/*
Unix SMB/CIFS implementation.
security descriptor description language functions
Copyright (C) Andrew Tridgell 2005
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include "replace.h"
#include "lib/util/debug.h"
#include "libcli/security/security.h"
#include "libcli/security/conditional_ace.h"
#include "librpc/gen_ndr/ndr_misc.h"
#include "lib/util/smb_strtox.h"
#include "libcli/security/sddl.h"
#include "system/locale.h"
#include "lib/util/util_str_hex.h"
struct sddl_transition_state {
const struct dom_sid *machine_sid;
const struct dom_sid *domain_sid;
const struct dom_sid *forest_sid;
};
struct flag_map {
const char *name;
uint32_t flag;
};
static bool sddl_map_flag(
const struct flag_map *map,
const char *str,
size_t *plen,
uint32_t *pflag)
{
while (map->name != NULL) {
size_t len = strlen(map->name);
int cmp = strncmp(map->name, str, len);
if (cmp == 0) {
*plen = len;
*pflag = map->flag;
return true;
}
map += 1;
}
return false;
}
/*
map a series of letter codes into a uint32_t
*/
static bool sddl_map_flags(const struct flag_map *map, const char *str,
uint32_t *pflags, size_t *plen,
bool unknown_flag_is_part_of_next_thing)
{
const char *str0 = str;
if (plen != NULL) {
*plen = 0;
}
*pflags = 0;
while (str[0] != '\0' && isupper((unsigned char)str[0])) {
size_t len;
uint32_t flags;
bool found;
found = sddl_map_flag(map, str, &len, &flags);
if (!found) {
break;
}
*pflags |= flags;
if (plen != NULL) {
*plen += len;
}
str += len;
}
/*
* For ACL flags, unknown_flag_is_part_of_next_thing is set,
* and we expect some more stuff that isn't flags.
*
* For ACE flags, unknown_flag_is_part_of_next_thing is unset,
* and the flags have been tokenised into their own little
* string. We don't expect anything here, even whitespace.
*/
if (*str == '\0' || unknown_flag_is_part_of_next_thing) {
return true;
}
DBG_WARNING("Unknown flag - '%s' in '%s'\n", str, str0);
return false;
}
/*
a mapping between the 2 letter SID codes and sid strings
*/
static const struct {
const char *code;
const char *sid;
uint32_t machine_rid;
uint32_t domain_rid;
uint32_t forest_rid;
} sid_codes[] = {
{ .code = "WD", .sid = SID_WORLD },
{ .code = "CO", .sid = SID_CREATOR_OWNER },
{ .code = "CG", .sid = SID_CREATOR_GROUP },
{ .code = "OW", .sid = SID_OWNER_RIGHTS },
{ .code = "NU", .sid = SID_NT_NETWORK },
{ .code = "IU", .sid = SID_NT_INTERACTIVE },
{ .code = "SU", .sid = SID_NT_SERVICE },
{ .code = "AN", .sid = SID_NT_ANONYMOUS },
{ .code = "ED", .sid = SID_NT_ENTERPRISE_DCS },
{ .code = "PS", .sid = SID_NT_SELF },
{ .code = "AU", .sid = SID_NT_AUTHENTICATED_USERS },
{ .code = "RC", .sid = SID_NT_RESTRICTED },
{ .code = "SY", .sid = SID_NT_SYSTEM },
{ .code = "LS", .sid = SID_NT_LOCAL_SERVICE },
{ .code = "NS", .sid = SID_NT_NETWORK_SERVICE },
{ .code = "WR", .sid = SID_SECURITY_RESTRICTED_CODE },
{ .code = "BA", .sid = SID_BUILTIN_ADMINISTRATORS },
{ .code = "BU", .sid = SID_BUILTIN_USERS },
{ .code = "BG", .sid = SID_BUILTIN_GUESTS },
{ .code = "PU", .sid = SID_BUILTIN_POWER_USERS },
{ .code = "AO", .sid = SID_BUILTIN_ACCOUNT_OPERATORS },
{ .code = "SO", .sid = SID_BUILTIN_SERVER_OPERATORS },
{ .code = "PO", .sid = SID_BUILTIN_PRINT_OPERATORS },
{ .code = "BO", .sid = SID_BUILTIN_BACKUP_OPERATORS },
{ .code = "RE", .sid = SID_BUILTIN_REPLICATOR },
{ .code = "RU", .sid = SID_BUILTIN_PREW2K },
{ .code = "RD", .sid = SID_BUILTIN_REMOTE_DESKTOP_USERS },
{ .code = "NO", .sid = SID_BUILTIN_NETWORK_CONF_OPERATORS },
{ .code = "MU", .sid = SID_BUILTIN_PERFMON_USERS },
{ .code = "LU", .sid = SID_BUILTIN_PERFLOG_USERS },
{ .code = "IS", .sid = SID_BUILTIN_IUSERS },
{ .code = "CY", .sid = SID_BUILTIN_CRYPTO_OPERATORS },
{ .code = "ER", .sid = SID_BUILTIN_EVENT_LOG_READERS },
{ .code = "CD", .sid = SID_BUILTIN_CERT_SERV_DCOM_ACCESS },
{ .code = "RA", .sid = SID_BUILTIN_RDS_REMOTE_ACCESS_SERVERS },
{ .code = "ES", .sid = SID_BUILTIN_RDS_ENDPOINT_SERVERS },
{ .code = "MS", .sid = SID_BUILTIN_RDS_MANAGEMENT_SERVERS },
{ .code = "HA", .sid = SID_BUILTIN_HYPER_V_ADMINS },
{ .code = "AA", .sid = SID_BUILTIN_ACCESS_CONTROL_ASSISTANCE_OPS },
{ .code = "RM", .sid = SID_BUILTIN_REMOTE_MANAGEMENT_USERS },
{ .code = "UD", .sid = SID_USER_MODE_DRIVERS },
{ .code = "AC", .sid = SID_SECURITY_BUILTIN_PACKAGE_ANY_PACKAGE },
{ .code = "LW", .sid = SID_SECURITY_MANDATORY_LOW },
{ .code = "ME", .sid = SID_SECURITY_MANDATORY_MEDIUM },
{ .code = "MP", .sid = SID_SECURITY_MANDATORY_MEDIUM_PLUS },
{ .code = "HI", .sid = SID_SECURITY_MANDATORY_HIGH },
{ .code = "SI", .sid = SID_SECURITY_MANDATORY_SYSTEM },
{ .code = "AS", .sid = SID_AUTHENTICATION_AUTHORITY_ASSERTED_IDENTITY },
{ .code = "SS", .sid = SID_SERVICE_ASSERTED_IDENTITY },
{ .code = "RO", .forest_rid = DOMAIN_RID_ENTERPRISE_READONLY_DCS },
{ .code = "LA", .machine_rid = DOMAIN_RID_ADMINISTRATOR },
{ .code = "LG", .machine_rid = DOMAIN_RID_GUEST },
{ .code = "DA", .domain_rid = DOMAIN_RID_ADMINS },
{ .code = "DU", .domain_rid = DOMAIN_RID_USERS },
{ .code = "DG", .domain_rid = DOMAIN_RID_GUESTS },
{ .code = "DC", .domain_rid = DOMAIN_RID_DOMAIN_MEMBERS },
{ .code = "DD", .domain_rid = DOMAIN_RID_DCS },
{ .code = "CA", .domain_rid = DOMAIN_RID_CERT_ADMINS },
{ .code = "SA", .forest_rid = DOMAIN_RID_SCHEMA_ADMINS },
{ .code = "EA", .forest_rid = DOMAIN_RID_ENTERPRISE_ADMINS },
{ .code = "PA", .domain_rid = DOMAIN_RID_POLICY_ADMINS },
{ .code = "CN", .domain_rid = DOMAIN_RID_CLONEABLE_CONTROLLERS },
{ .code = "AP", .domain_rid = DOMAIN_RID_PROTECTED_USERS },
{ .code = "KA", .domain_rid = DOMAIN_RID_KEY_ADMINS },
{ .code = "EK", .forest_rid = DOMAIN_RID_ENTERPRISE_KEY_ADMINS },
{ .code = "RS", .domain_rid = DOMAIN_RID_RAS_SERVERS }
};
/*
decode a SID
It can either be a special 2 letter code, or in S-* format
*/
static struct dom_sid *sddl_transition_decode_sid(TALLOC_CTX *mem_ctx, const char **sddlp,
struct sddl_transition_state *state)
{
const char *sddl = (*sddlp);
size_t i;
/* see if its in the numeric format */
if (strncasecmp(sddl, "S-", 2) == 0) {
struct dom_sid *sid = NULL;
char *sid_str = NULL;
const char *end = NULL;
bool ok;
size_t len = strspn(sddl + 2, "-0123456789ABCDEFabcdefxX") + 2;
if (len < 5) { /* S-1-x */
return NULL;
}
if (sddl[len - 1] == 'D' && sddl[len] == ':') {
/*
* we have run into the "D:" dacl marker, mistaking it
* for a hex digit. There is no other way for this
* pair to occur at the end of a SID in SDDL.
*/
len--;
}
sid_str = talloc_strndup(mem_ctx, sddl, len);
if (sid_str == NULL) {
return NULL;
}
if (sid_str[0] == 's') {
/*
* In SDDL, but not in the dom_sid parsers, a
* lowercase "s-1-1-0" is accepted.
*/
sid_str[0] = 'S';
}
sid = talloc(mem_ctx, struct dom_sid);
if (sid == NULL) {
TALLOC_FREE(sid_str);
return NULL;
};
ok = dom_sid_parse_endp(sid_str, sid, &end);
if (!ok) {
DBG_WARNING("could not parse SID '%s'\n", sid_str);
TALLOC_FREE(sid_str);
TALLOC_FREE(sid);
return NULL;
}
if (end - sid_str != len) {
DBG_WARNING("trailing junk after SID '%s'\n", sid_str);
TALLOC_FREE(sid_str);
TALLOC_FREE(sid);
return NULL;
}
TALLOC_FREE(sid_str);
(*sddlp) += len;
return sid;
}
/* now check for one of the special codes */
for (i=0;imachine_sid,
sid_codes[i].machine_rid);
}
if (sid_codes[i].domain_rid != 0) {
return dom_sid_add_rid(mem_ctx, state->domain_sid,
sid_codes[i].domain_rid);
}
if (sid_codes[i].forest_rid != 0) {
return dom_sid_add_rid(mem_ctx, state->forest_sid,
sid_codes[i].forest_rid);
}
return dom_sid_parse_talloc(mem_ctx, sid_codes[i].sid);
}
struct dom_sid *sddl_decode_sid(TALLOC_CTX *mem_ctx, const char **sddlp,
const struct dom_sid *domain_sid)
{
struct sddl_transition_state state = {
/*
* TODO: verify .machine_rid values really belong
* to the machine_sid on a member, once
* we pass machine_sid from the caller...
*/
.machine_sid = domain_sid,
.domain_sid = domain_sid,
.forest_sid = domain_sid,
};
return sddl_transition_decode_sid(mem_ctx, sddlp, &state);
}
static const struct flag_map ace_types[] = {
{ "AU", SEC_ACE_TYPE_SYSTEM_AUDIT },
{ "AL", SEC_ACE_TYPE_SYSTEM_ALARM },
{ "OA", SEC_ACE_TYPE_ACCESS_ALLOWED_OBJECT },
{ "OD", SEC_ACE_TYPE_ACCESS_DENIED_OBJECT },
{ "OU", SEC_ACE_TYPE_SYSTEM_AUDIT_OBJECT },
{ "OL", SEC_ACE_TYPE_SYSTEM_ALARM_OBJECT },
{ "A", SEC_ACE_TYPE_ACCESS_ALLOWED },
{ "D", SEC_ACE_TYPE_ACCESS_DENIED },
{ "XA", SEC_ACE_TYPE_ACCESS_ALLOWED_CALLBACK },
{ "XD", SEC_ACE_TYPE_ACCESS_DENIED_CALLBACK },
{ "ZA", SEC_ACE_TYPE_ACCESS_ALLOWED_CALLBACK_OBJECT },
/*
* SEC_ACE_TYPE_ACCESS_DENIED_CALLBACK_OBJECT exists but has
* no SDDL flag.
*
* ZA and XU are switched in [MS-DTYP] as of version 36.0,
* but this should be corrected in later versions.
*/
{ "XU", SEC_ACE_TYPE_SYSTEM_AUDIT_CALLBACK },
{ "RA", SEC_ACE_TYPE_SYSTEM_RESOURCE_ATTRIBUTE },
{ NULL, 0 }
};
static const struct flag_map ace_flags[] = {
{ "OI", SEC_ACE_FLAG_OBJECT_INHERIT },
{ "CI", SEC_ACE_FLAG_CONTAINER_INHERIT },
{ "NP", SEC_ACE_FLAG_NO_PROPAGATE_INHERIT },
{ "IO", SEC_ACE_FLAG_INHERIT_ONLY },
{ "ID", SEC_ACE_FLAG_INHERITED_ACE },
{ "SA", SEC_ACE_FLAG_SUCCESSFUL_ACCESS },
{ "FA", SEC_ACE_FLAG_FAILED_ACCESS },
{ NULL, 0 },
};
static const struct flag_map ace_access_mask[] = {
{ "CC", SEC_ADS_CREATE_CHILD },
{ "DC", SEC_ADS_DELETE_CHILD },
{ "LC", SEC_ADS_LIST },
{ "SW", SEC_ADS_SELF_WRITE },
{ "RP", SEC_ADS_READ_PROP },
{ "WP", SEC_ADS_WRITE_PROP },
{ "DT", SEC_ADS_DELETE_TREE },
{ "LO", SEC_ADS_LIST_OBJECT },
{ "CR", SEC_ADS_CONTROL_ACCESS },
{ "SD", SEC_STD_DELETE },
{ "RC", SEC_STD_READ_CONTROL },
{ "WD", SEC_STD_WRITE_DAC },
{ "WO", SEC_STD_WRITE_OWNER },
{ "GA", SEC_GENERIC_ALL },
{ "GX", SEC_GENERIC_EXECUTE },
{ "GW", SEC_GENERIC_WRITE },
{ "GR", SEC_GENERIC_READ },
{ NULL, 0 }
};
static const struct flag_map decode_ace_access_mask[] = {
{ "FA", FILE_GENERIC_ALL },
{ "FR", FILE_GENERIC_READ },
{ "FW", FILE_GENERIC_WRITE },
{ "FX", FILE_GENERIC_EXECUTE },
{ NULL, 0 },
};
static char *sddl_match_file_rights(TALLOC_CTX *mem_ctx,
uint32_t flags)
{
int i;
/* try to find an exact match */
for (i=0;decode_ace_access_mask[i].name;i++) {
if (decode_ace_access_mask[i].flag == flags) {
return talloc_strdup(mem_ctx,
decode_ace_access_mask[i].name);
}
}
return NULL;
}
static bool sddl_decode_access(const char *str, uint32_t *pmask)
{
const char *str0 = str;
char *end = NULL;
uint32_t mask = 0;
unsigned long long numeric_mask;
int err;
/*
* The access mask can be a number or a series of flags.
*
* Canonically the number is expressed in hexadecimal (with 0x), but
* per MS-DTYP and Windows behaviour, octal and decimal numbers are
* also accepted.
*
* Windows has two behaviours we choose not to replicate:
*
* 1. numbers exceeding 0xffffffff are truncated at that point,
* turning on all access flags.
*
* 2. negative numbers are accepted, so e.g. -2 becomes 0xfffffffe.
*/
numeric_mask = smb_strtoull(str, &end, 0, &err, SMB_STR_STANDARD);
if (err == 0) {
if (numeric_mask > UINT32_MAX) {
DBG_WARNING("Bad numeric flag value - %llu in %s\n",
numeric_mask, str0);
return false;
}
if (end - str > sizeof("037777777777")) {
/* here's the tricky thing: if a number is big
* enough to overflow the uint64, it might end
* up small enough to fit in the uint32, and
* we'd miss that it overflowed. So we count
* the digits -- any more than 12 (for
* "037777777777") is too long for 32 bits,
* and the shortest 64-bit wrapping string is
* 19 (for "0x1" + 16 zeros).
*/
DBG_WARNING("Bad numeric flag value in '%s'\n", str0);
return false;
}
if (*end != '\0') {
DBG_WARNING("Bad characters in '%s'\n", str0);
return false;
}
*pmask = numeric_mask;
return true;
}
/* It's not a positive number, so we'll look for flags */
while ((str[0] != '\0') &&
(isupper((unsigned char)str[0]) || str[0] == ' ')) {
uint32_t flags = 0;
size_t len = 0;
bool found;
while (str[0] == ' ') {
/*
* Following Windows we accept spaces between flags
* but not after flags. Not tabs, though, never tabs.
*/
str++;
if (str[0] == '\0') {
DBG_WARNING("trailing whitespace in flags "
"- '%s'\n", str0);
return false;
}
}
found = sddl_map_flag(
ace_access_mask, str, &len, &flags);
found |= sddl_map_flag(
decode_ace_access_mask, str, &len, &flags);
if (!found) {
DEBUG(1, ("Unknown flag - %s in %s\n", str, str0));
return false;
}
mask |= flags;
str += len;
}
if (*str != '\0') {
DBG_WARNING("Bad characters in '%s'\n", str0);
return false;
}
*pmask = mask;
return true;
}
static bool sddl_decode_guid(const char *str, struct GUID *guid)
{
if (strlen(str) != 36) {
return false;
}
return parse_guid_string(str, guid);
}
static DATA_BLOB sddl_decode_conditions(TALLOC_CTX *mem_ctx,
const enum ace_condition_flags ace_condition_flags,
const char *conditions,
size_t *length,
const char **msg,
size_t *msg_offset)
{
DATA_BLOB blob = {0};
struct ace_condition_script *script = NULL;
script = ace_conditions_compile_sddl(mem_ctx,
ace_condition_flags,
conditions,
msg,
msg_offset,
length);
if (script != NULL) {
bool ok = conditional_ace_encode_binary(mem_ctx,
script,
&blob);
if (! ok) {
DBG_ERR("could not blobify '%s'\n", conditions);
}
}
return blob;
}
/*
decode an ACE
return true on success, false on failure
note that this routine modifies the string
*/
static bool sddl_decode_ace(TALLOC_CTX *mem_ctx,
struct security_ace *ace,
const enum ace_condition_flags ace_condition_flags,
char **sddl_copy,
struct sddl_transition_state *state,
const char **msg, size_t *msg_offset)
{
const char *tok[7];
const char *s;
uint32_t v;
struct dom_sid *sid;
bool ok;
size_t len;
size_t count = 0;
char *str = *sddl_copy;
bool has_extra_data = false;
ZERO_STRUCTP(ace);
*msg_offset = 1;
if (*str != '(') {
*msg = talloc_strdup(mem_ctx, "Not an ACE");
return false;
}
str++;
/*
* First we split apart the 6 (or 7) tokens.
*
* 0. ace type
* 1. ace flags
* 2. access mask
* 3. object guid
* 4. inherit guid
* 5. sid
*
* 6/extra_data rare optional extra data
*/
tok[0] = str;
while (*str != '\0') {
if (*str == ';') {
*str = '\0';
str++;
count++;
tok[count] = str;
if (count == 6) {
/*
* this looks like a conditional ACE
* or resource ACE, but we can't say
* for sure until we look at the ACE
* type (tok[0]), after the loop.
*/
has_extra_data = true;
break;
}
continue;
}
/*
* we are not expecting a ')' in the 6 sections of an
* ordinary ACE, except ending the last one.
*/
if (*str == ')') {
count++;
*str = '\0';
str++;
break;
}
str++;
}
if (count != 6) {
/* we hit the '\0' or ')' before all of ';;;;;)' */
*msg = talloc_asprintf(mem_ctx,
"malformed ACE with only %zu ';'",
MIN(count - 1, count));
return false;
}
/* parse ace type */
ok = sddl_map_flag(ace_types, tok[0], &len, &v);
if (!ok) {
*msg = talloc_asprintf(mem_ctx,
"Unknown ACE type - %s", tok[0]);
return false;
}
if (tok[0][len] != '\0') {
*msg = talloc_asprintf(mem_ctx,
"Garbage after ACE type - %s", tok[0]);
return false;
}
ace->type = v;
/*
* Only callback and resource aces should have trailing data.
*/
if (sec_ace_callback(ace->type)) {
if (! has_extra_data) {
*msg = talloc_strdup(
mem_ctx,
"callback ACE has no trailing data");
*msg_offset = str - *sddl_copy;
return false;
}
} else if (sec_ace_resource(ace->type)) {
if (! has_extra_data) {
*msg = talloc_strdup(
mem_ctx,
"resource attribute ACE has no trailing data");
*msg_offset = str - *sddl_copy;
return false;
}
} else if (has_extra_data) {
*msg = talloc_strdup(
mem_ctx,
"ACE has trailing section but is not a "
"callback or resource ACE");
*msg_offset = str - *sddl_copy;
return false;
}
/* ace flags */
if (!sddl_map_flags(ace_flags, tok[1], &v, NULL, false)) {
*msg = talloc_strdup(mem_ctx,
"could not parse flags");
*msg_offset = tok[1] - *sddl_copy;
return false;
}
ace->flags = v;
/* access mask */
ok = sddl_decode_access(tok[2], &ace->access_mask);
if (!ok) {
*msg = talloc_strdup(mem_ctx,
"could not parse access string");
*msg_offset = tok[2] - *sddl_copy;
return false;
}
/* object */
if (tok[3][0] != 0) {
ok = sddl_decode_guid(tok[3], &ace->object.object.type.type);
if (!ok) {
*msg = talloc_strdup(mem_ctx,
"could not parse object GUID");
*msg_offset = tok[3] - *sddl_copy;
return false;
}
ace->object.object.flags |= SEC_ACE_OBJECT_TYPE_PRESENT;
}
/* inherit object */
if (tok[4][0] != 0) {
ok = sddl_decode_guid(tok[4],
&ace->object.object.inherited_type.inherited_type);
if (!ok) {
*msg = talloc_strdup(
mem_ctx,
"could not parse inherited object GUID");
*msg_offset = tok[4] - *sddl_copy;
return false;
}
ace->object.object.flags |= SEC_ACE_INHERITED_OBJECT_TYPE_PRESENT;
}
/* trustee */
s = tok[5];
sid = sddl_transition_decode_sid(mem_ctx, &s, state);
if (sid == NULL) {
*msg = talloc_strdup(
mem_ctx,
"could not parse trustee SID");
*msg_offset = tok[5] - *sddl_copy;
return false;
}
ace->trustee = *sid;
talloc_free(sid);
if (*s != '\0') {
*msg = talloc_strdup(
mem_ctx,
"garbage after trustee SID");
*msg_offset = s - *sddl_copy;
return false;
}
if (sec_ace_callback(ace->type)) {
/*
* This is either a conditional ACE or some unknown
* type of callback ACE that will be rejected by the
* conditional ACE compiler.
*/
size_t length;
DATA_BLOB conditions = {0};
s = tok[6];
conditions = sddl_decode_conditions(mem_ctx,
ace_condition_flags,
s,
&length,
msg,
msg_offset);
if (conditions.data == NULL) {
DBG_NOTICE("Conditional ACE compilation failure at %zu: %s\n",
*msg_offset, *msg);
*msg_offset += s - *sddl_copy;
return false;
}
ace->coda.conditions = conditions;
/*
* We have found the end of the conditions, and the
* next character should be the ')' to end the ACE.
*/
if (s[length] != ')') {
*msg = talloc_strdup(
mem_ctx,
"Conditional ACE has trailing bytes"
" or lacks ')'");
*msg_offset = s + length - *sddl_copy;
return false;
}
str = discard_const_p(char, s + length + 1);
} else if (sec_ace_resource(ace->type)) {
size_t length;
struct CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1 *claim = NULL;
if (! dom_sid_equal(&ace->trustee, &global_sid_World)) {
/* these are just the rules */
*msg = talloc_strdup(
mem_ctx,
"Resource Attribute ACE trustee must be "
"'S-1-1-0' or 'WD'.");
*msg_offset = tok[5] - *sddl_copy;
return false;
}
s = tok[6];
claim = sddl_decode_resource_attr(mem_ctx, s, &length);
if (claim == NULL) {
*msg = talloc_strdup(
mem_ctx,
"Resource Attribute ACE parse failure");
*msg_offset = s - *sddl_copy;
return false;
}
ace->coda.claim = *claim;
/*
* We want a ')' to end the ACE.
*/
if (s[length] != ')') {
*msg = talloc_strdup(
mem_ctx,
"Resource Attribute ACE has trailing bytes"
" or lacks ')'");
*msg_offset = s + length - *sddl_copy;
return false;
}
str = discard_const_p(char, s + length + 1);
}
*sddl_copy = str;
return true;
}
static const struct flag_map acl_flags[] = {
{ "P", SEC_DESC_DACL_PROTECTED },
{ "AR", SEC_DESC_DACL_AUTO_INHERIT_REQ },
{ "AI", SEC_DESC_DACL_AUTO_INHERITED },
{ NULL, 0 }
};
/*
decode an ACL
*/
static struct security_acl *sddl_decode_acl(struct security_descriptor *sd,
const enum ace_condition_flags ace_condition_flags,
const char **sddlp, uint32_t *flags,
struct sddl_transition_state *state,
const char **msg, size_t *msg_offset)
{
const char *sddl = *sddlp;
char *sddl_copy = NULL;
char *aces_start = NULL;
struct security_acl *acl;
size_t len;
*flags = 0;
acl = talloc_zero(sd, struct security_acl);
if (acl == NULL) {
return NULL;
}
acl->revision = SECURITY_ACL_REVISION_ADS;
if (isupper((unsigned char)sddl[0]) && sddl[1] == ':') {
/* its an empty ACL */
return acl;
}
/* work out the ACL flags */
if (!sddl_map_flags(acl_flags, sddl, flags, &len, true)) {
*msg = talloc_strdup(sd, "bad ACL flags");
*msg_offset = 0;
talloc_free(acl);
return NULL;
}
sddl += len;
if (sddl[0] != '(') {
/*
* it is empty apart from the flags
* (or the flags are bad, and we will find out when
* we try to parse the next bit as a top-level fragment)
*/
*sddlp = sddl;
return acl;
}
/*
* now the ACEs
*
* For this we make a copy of the rest of the SDDL, which the ACE
* tokeniser will mutilate by putting '\0' where it finds ';'.
*
* We need to copy the rest of the SDDL string because it is not
* possible in general to find where an ACL ends if there are
* conditional ACEs.
*/
sddl_copy = talloc_strdup(acl, sddl);
if (sddl_copy == NULL) {
TALLOC_FREE(acl);
return NULL;
}
aces_start = sddl_copy;
while (*sddl_copy == '(') {
bool ok;
if (acl->num_aces > UINT16_MAX / 16) {
/*
* We can't fit this many ACEs in a wire ACL
* which has a 16 bit size field (and 16 is
* the minimal size of an ACE with no subauths).
*/
talloc_free(acl);
return NULL;
}
acl->aces = talloc_realloc(acl, acl->aces, struct security_ace,
acl->num_aces+1);
if (acl->aces == NULL) {
talloc_free(acl);
return NULL;
}
ok = sddl_decode_ace(acl->aces, &acl->aces[acl->num_aces],
ace_condition_flags,
&sddl_copy, state, msg, msg_offset);
if (!ok) {
*msg_offset += sddl_copy - aces_start;
talloc_steal(sd, *msg);
talloc_free(acl);
return NULL;
}
acl->num_aces++;
}
sddl += sddl_copy - aces_start;
TALLOC_FREE(aces_start);
(*sddlp) = sddl;
return acl;
}
/*
* Decode a security descriptor in SDDL format, catching compilation
* error messages, if any.
*
* The message will be a direct talloc child of mem_ctx or NULL.
*/
struct security_descriptor *sddl_decode_err_msg(TALLOC_CTX *mem_ctx, const char *sddl,
const struct dom_sid *domain_sid,
const enum ace_condition_flags ace_condition_flags,
const char **msg, size_t *msg_offset)
{
struct sddl_transition_state state = {
/*
* TODO: verify .machine_rid values really belong
* to the machine_sid on a member, once
* we pass machine_sid from the caller...
*/
.machine_sid = domain_sid,
.domain_sid = domain_sid,
.forest_sid = domain_sid,
};
const char *start = sddl;
struct security_descriptor *sd = NULL;
if (msg == NULL || msg_offset == NULL) {
DBG_ERR("Programmer misbehaviour: use sddl_decode() "
"or provide msg pointers.\n");
return NULL;
}
*msg = NULL;
*msg_offset = 0;
sd = talloc_zero(mem_ctx, struct security_descriptor);
if (sd == NULL) {
return NULL;
}
sd->revision = SECURITY_DESCRIPTOR_REVISION_1;
sd->type = SEC_DESC_SELF_RELATIVE;
while (*sddl) {
uint32_t flags;
char c = sddl[0];
if (sddl[1] != ':') {
*msg = talloc_strdup(mem_ctx,
"expected '[OGDS]:' section start "
"(or the previous section ended prematurely)");
goto failed;
}
sddl += 2;
switch (c) {
case 'D':
if (sd->dacl != NULL) goto failed;
sd->dacl = sddl_decode_acl(sd, ace_condition_flags, &sddl, &flags, &state, msg, msg_offset);
if (sd->dacl == NULL) goto failed;
sd->type |= flags | SEC_DESC_DACL_PRESENT;
break;
case 'S':
if (sd->sacl != NULL) goto failed;
sd->sacl = sddl_decode_acl(sd, ace_condition_flags, &sddl, &flags, &state, msg, msg_offset);
if (sd->sacl == NULL) goto failed;
/* this relies on the SEC_DESC_SACL_* flags being
1 bit shifted from the SEC_DESC_DACL_* flags */
sd->type |= (flags<<1) | SEC_DESC_SACL_PRESENT;
break;
case 'O':
if (sd->owner_sid != NULL) goto failed;
sd->owner_sid = sddl_transition_decode_sid(sd, &sddl, &state);
if (sd->owner_sid == NULL) goto failed;
break;
case 'G':
if (sd->group_sid != NULL) goto failed;
sd->group_sid = sddl_transition_decode_sid(sd, &sddl, &state);
if (sd->group_sid == NULL) goto failed;
break;
default:
*msg = talloc_strdup(mem_ctx, "unexpected character (expected [OGDS])");
goto failed;
}
}
return sd;
failed:
if (*msg != NULL) {
*msg = talloc_steal(mem_ctx, *msg);
}
/*
* The actual message (*msg) might still be NULL, but the
* offset at least provides a clue.
*/
*msg_offset += sddl - start;
if (*msg_offset > strlen(sddl)) {
/*
* It's not that we *don't* trust our pointer difference
* arithmetic, just that we *shouldn't*. Let's render it
* harmless, before Python tries printing 18 quadrillion
* spaces.
*/
DBG_WARNING("sddl error message offset %zu is too big\n",
*msg_offset);
*msg_offset = 0;
}
DEBUG(2,("Badly formatted SDDL '%s'\n", sddl));
talloc_free(sd);
return NULL;
}
/*
decode a security descriptor in SDDL format
*/
struct security_descriptor *sddl_decode(TALLOC_CTX *mem_ctx, const char *sddl,
const struct dom_sid *domain_sid)
{
const char *msg = NULL;
size_t msg_offset = 0;
struct security_descriptor *sd = sddl_decode_err_msg(mem_ctx,
sddl,
domain_sid,
ACE_CONDITION_FLAG_ALLOW_DEVICE,
&msg,
&msg_offset);
if (sd == NULL) {
DBG_NOTICE("could not decode '%s'\n", sddl);
if (msg != NULL) {
DBG_NOTICE(" %*c\n",
(int)msg_offset, '^');
DBG_NOTICE("error '%s'\n", msg);
talloc_free(discard_const(msg));
}
}
return sd;
}
/*
turn a set of flags into a string
*/
static char *sddl_flags_to_string(TALLOC_CTX *mem_ctx, const struct flag_map *map,
uint32_t flags, bool check_all)
{
int i;
char *s;
/* try to find an exact match */
for (i=0;map[i].name;i++) {
if (map[i].flag == flags) {
return talloc_strdup(mem_ctx, map[i].name);
}
}
s = talloc_strdup(mem_ctx, "");
/* now by bits */
for (i=0;map[i].name;i++) {
if ((flags & map[i].flag) != 0) {
s = talloc_asprintf_append_buffer(s, "%s", map[i].name);
if (s == NULL) goto failed;
flags &= ~map[i].flag;
}
}
if (check_all && flags != 0) {
goto failed;
}
return s;
failed:
talloc_free(s);
return NULL;
}
/*
encode a sid in SDDL format
*/
static char *sddl_transition_encode_sid(TALLOC_CTX *mem_ctx, const struct dom_sid *sid,
struct sddl_transition_state *state)
{
bool in_machine = dom_sid_in_domain(state->machine_sid, sid);
bool in_domain = dom_sid_in_domain(state->domain_sid, sid);
bool in_forest = dom_sid_in_domain(state->forest_sid, sid);
struct dom_sid_buf buf;
const char *sidstr = dom_sid_str_buf(sid, &buf);
uint32_t rid = 0;
size_t i;
if (sid->num_auths > 1) {
rid = sid->sub_auths[sid->num_auths-1];
}
for (i=0;itype, true);
if (sddl_type == NULL) {
goto failed;
}
sddl_flags = sddl_flags_to_string(tmp_ctx, ace_flags, ace->flags,
true);
if (sddl_flags == NULL) {
goto failed;
}
sddl_mask = sddl_flags_to_string(tmp_ctx, ace_access_mask,
ace->access_mask, true);
if (sddl_mask == NULL) {
sddl_mask = sddl_match_file_rights(tmp_ctx,
ace->access_mask);
if (sddl_mask == NULL) {
sddl_mask = talloc_asprintf(tmp_ctx, "0x%x",
ace->access_mask);
}
if (sddl_mask == NULL) {
goto failed;
}
}
if (sec_ace_object(ace->type)) {
const struct security_ace_object *object = &ace->object.object;
if (ace->object.object.flags & SEC_ACE_OBJECT_TYPE_PRESENT) {
sddl_object = GUID_buf_string(
&object->type.type, &object_buf);
}
if (ace->object.object.flags &
SEC_ACE_INHERITED_OBJECT_TYPE_PRESENT) {
sddl_iobject = GUID_buf_string(
&object->inherited_type.inherited_type,
&iobject_buf);
}
}
sddl_trustee = sddl_transition_encode_sid(tmp_ctx, &ace->trustee, state);
if (sddl_trustee == NULL) {
goto failed;
}
if (sec_ace_callback(ace->type)) {
/* encode the conditional part */
struct ace_condition_script *s = NULL;
const char *sddl_conditions = NULL;
s = parse_conditional_ace(tmp_ctx, ace->coda.conditions);
if (s == NULL) {
goto failed;
}
sddl_conditions = sddl_from_conditional_ace(tmp_ctx, s);
if (sddl_conditions == NULL) {
goto failed;
}
sddl = talloc_asprintf(mem_ctx, "%s;%s;%s;%s;%s;%s;%s",
sddl_type, sddl_flags, sddl_mask,
sddl_object, sddl_iobject,
sddl_trustee, sddl_conditions);
} else if (sec_ace_resource(ace->type)) {
/* encode the resource part */
const char *coda = NULL;
coda = sddl_resource_attr_from_claim(tmp_ctx,
&ace->coda.claim);
if (coda == NULL) {
DBG_WARNING("resource ACE has invalid claim\n");
goto failed;
}
sddl = talloc_asprintf(mem_ctx, "%s;%s;%s;%s;%s;%s;%s",
sddl_type, sddl_flags, sddl_mask,
sddl_object, sddl_iobject,
sddl_trustee, coda);
} else {
sddl = talloc_asprintf(mem_ctx, "%s;%s;%s;%s;%s;%s",
sddl_type, sddl_flags, sddl_mask,
sddl_object, sddl_iobject, sddl_trustee);
}
failed:
talloc_free(tmp_ctx);
return sddl;
}
char *sddl_encode_ace(TALLOC_CTX *mem_ctx, const struct security_ace *ace,
const struct dom_sid *domain_sid)
{
struct sddl_transition_state state = {
/*
* TODO: verify .machine_rid values really belong
* to the machine_sid on a member, once
* we pass machine_sid from the caller...
*/
.machine_sid = domain_sid,
.domain_sid = domain_sid,
.forest_sid = domain_sid,
};
return sddl_transition_encode_ace(mem_ctx, ace, &state);
}
/*
encode an ACL in SDDL format
*/
static char *sddl_encode_acl(TALLOC_CTX *mem_ctx, const struct security_acl *acl,
uint32_t flags, struct sddl_transition_state *state)
{
char *sddl;
uint32_t i;
/* add any ACL flags */
sddl = sddl_flags_to_string(mem_ctx, acl_flags, flags, false);
if (sddl == NULL) goto failed;
/* now the ACEs, encoded in braces */
for (i=0;inum_aces;i++) {
char *ace = sddl_transition_encode_ace(sddl, &acl->aces[i], state);
if (ace == NULL) goto failed;
sddl = talloc_asprintf_append_buffer(sddl, "(%s)", ace);
if (sddl == NULL) goto failed;
talloc_free(ace);
}
return sddl;
failed:
talloc_free(sddl);
return NULL;
}
/*
encode a security descriptor to SDDL format
*/
char *sddl_encode(TALLOC_CTX *mem_ctx, const struct security_descriptor *sd,
const struct dom_sid *domain_sid)
{
struct sddl_transition_state state = {
/*
* TODO: verify .machine_rid values really belong
* to the machine_sid on a member, once
* we pass machine_sid from the caller...
*/
.machine_sid = domain_sid,
.domain_sid = domain_sid,
.forest_sid = domain_sid,
};
char *sddl;
TALLOC_CTX *tmp_ctx;
/* start with a blank string */
sddl = talloc_strdup(mem_ctx, "");
if (sddl == NULL) goto failed;
tmp_ctx = talloc_new(sddl);
if (tmp_ctx == NULL) {
goto failed;
}
if (sd->owner_sid != NULL) {
char *sid = sddl_transition_encode_sid(tmp_ctx, sd->owner_sid, &state);
if (sid == NULL) goto failed;
sddl = talloc_asprintf_append_buffer(sddl, "O:%s", sid);
if (sddl == NULL) goto failed;
}
if (sd->group_sid != NULL) {
char *sid = sddl_transition_encode_sid(tmp_ctx, sd->group_sid, &state);
if (sid == NULL) goto failed;
sddl = talloc_asprintf_append_buffer(sddl, "G:%s", sid);
if (sddl == NULL) goto failed;
}
if ((sd->type & SEC_DESC_DACL_PRESENT) && sd->dacl != NULL) {
char *acl = sddl_encode_acl(tmp_ctx, sd->dacl, sd->type, &state);
if (acl == NULL) goto failed;
sddl = talloc_asprintf_append_buffer(sddl, "D:%s", acl);
if (sddl == NULL) goto failed;
}
if ((sd->type & SEC_DESC_SACL_PRESENT) && sd->sacl != NULL) {
char *acl = sddl_encode_acl(tmp_ctx, sd->sacl, sd->type>>1, &state);
if (acl == NULL) goto failed;
sddl = talloc_asprintf_append_buffer(sddl, "S:%s", acl);
if (sddl == NULL) goto failed;
}
talloc_free(tmp_ctx);
return sddl;
failed:
talloc_free(sddl);
return NULL;
}