/* * Copyright (c) 2020 Kungliga Tekniska Högskolan * (Royal Institute of Technology, Stockholm, Sweden). * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. Neither the name of the Institute nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * This program implements an ephemeral, memory-based HDB backend, stores into * it just one HDB entry -one for a namespace- then checks that virtual * principals are returned below that namespace by hdb_fetch_kvno(), and that * the logic for automatic key rotation of virtual principals is correct. */ #include "hdb_locl.h" #include static KeyRotation krs[2]; static const char *base_pw[2] = { "Testing123...", "Tested123..." }; typedef struct { HDB hdb; /* generic members */ /* * Make this dict a global, add a mutex lock around it, and a .finit and/or * atexit() handler to free it, and we'd have a first-class MEMORY HDB. * * What would a first-class MEMORY HDB be good for though, besides testing? * * However, we could move this dict into `HDB' and then have _hdb_store() * and friends support it as a cache for frequently-used & seldom-changing * entries, such as: K/M, namespaces, and krbtgt principals. That would * speed up lookups, especially for backends with poor reader-writer * concurrency (DB, LMDB) and LDAP. Such entries could be cached for a * minute or three at a time. */ heim_dict_t dict; } TEST_HDB; struct hdb_called { int create; int init; int fini; }; static krb5_error_code TDB_close(krb5_context context, HDB *db) { return 0; } static krb5_error_code TDB_destroy(krb5_context context, HDB *db) { TEST_HDB *tdb = (void *)db; heim_release(tdb->dict); free(tdb->hdb.hdb_name); free(tdb); return 0; } static krb5_error_code TDB_set_sync(krb5_context context, HDB *db, int on) { return 0; } static krb5_error_code TDB_lock(krb5_context context, HDB *db, int operation) { return 0; } static krb5_error_code TDB_unlock(krb5_context context, HDB *db) { return 0; } static krb5_error_code TDB_firstkey(krb5_context context, HDB *db, unsigned flags, hdb_entry *entry) { /* XXX Implement */ /* Tricky thing: heim_dict_iterate_f() is inconvenient here */ /* We need this to check that virtual principals aren't created */ return 0; } static krb5_error_code TDB_nextkey(krb5_context context, HDB *db, unsigned flags, hdb_entry *entry) { /* XXX Implement */ /* Tricky thing: heim_dict_iterate_f() is inconvenient here */ /* We need this to check that virtual principals aren't created */ return 0; } static krb5_error_code TDB_rename(krb5_context context, HDB *db, const char *new_name) { return EEXIST; } static krb5_error_code TDB__get(krb5_context context, HDB *db, krb5_data key, krb5_data *reply) { krb5_error_code ret = 0; TEST_HDB *tdb = (void *)db; heim_object_t k, v = NULL; if ((k = heim_data_create(key.data, key.length)) == NULL) ret = krb5_enomem(context); if (ret == 0 && (v = heim_dict_get_value(tdb->dict, k)) == NULL) ret = HDB_ERR_NOENTRY; if (ret == 0) ret = krb5_data_copy(reply, heim_data_get_ptr(v), heim_data_get_length(v)); heim_release(k); return ret; } static krb5_error_code TDB__put(krb5_context context, HDB *db, int rplc, krb5_data kd, krb5_data vd) { krb5_error_code ret = 0; TEST_HDB *tdb = (void *)db; heim_object_t k = NULL; heim_object_t v = NULL; if ((k = heim_data_create(kd.data, kd.length)) == NULL || (v = heim_data_create(vd.data, vd.length)) == NULL) ret = krb5_enomem(context); if (ret == 0 && !rplc && heim_dict_get_value(tdb->dict, k) != NULL) ret = HDB_ERR_EXISTS; if (ret == 0 && heim_dict_set_value(tdb->dict, k, v)) ret = krb5_enomem(context); heim_release(k); heim_release(v); return ret; } static krb5_error_code TDB__del(krb5_context context, HDB *db, krb5_data key) { krb5_error_code ret = 0; TEST_HDB *tdb = (void *)db; heim_object_t k; if ((k = heim_data_create(key.data, key.length)) == NULL) ret = krb5_enomem(context); if (ret == 0 && heim_dict_get_value(tdb->dict, k) == NULL) ret = HDB_ERR_NOENTRY; if (ret == 0) heim_dict_delete_key(tdb->dict, k); heim_release(k); return ret; } static krb5_error_code TDB_open(krb5_context context, HDB *db, int flags, mode_t mode) { return 0; } static krb5_error_code hdb_test_create(krb5_context context, struct HDB **db, const char *arg) { TEST_HDB *tdb; if ((tdb = calloc(1, sizeof(tdb[0]))) == NULL || (tdb->hdb.hdb_name = strdup(arg)) == NULL || (tdb->dict = heim_dict_create(10)) == NULL) { if (tdb) free(tdb->hdb.hdb_name); free(tdb); return krb5_enomem(context); } tdb->hdb.hdb_db = NULL; tdb->hdb.hdb_master_key_set = 0; tdb->hdb.hdb_openp = 0; tdb->hdb.hdb_capability_flags = HDB_CAP_F_HANDLE_ENTERPRISE_PRINCIPAL; tdb->hdb.hdb_open = TDB_open; tdb->hdb.hdb_close = TDB_close; tdb->hdb.hdb_fetch_kvno = _hdb_fetch_kvno; tdb->hdb.hdb_store = _hdb_store; tdb->hdb.hdb_remove = _hdb_remove; tdb->hdb.hdb_firstkey = TDB_firstkey; tdb->hdb.hdb_nextkey= TDB_nextkey; tdb->hdb.hdb_lock = TDB_lock; tdb->hdb.hdb_unlock = TDB_unlock; tdb->hdb.hdb_rename = TDB_rename; tdb->hdb.hdb__get = TDB__get; tdb->hdb.hdb__put = TDB__put; tdb->hdb.hdb__del = TDB__del; tdb->hdb.hdb_destroy = TDB_destroy; tdb->hdb.hdb_set_sync = TDB_set_sync; *db = &tdb->hdb; return 0; } static krb5_error_code hdb_test_init(krb5_context context, void **ctx) { *ctx = NULL; return 0; } static void hdb_test_fini(void *ctx) { } struct hdb_method hdb_test = { #ifdef WIN32 /* Not c99 */ HDB_INTERFACE_VERSION, hdb_test_init, hdb_test_fini, 1 /*is_file_based*/, 1 /*can_taste*/, "test", hdb_test_create #else .minor_version = HDB_INTERFACE_VERSION, .init = hdb_test_init, .fini = hdb_test_fini, .is_file_based = 1, .can_taste = 1, .prefix = "test", .create = hdb_test_create #endif }; static krb5_error_code make_base_key(krb5_context context, krb5_const_principal p, const char *pw, krb5_keyblock *k) { return krb5_string_to_key(context, KRB5_ENCTYPE_AES128_CTS_HMAC_SHA256_128, pw, p, k); } static krb5_error_code tderive_key(krb5_context context, const char *p, KeyRotation *kr, int toffset, krb5_keyblock *base, krb5int32 etype, krb5_keyblock *k, uint32_t *kvno, time_t *set_time) { krb5_error_code ret = 0; krb5_crypto crypto = NULL; EncryptionKey intermediate; krb5_data pad, out; size_t len; int n; n = toffset / kr->period; *set_time = kr->epoch + kr->period * n; *kvno = kr->base_kvno + n; out.data = 0; out.length = 0; /* Derive intermediate key */ pad.data = (void *)(uintptr_t)p; pad.length = strlen(p); ret = krb5_enctype_keysize(context, base->keytype, &len); if (ret == 0) ret = krb5_crypto_init(context, base, 0, &crypto); if (ret == 0) ret = krb5_crypto_prfplus(context, crypto, &pad, len, &out); if (crypto) krb5_crypto_destroy(context, crypto); crypto = NULL; if (ret == 0) ret = krb5_random_to_key(context, etype, out.data, out.length, &intermediate); krb5_data_free(&out); /* Derive final key */ pad.data = kvno; pad.length = sizeof(*kvno); if (ret == 0) ret = krb5_enctype_keysize(context, etype, &len); if (ret == 0) ret = krb5_crypto_init(context, &intermediate, 0, &crypto); if (ret == 0) { *kvno = htonl(*kvno); ret = krb5_crypto_prfplus(context, crypto, &pad, len, &out); *kvno = ntohl(*kvno); } if (crypto) krb5_crypto_destroy(context, crypto); if (ret == 0) ret = krb5_random_to_key(context, etype, out.data, out.length, k); krb5_data_free(&out); free_EncryptionKey(&intermediate); return ret; } /* Create a namespace principal */ static void make_namespace(krb5_context context, HDB *db, const char *name) { krb5_error_code ret = 0; hdb_entry e; Key k; memset(&k, 0, sizeof(k)); k.mkvno = 0; k.salt = 0; /* Setup the HDB entry */ memset(&e, 0, sizeof(e)); e.created_by.time = krs[0].epoch; e.valid_start = e.valid_end = e.pw_end = 0; e.generation = 0; e.flags = int2HDBFlags(0); e.flags.server = e.flags.client = 1; e.flags.virtual = 1; /* Setup etypes */ if (ret == 0 && (e.etypes = malloc(sizeof(*e.etypes))) == NULL) ret = krb5_enomem(context); if (ret == 0) e.etypes->len = 3; if (ret == 0 && (e.etypes->val = calloc(e.etypes->len, sizeof(e.etypes->val[0]))) == NULL) ret = krb5_enomem(context); if (ret == 0) { e.etypes->val[0] = KRB5_ENCTYPE_AES128_CTS_HMAC_SHA256_128; e.etypes->val[1] = KRB5_ENCTYPE_AES256_CTS_HMAC_SHA384_192; e.etypes->val[2] = KRB5_ENCTYPE_AES256_CTS_HMAC_SHA1_96; } /* Setup max_life and max_renew */ if (ret == 0 && (e.max_life = malloc(sizeof(*e.max_life))) == NULL) ret = krb5_enomem(context); if (ret == 0 && (e.max_renew = malloc(sizeof(*e.max_renew))) == NULL) ret = krb5_enomem(context); if (ret == 0) /* Make it long, so we see the clamped max */ *e.max_renew = 2 * ((*e.max_life = 15 * 24 * 3600)); /* Setup principal name and created_by */ if (ret == 0) ret = krb5_parse_name(context, name, &e.principal); if (ret == 0) ret = krb5_parse_name(context, "admin@BAR.EXAMPLE", &e.created_by.principal); /* Make base keys for first epoch */ if (ret == 0) ret = make_base_key(context, e.principal, base_pw[0], &k.key); if (ret == 0) add_Keys(&e.keys, &k); if (ret == 0) ret = hdb_entry_set_pw_change_time(context, &e, krs[0].epoch); free_Key(&k); e.kvno = krs[0].base_key_kvno; /* Move them to history */ if (ret == 0) ret = hdb_add_current_keys_to_history(context, &e); free_Keys(&e.keys); /* Make base keys for second epoch */ if (ret == 0) ret = make_base_key(context, e.principal, base_pw[1], &k.key); if (ret == 0) add_Keys(&e.keys, &k); e.kvno = krs[1].base_key_kvno; if (ret == 0) ret = hdb_entry_set_pw_change_time(context, &e, krs[1].epoch); /* Add the key rotation metadata */ if (ret == 0) ret = hdb_entry_add_key_rotation(context, &e, 0, &krs[0]); if (ret == 0) ret = hdb_entry_add_key_rotation(context, &e, 0, &krs[1]); if (ret == 0) ret = db->hdb_store(context, db, 0, &e); if (ret) krb5_err(context, 1, ret, "failed to setup a namespace principal"); free_Key(&k); hdb_free_entry(context, db, &e); } #define WK_PREFIX "WELLKNOWN/" HDB_WK_NAMESPACE "/" static const char *expected[] = { WK_PREFIX "_/bar.example@BAR.EXAMPLE", "HTTP/bar.example@BAR.EXAMPLE", "HTTP/foo.bar.example@BAR.EXAMPLE", "host/foo.bar.example@BAR.EXAMPLE", "HTTP/blah.foo.bar.example@BAR.EXAMPLE", }; static const char *unexpected[] = { WK_PREFIX "_/no.example@BAZ.EXAMPLE", "HTTP/no.example@BAR.EXAMPLE", "HTTP/foo.no.example@BAR.EXAMPLE", "HTTP/blah.foo.no.example@BAR.EXAMPLE", }; /* * We'll fetch as many entries as we have principal names in `expected[]', for * as many KeyRotation periods as we have (between 1 and 3), and for up to 5 * different time offsets in each period. */ #define NUM_OFFSETS 5 static hdb_entry e[ (sizeof(expected) / sizeof(expected[0])) * (sizeof(krs) / sizeof(krs[0])) * NUM_OFFSETS ]; static int hist_key_compar(const void *va, const void *vb) { const hdb_keyset *a = va; const hdb_keyset *b = vb; return a->kvno - b->kvno; } /* * Fetch keys for some decent time in the given kr. * * `kr' is an index into the global `krs[]'. * `t' is a number 0..4 inclusive that identifies a time period relative to the * epoch of `krs[kr]' (see code below). */ static void fetch_entries(krb5_context context, HDB *db, size_t kr, size_t t, int must_fail) { krb5_error_code ret = 0; krb5_principal p = NULL; krb5_keyblock base_key, dk; hdb_entry *ep; hdb_entry no; size_t i, b; int toffset = 0; memset(&base_key, 0, sizeof(base_key)); /* Work out offset of first entry in `e[]' */ assert(kr < sizeof(krs) / sizeof(krs[0])); assert(t < NUM_OFFSETS); b = (kr * NUM_OFFSETS + t) * (sizeof(expected) / sizeof(expected[0])); assert(b < sizeof(e) / sizeof(e[0])); assert(sizeof(e) / sizeof(e[0]) - b >= (sizeof(expected) / sizeof(expected[0]))); switch (t) { case 0: toffset = 1; break; /* epoch + 1s */ case 1: toffset = 1 + (krs[kr].period >> 1); break; /* epoch + period/2 */ case 2: toffset = 1 + (krs[kr].period >> 2); break; /* epoch + period/4 */ case 3: toffset = 1 + (krs[kr].period >> 3); break; /* epoch + period/8 */ case 4: toffset = 1 - (krs[kr].period >> 3); break; /* epoch - period/8 */ } for (i = 0; ret == 0 && i < sizeof(expected) / sizeof(expected[0]); i++) { ep = &e[b + i]; memset(ep, 0, sizeof(*ep)); if (ret == 0) ret = krb5_parse_name(context, expected[i], &p); if (ret == 0 && i == 0) { if (toffset < 0 && kr) ret = make_base_key(context, p, base_pw[kr - 1], &base_key); else ret = make_base_key(context, p, base_pw[kr], &base_key); } if (ret == 0) ret = hdb_fetch_kvno(context, db, p, HDB_F_DECRYPT | HDB_F_ALL_KVNOS, krs[kr].epoch + toffset, 0, 0, ep); if (i && must_fail && ret == 0) krb5_errx(context, 1, "virtual principal that shouldn't exist does"); if (kr == 0 && toffset < 0 && ret == HDB_ERR_NOENTRY) continue; if (kr == 0 && toffset < 0) { /* * Virtual principals don't exist before their earliest key * rotation epoch's start time. */ if (i == 0) { if (ret) krb5_errx(context, 1, "namespace principal does not exist before its time"); } else if (i != 0) { if (ret == 0) krb5_errx(context, 1, "virtual principal exists before its time"); if (ret != HDB_ERR_NOENTRY) krb5_errx(context, 1, "wrong error code"); ret = 0; } } else { if (ret == 0 && !krb5_principal_compare(context, p, ep->principal)) krb5_errx(context, 1, "wrong principal in fetched entry"); } { HDB_Ext_KeySet *hist_keys; HDB_extension *ext; ext = hdb_find_extension(ep, choice_HDB_extension_data_hist_keys); if (ext) { /* Sort key history by kvno, why not */ hist_keys = &ext->data.u.hist_keys; qsort(hist_keys->val, hist_keys->len, sizeof(hist_keys->val[0]), hist_key_compar); } } krb5_free_principal(context, p); } if (ret && must_fail) { free_EncryptionKey(&base_key); return; } if (ret) krb5_err(context, 1, ret, "virtual principal test failed"); for (i = 0; i < sizeof(unexpected) / sizeof(unexpected[0]); i++) { memset(&no, 0, sizeof(no)); if (ret == 0) ret = krb5_parse_name(context, unexpected[i], &p); if (ret == 0) ret = hdb_fetch_kvno(context, db, p, HDB_F_DECRYPT, krs[kr].epoch + toffset, 0, 0, &no); if (ret == 0) krb5_errx(context, 1, "bogus principal exists, wat"); krb5_free_principal(context, p); ret = 0; } if (kr == 0 && toffset < 0) return; /* * XXX * * Add check that derived keys are a) different, b) as expected, using a * set of test vectors or else by computing the expected keys here with * code that's not shared with lib/hdb/common.c. * * Add check that we get expected past and/or future keys, not just current * keys. */ for (i = 1; ret == 0 && i < sizeof(expected) / sizeof(expected[0]); i++) { uint32_t kvno; time_t set_time, chg_time; ep = &e[b + i]; if (toffset > 0) { ret = tderive_key(context, expected[i], &krs[kr], toffset, &base_key, base_key.keytype, &dk, &kvno, &set_time); } else /* XXX */{ /* XXX */ assert(kr); ret = tderive_key(context, expected[i], &krs[kr - 1], krs[kr].epoch - krs[kr - 1].epoch + toffset, &base_key, base_key.keytype, &dk, &kvno, &set_time); } if (ret) krb5_err(context, 1, ret, "deriving keys for comparison"); if (kvno != ep->kvno) krb5_errx(context, 1, "kvno mismatch (%u != %u)", kvno, ep->kvno); (void) hdb_entry_get_pw_change_time(ep, &chg_time); if (set_time != chg_time) krb5_errx(context, 1, "key change time mismatch"); if (ep->keys.len == 0) krb5_errx(context, 1, "no keys!"); if (ep->keys.val[0].key.keytype != dk.keytype) krb5_errx(context, 1, "enctype mismatch!"); if (ep->keys.val[0].key.keyvalue.length != dk.keyvalue.length) krb5_errx(context, 1, "key length mismatch!"); if (memcmp(ep->keys.val[0].key.keyvalue.data, dk.keyvalue.data, dk.keyvalue.length) != 0) krb5_errx(context, 1, "key mismatch!"); if (memcmp(ep->keys.val[0].key.keyvalue.data, e[b + i - 1].keys.val[0].key.keyvalue.data, dk.keyvalue.length) == 0) krb5_errx(context, 1, "different virtual principals have the same keys!"); /* XXX Add check that we have the expected number of history keys */ free_EncryptionKey(&dk); } free_EncryptionKey(&base_key); } static void check_kvnos(krb5_context context) { HDB_Ext_KeySet keysets; size_t i, k, m, p; /* iterator indices */ keysets.len = 0; keysets.val = 0; /* For every principal name */ for (i = 0; i < sizeof(expected)/sizeof(expected[0]); i++) { free_HDB_Ext_KeySet(&keysets); /* For every entry we've fetched for it */ for (k = 0; k < sizeof(e)/sizeof(e[0]); k++) { HDB_Ext_KeySet *hist_keys; HDB_extension *ext; hdb_entry *ep; int match = 0; if ((k % NUM_OFFSETS) != i) continue; ep = &e[k]; if (ep->principal == NULL) continue; /* Didn't fetch this one */ /* * Check that the current keys for it match what we've seen already * or else add them to `keysets'. */ for (m = 0; m < keysets.len; m++) { if (ep->kvno == keysets.val[m].kvno) { /* Check the key is the same */ if (ep->keys.val[0].key.keytype != keysets.val[m].keys.val[0].key.keytype || ep->keys.val[0].key.keyvalue.length != keysets.val[m].keys.val[0].key.keyvalue.length || memcmp(ep->keys.val[0].key.keyvalue.data, keysets.val[m].keys.val[0].key.keyvalue.data, ep->keys.val[0].key.keyvalue.length) != 0) krb5_errx(context, 1, "key mismatch for same princ & kvno"); match = 1; } } if (m == keysets.len) { hdb_keyset ks; ks.kvno = ep->kvno; ks.keys = ep->keys; ks.set_time = 0; if (add_HDB_Ext_KeySet(&keysets, &ks)) krb5_err(context, 1, ENOMEM, "out of memory"); match = 1; } if (match) continue; /* For all non-current keysets, repeat the above */ ext = hdb_find_extension(ep, choice_HDB_extension_data_hist_keys); if (!ext) continue; hist_keys = &ext->data.u.hist_keys; for (p = 0; p < hist_keys->len; p++) { for (m = 0; m < keysets.len; m++) { if (keysets.val[m].kvno == hist_keys->val[p].kvno) if (ep->keys.val[0].key.keytype != keysets.val[m].keys.val[0].key.keytype || ep->keys.val[0].key.keyvalue.length != keysets.val[m].keys.val[0].key.keyvalue.length || memcmp(ep->keys.val[0].key.keyvalue.data, keysets.val[m].keys.val[0].key.keyvalue.data, ep->keys.val[0].key.keyvalue.length) != 0) krb5_errx(context, 1, "key mismatch for same princ & kvno"); } if (m == keysets.len) { hdb_keyset ks; ks.kvno = ep->kvno; ks.keys = ep->keys; ks.set_time = 0; if (add_HDB_Ext_KeySet(&keysets, &ks)) krb5_err(context, 1, ENOMEM, "out of memory"); } } } } free_HDB_Ext_KeySet(&keysets); } static void print_em(krb5_context context) { HDB_Ext_KeySet *hist_keys; HDB_extension *ext; size_t i, p; for (i = 0; i < sizeof(e)/sizeof(e[0]); i++) { const char *name = expected[i % (sizeof(expected)/sizeof(expected[0]))]; char *x; if (0 == i % (sizeof(expected)/sizeof(expected[0]))) continue; if (e[i].principal == NULL) continue; hex_encode(e[i].keys.val[0].key.keyvalue.data, e[i].keys.val[0].key.keyvalue.length, &x); printf("%s %u %s\n", x, e[i].kvno, name); free(x); ext = hdb_find_extension(&e[i], choice_HDB_extension_data_hist_keys); if (!ext) continue; hist_keys = &ext->data.u.hist_keys; for (p = 0; p < hist_keys->len; p++) { hex_encode(hist_keys->val[p].keys.val[0].key.keyvalue.data, hist_keys->val[p].keys.val[0].key.keyvalue.length, &x); printf("%s %u %s\n", x, hist_keys->val[p].kvno, name); free(x); } } } #if 0 static void check_expected_kvnos(krb5_context context) { HDB_Ext_KeySet *hist_keys; HDB_extension *ext; size_t i, k, m, p; for (i = 0; i < sizeof(expected)/sizeof(expected[0]); i++) { for (k = 0; k < sizeof(krs)/sizeof(krs[0]); k++) { hdb_entry *ep = &e[k * sizeof(expected)/sizeof(expected[0]) + i]; if (ep->principal == NULL) continue; for (m = 0; m < NUM_OFFSETS; m++) { ext = hdb_find_extension(ep, choice_HDB_extension_data_hist_keys); if (!ext) continue; hist_keys = &ext->data.u.hist_keys; for (p = 0; p < hist_keys->len; p++) { fprintf(stderr, "%s at %lu, %lu: history kvno %u\n", expected[i], k, m, hist_keys->val[p].kvno); } } fprintf(stderr, "%s at %lu: kvno %u\n", expected[i], k, ep->kvno); } } } #endif #define SOME_TIME 1596318329 #define SOME_BASE_KVNO 150 #define SOME_EPOCH (SOME_TIME - (7 * 24 * 3600) - (SOME_TIME % (7 * 24 * 3600))) #define SOME_PERIOD 3600 #define CONF \ "[hdb]\n" \ "\tenable_virtual_hostbased_princs = true\n" \ "\tvirtual_hostbased_princ_mindots = 1\n" \ "\tvirtual_hostbased_princ_maxdots = 3\n" \ int main(int argc, char **argv) { krb5_error_code ret; krb5_context context; size_t i; HDB *db = NULL; setprogname(argv[0]); memset(e, 0, sizeof(e)); ret = krb5_init_context(&context); if (ret == 0) ret = krb5_set_config(context, CONF); if (ret == 0) ret = krb5_plugin_register(context, PLUGIN_TYPE_DATA, "hdb_test_interface", &hdb_test); if (ret == 0) ret = hdb_create(context, &db, "test:mem"); if (ret) krb5_err(context, 1, ret, "failed to setup HDB driver and test"); assert(db->enable_virtual_hostbased_princs); assert(db->virtual_hostbased_princ_ndots == 1); assert(db->virtual_hostbased_princ_maxdots == 3); /* Setup key rotation metadata in a convenient way */ /* * FIXME Reorder these two KRs to match how we store them to avoid * confusion. #0 should be future-most, #1 should past-post. */ krs[0].flags = krs[1].flags = int2KeyRotationFlags(0); krs[0].epoch = SOME_EPOCH - 20 * 24 * 3600; krs[0].period = SOME_PERIOD >> 1; krs[0].base_kvno = 150; krs[0].base_key_kvno = 1; krs[1].epoch = SOME_TIME; krs[1].period = SOME_PERIOD; krs[1].base_kvno = krs[0].base_kvno + 1 + (krs[1].epoch + (krs[0].period - 1) - krs[0].epoch) / krs[0].period; krs[1].base_key_kvno = 2; { HDB_Ext_KeyRotation existing_krs, new_krs; KeyRotation ordered_krs[2]; ordered_krs[0] = krs[1]; ordered_krs[1] = krs[0]; existing_krs.len = 0; existing_krs.val = 0; new_krs.len = 1; new_krs.val = &ordered_krs[1]; if ((ret = hdb_validate_key_rotations(context, NULL, &new_krs)) || (ret = hdb_validate_key_rotations(context, &existing_krs, &new_krs))) krb5_err(context, 1, ret, "Valid KeyRotation thought invalid"); new_krs.len = 1; new_krs.val = &ordered_krs[0]; if ((ret = hdb_validate_key_rotations(context, NULL, &new_krs)) || (ret = hdb_validate_key_rotations(context, &existing_krs, &new_krs))) krb5_err(context, 1, ret, "Valid KeyRotation thought invalid"); new_krs.len = 2; new_krs.val = &ordered_krs[0]; if ((ret = hdb_validate_key_rotations(context, NULL, &new_krs)) || (ret = hdb_validate_key_rotations(context, &existing_krs, &new_krs))) krb5_err(context, 1, ret, "Valid KeyRotation thought invalid"); existing_krs.len = 1; existing_krs.val = &ordered_krs[1]; if ((ret = hdb_validate_key_rotations(context, &existing_krs, &new_krs))) krb5_err(context, 1, ret, "Valid KeyRotation thought invalid"); existing_krs.len = 2; existing_krs.val = &ordered_krs[0]; if ((ret = hdb_validate_key_rotations(context, &existing_krs, &new_krs))) krb5_err(context, 1, ret, "Valid KeyRotation thought invalid"); new_krs.len = 2; new_krs.val = &krs[0]; if ((ret = hdb_validate_key_rotations(context, &existing_krs, &new_krs)) == 0) krb5_errx(context, 1, "Invalid KeyRotation thought valid"); } make_namespace(context, db, WK_PREFIX "_/bar.example@BAR.EXAMPLE"); fetch_entries(context, db, 1, 0, 0); fetch_entries(context, db, 1, 1, 0); fetch_entries(context, db, 1, 2, 0); fetch_entries(context, db, 1, 3, 0); fetch_entries(context, db, 1, 4, 0); /* Just before newest KR */ fetch_entries(context, db, 0, 0, 0); fetch_entries(context, db, 0, 1, 0); fetch_entries(context, db, 0, 2, 0); fetch_entries(context, db, 0, 3, 0); fetch_entries(context, db, 0, 4, 1); /* Must fail: just before 1st KR */ /* * Check that for every virtual principal in `expected[]', all the keysets * with the same kvno, in all the entries fetched for different times, * match. */ check_kvnos(context); #if 0 /* * Check that for every virtual principal in `expected[]' we have the * expected key history. */ check_expected_kvnos(context); #endif /* * XXX Add various tests here, checking `e[]': * * - Extract all {principal, kvno, key} for all keys, current and * otherwise, then sort by {key, kvno, principal}, then check that the * only time we have matching keys is when the kvno and principal also * match. */ print_em(context); /* * XXX Test adding a third KR, a 4th KR, dropping KRs... */ /* Cleanup */ for (i = 0; ret == 0 && i < sizeof(e) / sizeof(e[0]); i++) hdb_free_entry(context, db, &e[i]); db->hdb_destroy(context, db); krb5_free_context(context); return 0; }