/* * Unit tests for source4/rpc_server/dnsserver/dnsutils.c * * Copyright (C) Catalyst.NET Ltd 2018 * Copyright (C) Andrew Bartlett 2019 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /* * from cmocka.c: * These headers or their equivalents should be included prior to * including * this header file. * * #include * #include * #include * * This allows test applications to use custom definitions of C standard * library functions and types. * */ #include #include #include #include #include "../repl_decrypt.c" /* * test encryption and decryption including RID obfustincation */ static void test_drsuapi_rid_encrypt_decrypt_attribute_value(void **state) { uint8_t key[] = { 0xa1, 0xb2, 0xc3, 0xd4, 0xe1, 0xf2, 0x03, 0x14, 0x21, 0x32, 0x43, 0x54, 0x61, 0x72, 0x83, 0x94 }; uint8_t test_data[] = { 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04 }; const uint32_t rid = 514; TALLOC_CTX *mem_ctx = talloc_new(NULL); WERROR werr; const DATA_BLOB key_blob = data_blob_const(key, sizeof(key)); const DATA_BLOB plaintext = data_blob_const(test_data, sizeof(test_data)); DATA_BLOB encrypted; DATA_BLOB decrypted = data_blob_null; werr = drsuapi_encrypt_attribute_value(mem_ctx, &key_blob, true, rid, &plaintext, &encrypted); assert_int_equal(W_ERROR_V(werr), W_ERROR_V(WERR_OK)); assert_int_not_equal(encrypted.length, plaintext.length); werr = drsuapi_decrypt_attribute_value(mem_ctx, &key_blob, true, rid, &encrypted, &decrypted); assert_int_equal(W_ERROR_V(werr), W_ERROR_V(WERR_OK)); assert_int_equal(decrypted.length, plaintext.length); assert_memory_equal(decrypted.data, plaintext.data, plaintext.length); TALLOC_FREE(mem_ctx); } /* * test encryption and decryption failing RID obfustincation (data length) */ static void test_drsuapi_bad_len_rid_encrypt_decrypt_attribute_value(void **state) { uint8_t key[] = { 0xa1, 0xb2, 0xc3, 0xd4, 0xe1, 0xf2, 0x03, 0x14, 0x21, 0x32, 0x43, 0x54, 0x61, 0x72, 0x83, 0x94 }; uint8_t test_data[] = { 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x05 }; const uint32_t rid = 514; TALLOC_CTX *mem_ctx = talloc_new(NULL); WERROR werr; const DATA_BLOB key_blob = data_blob_const(key, sizeof(key)); const DATA_BLOB plaintext = data_blob_const(test_data, sizeof(test_data)); DATA_BLOB encrypted; werr = drsuapi_encrypt_attribute_value(mem_ctx, &key_blob, true, rid, &plaintext, &encrypted); assert_int_equal(W_ERROR_V(werr), W_ERROR_V(WERR_DS_DRA_INVALID_PARAMETER)); TALLOC_FREE(mem_ctx); } /* * test encryption and decryption failing RID obfustincation (zero rid) */ static void test_drsuapi_zero_rid_encrypt_decrypt_attribute_value(void **state) { uint8_t key[] = { 0xa1, 0xb2, 0xc3, 0xd4, 0xe1, 0xf2, 0x03, 0x14, 0x21, 0x32, 0x43, 0x54, 0x61, 0x72, 0x83, 0x94 }; uint8_t test_data[] = { 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04 }; const uint32_t rid = 0; TALLOC_CTX *mem_ctx = talloc_new(NULL); WERROR werr; const DATA_BLOB key_blob = data_blob_const(key, sizeof(key)); const DATA_BLOB plaintext = data_blob_const(test_data, sizeof(test_data)); DATA_BLOB encrypted; werr = drsuapi_encrypt_attribute_value(mem_ctx, &key_blob, true, rid, &plaintext, &encrypted); assert_int_equal(W_ERROR_V(werr), W_ERROR_V(WERR_DS_DRA_INVALID_PARAMETER)); TALLOC_FREE(mem_ctx); } /* * test encryption and decryption without RID obfustication */ static void test_drsuapi_encrypt_decrypt_attribute_value(void **state) { uint8_t key[] = { 0xa1, 0xb2, 0xc3, 0xd4, 0xe1, 0xf2, 0x03, 0x14, 0x21, 0x32, 0x43, 0x54, 0x61, 0x72, 0x83, 0x94 }; /* Ensures we can cope with odd lengths */ uint8_t test_data[] = { 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x05 }; TALLOC_CTX *mem_ctx = talloc_new(NULL); WERROR werr; const DATA_BLOB key_blob = data_blob_const(key, sizeof(key)); const DATA_BLOB plaintext = data_blob_const(test_data, sizeof(test_data)); DATA_BLOB encrypted; DATA_BLOB decrypted = data_blob_null; werr = drsuapi_encrypt_attribute_value(mem_ctx, &key_blob, false, 0, &plaintext, &encrypted); assert_int_equal(W_ERROR_V(werr), W_ERROR_V(WERR_OK)); assert_int_not_equal(encrypted.length, plaintext.length); werr = drsuapi_decrypt_attribute_value(mem_ctx, &key_blob, false, 0, &encrypted, &decrypted); assert_int_equal(W_ERROR_V(werr), W_ERROR_V(WERR_OK)); assert_int_equal(decrypted.length, plaintext.length); assert_memory_equal(decrypted.data, plaintext.data, plaintext.length); TALLOC_FREE(mem_ctx); } /* * test decryption of fixed buffer */ static void test_drsuapi_decrypt_attribute_value(void **state) { uint8_t key[] = { 0xa1, 0xb2, 0xc3, 0xd4, 0xe1, 0xf2, 0x03, 0x14, 0x21, 0x32, 0x43, 0x54, 0x61, 0x72, 0x83, 0x94 }; /* Ensures we can cope with odd lengths */ uint8_t test_data[] = { 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x05 }; uint8_t encrypted_test_data[] = { 0xFF, 0x5C, 0x58, 0x3F, 0xD4, 0x41, 0xCA, 0xB0, 0x14, 0xFE, 0xFB, 0xA6, 0xB0, 0x32, 0x45, 0x45, 0x9D, 0x76, 0x75, 0xD2, 0xFB, 0x34, 0x77, 0xBD, 0x8C, 0x1E, 0x09, 0x1A, 0xF1, 0xAB, 0xD3, 0x0E, 0xBE, 0x80, 0xAB, 0x19, 0xFC }; TALLOC_CTX *mem_ctx = talloc_new(NULL); WERROR werr; const DATA_BLOB key_blob = data_blob_const(key, sizeof(key)); const DATA_BLOB plaintext = data_blob_const(test_data, sizeof(test_data)); const DATA_BLOB encrypted = data_blob_const(encrypted_test_data, sizeof(encrypted_test_data)); DATA_BLOB decrypted = data_blob_null; werr = drsuapi_decrypt_attribute_value(mem_ctx, &key_blob, false, 0, &encrypted, &decrypted); assert_int_equal(W_ERROR_V(werr), W_ERROR_V(WERR_OK)); assert_int_equal(decrypted.length, plaintext.length); assert_memory_equal(decrypted.data, plaintext.data, plaintext.length); TALLOC_FREE(mem_ctx); } /* * test decryption of fixed buffer (rid decrypt) */ static void test_drsuapi_rid_decrypt_attribute_value(void **state) { uint8_t key[] = { 0xa1, 0xb2, 0xc3, 0xd4, 0xe1, 0xf2, 0x03, 0x14, 0x21, 0x32, 0x43, 0x54, 0x61, 0x72, 0x83, 0x94 }; /* Ensures we can cope with odd lengths */ uint8_t test_data[] = { 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04 }; uint8_t encrypted_test_data[] = {0x95, 0xB2, 0xE8, 0x02, 0x05, 0x5E, 0xFD, 0x3D, 0x7D, 0x17, 0xB9, 0x76, 0x4D, 0x91, 0xED, 0x59, 0x98, 0x79, 0x7A, 0xFC, 0x38, 0x73, 0x28, 0x55, 0x62, 0x27, 0x99, 0x3B, 0xD0, 0x18, 0xBD, 0x23, 0x5D, 0x98, 0xFE, 0xA8}; const uint32_t rid = 514; TALLOC_CTX *mem_ctx = talloc_new(NULL); WERROR werr; const DATA_BLOB key_blob = data_blob_const(key, sizeof(key)); const DATA_BLOB plaintext = data_blob_const(test_data, sizeof(test_data)); const DATA_BLOB encrypted = data_blob_const(encrypted_test_data, sizeof(encrypted_test_data)); DATA_BLOB decrypted = data_blob_null; werr = drsuapi_decrypt_attribute_value(mem_ctx, &key_blob, true, rid, &encrypted, &decrypted); assert_int_equal(W_ERROR_V(werr), W_ERROR_V(WERR_OK)); assert_int_equal(decrypted.length, plaintext.length); assert_memory_equal(decrypted.data, plaintext.data, plaintext.length); TALLOC_FREE(mem_ctx); } /* * test decryption of fixed buffer (rid decrypt) */ static void test_drsuapi_bad_len_rid_decrypt_attribute_value(void **state) { uint8_t key[] = { 0xa1, 0xb2, 0xc3, 0xd4, 0xe1, 0xf2, 0x03, 0x14, 0x21, 0x32, 0x43, 0x54, 0x61, 0x72, 0x83, 0x94 }; uint8_t encrypted_test_data[] = { 0xFF, 0x5C, 0x58, 0x3F, 0xD4, 0x41, 0xCA, 0xB0, 0x14, 0xFE, 0xFB, 0xA6, 0xB0, 0x32, 0x45, 0x45, 0x9D, 0x76, 0x75, 0xD2, 0xFB, 0x34, 0x77, 0xBD, 0x8C, 0x1E, 0x09, 0x1A, 0xF1, 0xAB, 0xD3, 0x0E, 0xBE, 0x80, 0xAB, 0x19, 0xFC }; const uint32_t rid = 514; TALLOC_CTX *mem_ctx = talloc_new(NULL); WERROR werr; const DATA_BLOB key_blob = data_blob_const(key, sizeof(key)); const DATA_BLOB encrypted = data_blob_const(encrypted_test_data, sizeof(encrypted_test_data)); DATA_BLOB decrypted; werr = drsuapi_decrypt_attribute_value(mem_ctx, &key_blob, true, rid, &encrypted, &decrypted); assert_int_equal(W_ERROR_V(werr), W_ERROR_V(WERR_DS_DRA_INVALID_PARAMETER)); TALLOC_FREE(mem_ctx); } /* * test decryption of fixed buffer (rid decrypt) */ static void test_drsuapi_zero_rid_decrypt_attribute_value(void **state) { uint8_t key[] = { 0xa1, 0xb2, 0xc3, 0xd4, 0xe1, 0xf2, 0x03, 0x14, 0x21, 0x32, 0x43, 0x54, 0x61, 0x72, 0x83, 0x94 }; uint8_t encrypted_test_data[] = { 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x05 }; const uint32_t rid = 0; TALLOC_CTX *mem_ctx = talloc_new(NULL); WERROR werr; const DATA_BLOB key_blob = data_blob_const(key, sizeof(key)); const DATA_BLOB encrypted = data_blob_const(encrypted_test_data, sizeof(encrypted_test_data)); DATA_BLOB decrypted; werr = drsuapi_decrypt_attribute_value(mem_ctx, &key_blob, true, rid, &encrypted, &decrypted); assert_int_equal(W_ERROR_V(werr), W_ERROR_V(WERR_DS_DRA_INVALID_PARAMETER)); TALLOC_FREE(mem_ctx); } /* * test decryption of fixed buffer (bad crc) */ static void test_drsuapi_bad_crc_decrypt_attribute_value(void **state) { uint8_t key[] = { 0xa1, 0xb2, 0xc3, 0xd4, 0xe1, 0xf2, 0x03, 0x14, 0x21, 0x32, 0x43, 0x54, 0x61, 0x72, 0x83, 0x94 }; uint8_t encrypted_test_data[] = { 0xFF, 0x5C, 0x58, 0x3F, 0xD4, 0x41, 0xCA, 0xB0, 0x14, 0xFE, 0xFB, 0xA6, 0xB0, 0x32, 0x45, 0x45, 0x9D, 0x76, 0x75, 0xD2, 0xFB, 0x34, 0x77, 0xBD, 0x8C, 0x1E, 0x09, 0x1A, 0xF1, 0xAB, 0xD3, 0x0E, 0xBE, 0x80, 0xAB, 0x19, 0xFF }; const uint32_t rid = 514; TALLOC_CTX *mem_ctx = talloc_new(NULL); WERROR werr; const DATA_BLOB key_blob = data_blob_const(key, sizeof(key)); const DATA_BLOB encrypted = data_blob_const(encrypted_test_data, sizeof(encrypted_test_data)); DATA_BLOB decrypted; werr = drsuapi_decrypt_attribute_value(mem_ctx, &key_blob, true, rid, &encrypted, &decrypted); assert_int_equal(W_ERROR_V(werr), HRES_ERROR_V(HRES_SEC_E_DECRYPT_FAILURE)); TALLOC_FREE(mem_ctx); } /* * test decryption of short buffer */ static void test_drsuapi_short_decrypt_attribute_value(void **state) { uint8_t key[] = { 0xa1, 0xb2, 0xc3, 0xd4, 0xe1, 0xf2, 0x03, 0x14, 0x21, 0x32, 0x43, 0x54, 0x61, 0x72, 0x83, 0x94 }; uint8_t encrypted_test_data[] = { 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x05 }; const uint32_t rid = 514; TALLOC_CTX *mem_ctx = talloc_new(NULL); WERROR werr; const DATA_BLOB key_blob = data_blob_const(key, sizeof(key)); const DATA_BLOB encrypted = data_blob_const(encrypted_test_data, sizeof(encrypted_test_data)); DATA_BLOB decrypted; werr = drsuapi_decrypt_attribute_value(mem_ctx, &key_blob, true, rid, &encrypted, &decrypted); assert_int_equal(W_ERROR_V(werr), W_ERROR_V(WERR_DS_DRA_INVALID_PARAMETER)); TALLOC_FREE(mem_ctx); } int main(int argc, const char **argv) { const struct CMUnitTest tests[] = { cmocka_unit_test( test_drsuapi_rid_encrypt_decrypt_attribute_value), cmocka_unit_test( test_drsuapi_bad_len_rid_encrypt_decrypt_attribute_value), cmocka_unit_test( test_drsuapi_zero_rid_encrypt_decrypt_attribute_value), cmocka_unit_test( test_drsuapi_encrypt_decrypt_attribute_value), cmocka_unit_test( test_drsuapi_decrypt_attribute_value), cmocka_unit_test( test_drsuapi_bad_crc_decrypt_attribute_value), cmocka_unit_test( test_drsuapi_rid_decrypt_attribute_value), cmocka_unit_test( test_drsuapi_zero_rid_decrypt_attribute_value), cmocka_unit_test( test_drsuapi_bad_len_rid_decrypt_attribute_value), cmocka_unit_test( test_drsuapi_short_decrypt_attribute_value), }; cmocka_set_message_output(CM_OUTPUT_SUBUNIT); return cmocka_run_group_tests(tests, NULL, NULL); }