node", NULL },
{ "enable", control_enable, false, true,
"enable a node", NULL },
{ "stop", control_stop, false, true,
"stop a node", NULL },
{ "continue", control_continue, false, true,
"continue a stopped node", NULL },
{ "ban", control_ban, false, true,
"ban a node", ""},
{ "unban", control_unban, false, true,
"unban a node", NULL },
{ "shutdown", control_shutdown, false, true,
"shutdown ctdb daemon", NULL },
{ "recover", control_recover, false, true,
"force recovery", NULL },
{ "sync", control_ipreallocate, false, true,
"run ip reallocation (deprecated)", NULL },
{ "ipreallocate", control_ipreallocate, false, true,
"run ip reallocation", NULL },
{ "gratarp", control_gratarp, false, true,
"send a gratuitous arp", " " },
{ "tickle", control_tickle, true, false,
"send a tcp tickle ack", " " },
{ "gettickles", control_gettickles, false, true,
"get the list of tickles", " []" },
{ "addtickle", control_addtickle, false, true,
"add a tickle", ": :" },
{ "deltickle", control_deltickle, false, true,
"delete a tickle", ": :" },
{ "listnodes", control_listnodes, true, true,
"list nodes in the cluster", NULL },
{ "reloadnodes", control_reloadnodes, false, false,
"reload the nodes file all nodes", NULL },
{ "moveip", control_moveip, false, false,
"move an ip address to another node", " " },
{ "addip", control_addip, false, true,
"add an ip address to a node", " " },
{ "delip", control_delip, false, true,
"delete an ip address from a node", "" },
{ "backupdb", control_backupdb, false, false,
"backup a database into a file", " " },
{ "restoredb", control_restoredb, false, false,
"restore a database from a file", " [dbname]" },
{ "dumpdbbackup", control_dumpdbbackup, true, false,
"dump database from a backup file", "" },
{ "wipedb", control_wipedb, false, false,
"wipe the contents of a database.", ""},
{ "leader", control_leader, false, true,
"show the pnn of the leader", NULL },
{ "event", control_event, true, false,
"event and event script commands", NULL },
{ "scriptstatus", control_scriptstatus, true, false,
"show event script status",
"[init|setup|startup|monitor|takeip|releaseip|ipreallocated]" },
{ "natgw", control_natgw, false, false,
"show natgw configuration", "leader|list|status" },
{ "getreclock", control_getreclock, false, true,
"get recovery lock file", NULL },
{ "setlmasterrole", control_setlmasterrole, false, true,
"set LMASTER role", "on|off" },
{ "setleaderrole", control_setleaderrole, false, true,
"set LEADER role", "on|off"},
{ "setdbreadonly", control_setdbreadonly, false, true,
"enable readonly records", "" },
{ "setdbsticky", control_setdbsticky, false, true,
"enable sticky records", ""},
{ "pfetch", control_pfetch, false, false,
"fetch record from persistent database", " " },
{ "pstore", control_pstore, false, false,
"write record to persistent database", " " },
{ "pdelete", control_pdelete, false, false,
"delete record from persistent database", " " },
{ "ptrans", control_ptrans, false, false,
"update a persistent database (from file or stdin)", " []" },
{ "tfetch", control_tfetch, false, true,
"fetch a record", " []" },
{ "tstore", control_tstore, false, true,
"store a record", " [ ]" },
{ "readkey", control_readkey, false, false,
"read value of a database key", " [readonly]" },
{ "writekey", control_writekey, false, false,
"write value for a database key", " " },
{ "deletekey", control_deletekey, false, false,
"delete a database key", " " },
{ "checktcpport", control_checktcpport, true, false,
"check if a service is bound to a specific tcp port or not", "" },
{ "getdbseqnum", control_getdbseqnum, false, false,
"get database sequence number", "" },
{ "nodestatus", control_nodestatus, false, true,
"show and return node status", "[all|]" },
{ "dbstatistics", control_dbstatistics, false, true,
"show database statistics", "" },
{ "reloadips", control_reloadips, false, false,
"reload the public addresses file", "[all|]" },
};
static const struct ctdb_cmd *match_command(const char *command)
{
const struct ctdb_cmd *cmd;
size_t i;
for (i=0; iname) == 0) {
return cmd;
}
}
return NULL;
}
/**
* Show usage message
*/
static void usage_full(void)
{
size_t i;
poptPrintHelp(pc, stdout, 0);
printf("\nCommands:\n");
for (i=0; iname, cmd->args ? cmd->args : "", cmd->msg);
}
exit(1);
}
struct poptOption cmdline_options[] = {
POPT_AUTOHELP
{
.longName = "debug",
.shortName = 'd',
.argInfo = POPT_ARG_STRING,
.arg = &options.debuglevelstr,
.val = 0,
.descrip = "debug level",
},
{
.longName = "timelimit",
.shortName = 't',
.argInfo = POPT_ARG_INT,
.arg = &options.timelimit,
.val = 0,
.descrip = "timelimit (in seconds)",
},
{
.longName = "node",
.shortName = 'n',
.argInfo = POPT_ARG_INT,
.arg = &options.pnn,
.val = 0,
.descrip = "node specification - integer",
},
{
.longName = NULL,
.shortName = 'Y',
.argInfo = POPT_ARG_NONE,
.arg = &options.machinereadable,
.val = 0,
.descrip = "enable machine readable output",
},
{
.longName = "separator",
.shortName = 'x',
.argInfo = POPT_ARG_STRING,
.arg = &options.sep,
.val = 0,
.descrip = "specify separator for machine readable output",
.argDescrip = "CHAR",
},
{
.shortName = 'X',
.argInfo = POPT_ARG_NONE,
.arg = &options.machineparsable,
.val = 0,
.descrip = "enable machine parsable output with separator |",
},
{
.longName = "verbose",
.shortName = 'v',
.argInfo = POPT_ARG_NONE,
.arg = &options.verbose,
.val = 0,
.descrip = "enable verbose output",
},
{
.longName = "maxruntime",
.shortName = 'T',
.argInfo = POPT_ARG_INT,
.arg = &options.maxruntime,
.val = 0,
.descrip = "die if runtime exceeds this limit (in seconds)",
},
POPT_TABLEEND
};
static int process_command(const struct ctdb_cmd *cmd, int argc,
const char **argv)
{
TALLOC_CTX *tmp_ctx;
struct ctdb_context *ctdb;
const char *ctdb_socket;
int ret;
bool status;
uint64_t srvid_offset;
tmp_ctx = talloc_new(NULL);
if (tmp_ctx == NULL) {
fprintf(stderr, "Memory allocation error\n");
goto fail;
}
if (cmd->without_daemon) {
if (options.pnn != -1) {
fprintf(stderr,
"Cannot specify node for command %s\n",
cmd->name);
goto fail;
}
ret = cmd->fn(tmp_ctx, NULL, argc-1, argv+1);
talloc_free(tmp_ctx);
return ret;
}
ctdb = talloc_zero(tmp_ctx, struct ctdb_context);
if (ctdb == NULL) {
fprintf(stderr, "Memory allocation error\n");
goto fail;
}
ctdb->ev = tevent_context_init(ctdb);
if (ctdb->ev == NULL) {
fprintf(stderr, "Failed to initialize tevent\n");
goto fail;
}
ctdb_socket = path_socket(ctdb, "ctdbd");
if (ctdb_socket == NULL) {
fprintf(stderr, "Memory allocation error\n");
goto fail;
}
ret = ctdb_client_init(ctdb, ctdb->ev, ctdb_socket, &ctdb->client);
if (ret != 0) {
fprintf(stderr, "Failed to connect to CTDB daemon (%s)\n",
ctdb_socket);
if (!find_node_xpnn(ctdb, NULL)) {
fprintf(stderr, "Is this node part of CTDB cluster?\n");
}
goto fail;
}
ctdb->pnn = ctdb_client_pnn(ctdb->client);
srvid_offset = getpid() & 0xFFFF;
ctdb->srvid = SRVID_CTDB_TOOL | (srvid_offset << 16);
if (options.pnn != -1) {
status = verify_pnn(ctdb, options.pnn);
if (! status) {
goto fail;
}
ctdb->cmd_pnn = options.pnn;
} else {
ctdb->cmd_pnn = ctdb->pnn;
}
if (! cmd->remote && ctdb->pnn != ctdb->cmd_pnn) {
fprintf(stderr, "Node cannot be specified for command %s\n",
cmd->name);
goto fail;
}
ctdb->leader_pnn = CTDB_UNKNOWN_PNN;
ret = ctdb_client_set_message_handler(ctdb->ev,
ctdb->client,
CTDB_SRVID_LEADER,
leader_handler,
ctdb);
if (ret != 0) {
fprintf(stderr, "Failed to setup leader handler\n");
goto fail;
}
ret = cmd->fn(tmp_ctx, ctdb, argc-1, argv+1);
talloc_free(tmp_ctx);
return ret;
fail:
talloc_free(tmp_ctx);
return 1;
}
static void signal_handler(int sig)
{
fprintf(stderr, "Maximum runtime exceeded - exiting\n");
}
static void alarm_handler(int sig)
{
/* Kill any child processes */
signal(SIGTERM, signal_handler);
kill(0, SIGTERM);
_exit(1);
}
int main(int argc, const char *argv[])
{
int opt;
const char **extra_argv;
int extra_argc;
const struct ctdb_cmd *cmd;
const char *test_mode;
int loglevel;
bool ok;
int ret = 0;
setlinebuf(stdout);
/* Set default options */
options.debuglevelstr = NULL;
options.timelimit = 10;
options.sep = "|";
options.maxruntime = 0;
options.pnn = -1;
pc = poptGetContext(argv[0], argc, argv, cmdline_options,
POPT_CONTEXT_KEEP_FIRST);
while ((opt = poptGetNextOpt(pc)) != -1) {
fprintf(stderr, "Invalid option %s: %s\n",
poptBadOption(pc, 0), poptStrerror(opt));
exit(1);
}
if (options.maxruntime == 0) {
const char *ctdb_timeout;
ctdb_timeout = getenv("CTDB_TIMEOUT");
if (ctdb_timeout != NULL) {
options.maxruntime = smb_strtoul(ctdb_timeout,
NULL,
0,
&ret,
SMB_STR_STANDARD);
if (ret != 0) {
fprintf(stderr, "Invalid value CTDB_TIMEOUT\n");
exit(1);
}
} else {
options.maxruntime = 120;
}
}
if (options.machineparsable) {
options.machinereadable = 1;
}
/* setup the remaining options for the commands */
extra_argc = 0;
extra_argv = poptGetArgs(pc);
if (extra_argv) {
extra_argv++;
while (extra_argv[extra_argc]) extra_argc++;
}
if (extra_argc < 1) {
usage(NULL);
}
cmd = match_command(extra_argv[0]);
if (cmd == NULL) {
fprintf(stderr, "Unknown command '%s'\n", extra_argv[0]);
exit(1);
}
/* Enable logging */
setup_logging("ctdb", DEBUG_STDERR);
ok = debug_level_parse(options.debuglevelstr, &loglevel);
if (!ok) {
loglevel = DEBUG_ERR;
}
debuglevel_set(loglevel);
/* Stop process group kill in alarm_handler() from killing tests */
test_mode = getenv("CTDB_TEST_MODE");
if (test_mode != NULL) {
const char *have_setpgid = getenv("CTDB_TOOL_SETPGID");
if (have_setpgid == NULL) {
setpgid(0, 0);
setenv("CTDB_TOOL_SETPGID", "1", 1);
}
}
signal(SIGALRM, alarm_handler);
alarm(options.maxruntime);
ret = process_command(cmd, extra_argc, extra_argv);
if (ret == -1) {
ret = 1;
}
(void)poptFreeContext(pc);
return ret;
}