1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
|
/*
Unix SMB/CIFS implementation.
trivial database library
Copyright (C) Volker Lendecke 2012,2013
Copyright (C) Stefan Metzmacher 2013,2014
Copyright (C) Michael Adam 2014
** NOTE! The following LGPL license applies to the tdb
** library. This does NOT imply that all of Samba is released
** under the LGPL
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "tdb_private.h"
#include "system/threads.h"
#ifdef USE_TDB_MUTEX_LOCKING
/*
* If we run with mutexes, we store the "struct tdb_mutexes" at the
* beginning of the file. We store an additional tdb_header right
* beyond the mutex area, page aligned. All the offsets within the tdb
* are relative to the area behind the mutex area. tdb->map_ptr points
* behind the mmap area as well, so the read and write path in the
* mutex case can remain unchanged.
*
* Early in the mutex development the mutexes were placed between the hash
* chain pointers and the real tdb data. This had two drawbacks: First, it
* made pointer calculations more complex. Second, we had to mmap the mutex
* area twice. One was the normal map_ptr in the tdb. This frequently changed
* from within tdb_oob. At least the Linux glibc robust mutex code assumes
* constant pointers in memory, so a constantly changing mmap area destroys
* the mutex list. So we had to mmap the first bytes of the file with a second
* mmap call. With that scheme, very weird errors happened that could be
* easily fixed by doing the mutex mmap in a second file. It seemed that
* mapping the same memory area twice does not end up in accessing the same
* physical page, looking at the mutexes in gdb it seemed that old data showed
* up after some re-mapping. To avoid a separate mutex file, the code now puts
* the real content of the tdb file after the mutex area. This way we do not
* have overlapping mmap areas, the mutex area is mmapped once and not
* changed, the tdb data area's mmap is constantly changed but does not
* overlap.
*/
struct tdb_mutexes {
struct tdb_header hdr;
/* protect allrecord_lock */
pthread_mutex_t allrecord_mutex;
/*
* F_UNLCK: free,
* F_RDLCK: shared,
* F_WRLCK: exclusive
*/
short int allrecord_lock;
/*
* Index 0 is the freelist mutex, followed by
* one mutex per hashchain.
*/
pthread_mutex_t hashchains[1];
};
bool tdb_have_mutexes(struct tdb_context *tdb)
{
return ((tdb->feature_flags & TDB_FEATURE_FLAG_MUTEX) != 0);
}
size_t tdb_mutex_size(struct tdb_context *tdb)
{
size_t mutex_size;
if (!tdb_have_mutexes(tdb)) {
return 0;
}
mutex_size = sizeof(struct tdb_mutexes);
mutex_size += tdb->hash_size * sizeof(pthread_mutex_t);
return TDB_ALIGN(mutex_size, tdb->page_size);
}
/*
* Get the index for a chain mutex
*/
static bool tdb_mutex_index(struct tdb_context *tdb, off_t off, off_t len,
unsigned *idx)
{
/*
* Weird but true: We fcntl lock 1 byte at an offset 4 bytes before
* the 4 bytes of the freelist start and the hash chain that is about
* to be locked. See lock_offset() where the freelist is -1 vs the
* "+1" in TDB_HASH_TOP(). Because the mutex array is represented in
* the tdb file itself as data, we need to adjust the offset here.
*/
const off_t freelist_lock_ofs = FREELIST_TOP - sizeof(tdb_off_t);
if (!tdb_have_mutexes(tdb)) {
return false;
}
if (len != 1) {
/* Possibly the allrecord lock */
return false;
}
if (off < freelist_lock_ofs) {
/* One of the special locks */
return false;
}
if (tdb->hash_size == 0) {
/* tdb not initialized yet, called from tdb_open_ex() */
return false;
}
if (off >= TDB_DATA_START(tdb->hash_size)) {
/* Single record lock from traverses */
return false;
}
/*
* Now we know it's a freelist or hash chain lock. Those are always 4
* byte aligned. Paranoia check.
*/
if ((off % sizeof(tdb_off_t)) != 0) {
abort();
}
/*
* Re-index the fcntl offset into an offset into the mutex array
*/
off -= freelist_lock_ofs; /* rebase to index 0 */
off /= sizeof(tdb_off_t); /* 0 for freelist 1-n for hashchain */
*idx = off;
return true;
}
static bool tdb_have_mutex_chainlocks(struct tdb_context *tdb)
{
int i;
for (i=0; i < tdb->num_lockrecs; i++) {
bool ret;
unsigned idx;
ret = tdb_mutex_index(tdb,
tdb->lockrecs[i].off,
tdb->lockrecs[i].count,
&idx);
if (!ret) {
continue;
}
if (idx == 0) {
/* this is the freelist mutex */
continue;
}
return true;
}
return false;
}
static int chain_mutex_lock(pthread_mutex_t *m, bool waitflag)
{
int ret;
if (waitflag) {
ret = pthread_mutex_lock(m);
} else {
ret = pthread_mutex_trylock(m);
}
if (ret != EOWNERDEAD) {
return ret;
}
/*
* For chainlocks, we don't do any cleanup (yet?)
*/
return pthread_mutex_consistent(m);
}
static int allrecord_mutex_lock(struct tdb_mutexes *m, bool waitflag)
{
int ret;
if (waitflag) {
ret = pthread_mutex_lock(&m->allrecord_mutex);
} else {
ret = pthread_mutex_trylock(&m->allrecord_mutex);
}
if (ret != EOWNERDEAD) {
return ret;
}
/*
* The allrecord lock holder died. We need to reset the allrecord_lock
* to F_UNLCK. This should also be the indication for
* tdb_needs_recovery.
*/
m->allrecord_lock = F_UNLCK;
return pthread_mutex_consistent(&m->allrecord_mutex);
}
bool tdb_mutex_lock(struct tdb_context *tdb, int rw, off_t off, off_t len,
bool waitflag, int *pret)
{
struct tdb_mutexes *m = tdb->mutexes;
pthread_mutex_t *chain;
int ret;
unsigned idx;
bool allrecord_ok;
if (!tdb_mutex_index(tdb, off, len, &idx)) {
return false;
}
chain = &m->hashchains[idx];
again:
ret = chain_mutex_lock(chain, waitflag);
if (ret == EBUSY) {
ret = EAGAIN;
}
if (ret != 0) {
errno = ret;
goto fail;
}
if (idx == 0) {
/*
* This is a freelist lock, which is independent to
* the allrecord lock. So we're done once we got the
* freelist mutex.
*/
*pret = 0;
return true;
}
if (tdb_have_mutex_chainlocks(tdb)) {
/*
* We can only check the allrecord lock once. If we do it with
* one chain mutex locked, we will deadlock with the allrecord
* locker process in the following way: We lock the first hash
* chain, we check for the allrecord lock. We keep the hash
* chain locked. Then the allrecord locker locks the
* allrecord_mutex. It walks the list of chain mutexes,
* locking them all in sequence. Meanwhile, we have the chain
* mutex locked, so the allrecord locker blocks trying to lock
* our chain mutex. Then we come in and try to lock the second
* chain lock, which in most cases will be the freelist. We
* see that the allrecord lock is locked and put ourselves on
* the allrecord_mutex. This will never be signalled though
* because the allrecord locker waits for us to give up the
* chain lock.
*/
*pret = 0;
return true;
}
/*
* Check if someone is has the allrecord lock: queue if so.
*/
allrecord_ok = false;
if (m->allrecord_lock == F_UNLCK) {
/*
* allrecord lock not taken
*/
allrecord_ok = true;
}
if ((m->allrecord_lock == F_RDLCK) && (rw == F_RDLCK)) {
/*
* allrecord shared lock taken, but we only want to read
*/
allrecord_ok = true;
}
if (allrecord_ok) {
*pret = 0;
return true;
}
ret = pthread_mutex_unlock(chain);
if (ret != 0) {
TDB_LOG((tdb, TDB_DEBUG_FATAL, "pthread_mutex_unlock"
"(chain_mutex) failed: %s\n", strerror(ret)));
errno = ret;
goto fail;
}
ret = allrecord_mutex_lock(m, waitflag);
if (ret == EBUSY) {
ret = EAGAIN;
}
if (ret != 0) {
if (waitflag || (ret != EAGAIN)) {
TDB_LOG((tdb, TDB_DEBUG_FATAL, "pthread_mutex_%slock"
"(allrecord_mutex) failed: %s\n",
waitflag ? "" : "try_", strerror(ret)));
}
errno = ret;
goto fail;
}
ret = pthread_mutex_unlock(&m->allrecord_mutex);
if (ret != 0) {
TDB_LOG((tdb, TDB_DEBUG_FATAL, "pthread_mutex_unlock"
"(allrecord_mutex) failed: %s\n", strerror(ret)));
errno = ret;
goto fail;
}
goto again;
fail:
*pret = -1;
return true;
}
bool tdb_mutex_unlock(struct tdb_context *tdb, int rw, off_t off, off_t len,
int *pret)
{
struct tdb_mutexes *m = tdb->mutexes;
pthread_mutex_t *chain;
int ret;
unsigned idx;
if (!tdb_mutex_index(tdb, off, len, &idx)) {
return false;
}
chain = &m->hashchains[idx];
ret = pthread_mutex_unlock(chain);
if (ret == 0) {
*pret = 0;
return true;
}
errno = ret;
*pret = -1;
return true;
}
int tdb_mutex_allrecord_lock(struct tdb_context *tdb, int ltype,
enum tdb_lock_flags flags)
{
struct tdb_mutexes *m = tdb->mutexes;
int ret;
uint32_t i;
bool waitflag = (flags & TDB_LOCK_WAIT);
int saved_errno;
if (tdb->flags & TDB_NOLOCK) {
return 0;
}
if (flags & TDB_LOCK_MARK_ONLY) {
return 0;
}
ret = allrecord_mutex_lock(m, waitflag);
if (!waitflag && (ret == EBUSY)) {
errno = EAGAIN;
tdb->ecode = TDB_ERR_LOCK;
return -1;
}
if (ret != 0) {
if (!(flags & TDB_LOCK_PROBE)) {
TDB_LOG((tdb, TDB_DEBUG_TRACE,
"allrecord_mutex_lock() failed: %s\n",
strerror(ret)));
}
tdb->ecode = TDB_ERR_LOCK;
return -1;
}
if (m->allrecord_lock != F_UNLCK) {
TDB_LOG((tdb, TDB_DEBUG_FATAL, "allrecord_lock == %d\n",
(int)m->allrecord_lock));
goto fail_unlock_allrecord_mutex;
}
m->allrecord_lock = (ltype == F_RDLCK) ? F_RDLCK : F_WRLCK;
for (i=0; i<tdb->hash_size; i++) {
/* ignore hashchains[0], the freelist */
pthread_mutex_t *chain = &m->hashchains[i+1];
ret = chain_mutex_lock(chain, waitflag);
if (!waitflag && (ret == EBUSY)) {
errno = EAGAIN;
goto fail_unroll_allrecord_lock;
}
if (ret != 0) {
if (!(flags & TDB_LOCK_PROBE)) {
TDB_LOG((tdb, TDB_DEBUG_TRACE,
"chain_mutex_lock() failed: %s\n",
strerror(ret)));
}
errno = ret;
goto fail_unroll_allrecord_lock;
}
ret = pthread_mutex_unlock(chain);
if (ret != 0) {
TDB_LOG((tdb, TDB_DEBUG_FATAL, "pthread_mutex_unlock"
"(chainlock) failed: %s\n", strerror(ret)));
errno = ret;
goto fail_unroll_allrecord_lock;
}
}
/*
* We leave this routine with m->allrecord_mutex locked
*/
return 0;
fail_unroll_allrecord_lock:
m->allrecord_lock = F_UNLCK;
fail_unlock_allrecord_mutex:
saved_errno = errno;
ret = pthread_mutex_unlock(&m->allrecord_mutex);
if (ret != 0) {
TDB_LOG((tdb, TDB_DEBUG_FATAL, "pthread_mutex_unlock"
"(allrecord_mutex) failed: %s\n", strerror(ret)));
}
errno = saved_errno;
tdb->ecode = TDB_ERR_LOCK;
return -1;
}
int tdb_mutex_allrecord_upgrade(struct tdb_context *tdb)
{
struct tdb_mutexes *m = tdb->mutexes;
int ret;
uint32_t i;
if (tdb->flags & TDB_NOLOCK) {
return 0;
}
/*
* Our only caller tdb_allrecord_upgrade()
* guarantees that we already own the allrecord lock.
*
* Which means m->allrecord_mutex is still locked by us.
*/
if (m->allrecord_lock != F_RDLCK) {
tdb->ecode = TDB_ERR_LOCK;
TDB_LOG((tdb, TDB_DEBUG_FATAL, "allrecord_lock == %d\n",
(int)m->allrecord_lock));
return -1;
}
m->allrecord_lock = F_WRLCK;
for (i=0; i<tdb->hash_size; i++) {
/* ignore hashchains[0], the freelist */
pthread_mutex_t *chain = &m->hashchains[i+1];
ret = chain_mutex_lock(chain, true);
if (ret != 0) {
TDB_LOG((tdb, TDB_DEBUG_FATAL, "pthread_mutex_lock"
"(chainlock) failed: %s\n", strerror(ret)));
goto fail_unroll_allrecord_lock;
}
ret = pthread_mutex_unlock(chain);
if (ret != 0) {
TDB_LOG((tdb, TDB_DEBUG_FATAL, "pthread_mutex_unlock"
"(chainlock) failed: %s\n", strerror(ret)));
goto fail_unroll_allrecord_lock;
}
}
return 0;
fail_unroll_allrecord_lock:
m->allrecord_lock = F_RDLCK;
tdb->ecode = TDB_ERR_LOCK;
return -1;
}
void tdb_mutex_allrecord_downgrade(struct tdb_context *tdb)
{
struct tdb_mutexes *m = tdb->mutexes;
/*
* Our only caller tdb_allrecord_upgrade() (in the error case)
* guarantees that we already own the allrecord lock.
*
* Which means m->allrecord_mutex is still locked by us.
*/
if (m->allrecord_lock != F_WRLCK) {
TDB_LOG((tdb, TDB_DEBUG_FATAL, "allrecord_lock == %d\n",
(int)m->allrecord_lock));
return;
}
m->allrecord_lock = F_RDLCK;
return;
}
int tdb_mutex_allrecord_unlock(struct tdb_context *tdb)
{
struct tdb_mutexes *m = tdb->mutexes;
short old;
int ret;
if (tdb->flags & TDB_NOLOCK) {
return 0;
}
/*
* Our only callers tdb_allrecord_unlock() and
* tdb_allrecord_lock() (in the error path)
* guarantee that we already own the allrecord lock.
*
* Which means m->allrecord_mutex is still locked by us.
*/
if ((m->allrecord_lock != F_RDLCK) && (m->allrecord_lock != F_WRLCK)) {
TDB_LOG((tdb, TDB_DEBUG_FATAL, "allrecord_lock == %d\n",
(int)m->allrecord_lock));
return -1;
}
old = m->allrecord_lock;
m->allrecord_lock = F_UNLCK;
ret = pthread_mutex_unlock(&m->allrecord_mutex);
if (ret != 0) {
m->allrecord_lock = old;
TDB_LOG((tdb, TDB_DEBUG_FATAL, "pthread_mutex_unlock"
"(allrecord_mutex) failed: %s\n", strerror(ret)));
return -1;
}
return 0;
}
int tdb_mutex_init(struct tdb_context *tdb)
{
struct tdb_mutexes *m;
pthread_mutexattr_t ma;
uint32_t i;
int ret;
ret = tdb_mutex_mmap(tdb);
if (ret == -1) {
return -1;
}
m = tdb->mutexes;
ret = pthread_mutexattr_init(&ma);
if (ret != 0) {
goto fail_munmap;
}
ret = pthread_mutexattr_settype(&ma, PTHREAD_MUTEX_ERRORCHECK);
if (ret != 0) {
goto fail;
}
ret = pthread_mutexattr_setpshared(&ma, PTHREAD_PROCESS_SHARED);
if (ret != 0) {
goto fail;
}
ret = pthread_mutexattr_setrobust(&ma, PTHREAD_MUTEX_ROBUST);
if (ret != 0) {
goto fail;
}
for (i=0; i<tdb->hash_size+1; i++) {
pthread_mutex_t *chain = &m->hashchains[i];
ret = pthread_mutex_init(chain, &ma);
if (ret != 0) {
goto fail;
}
}
m->allrecord_lock = F_UNLCK;
ret = pthread_mutex_init(&m->allrecord_mutex, &ma);
if (ret != 0) {
goto fail;
}
ret = 0;
fail:
pthread_mutexattr_destroy(&ma);
fail_munmap:
if (ret == 0) {
return 0;
}
tdb_mutex_munmap(tdb);
errno = ret;
return -1;
}
int tdb_mutex_mmap(struct tdb_context *tdb)
{
size_t len;
void *ptr;
len = tdb_mutex_size(tdb);
if (len == 0) {
return 0;
}
if (tdb->mutexes != NULL) {
return 0;
}
ptr = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED|MAP_FILE,
tdb->fd, 0);
if (ptr == MAP_FAILED) {
return -1;
}
tdb->mutexes = (struct tdb_mutexes *)ptr;
return 0;
}
int tdb_mutex_munmap(struct tdb_context *tdb)
{
size_t len;
int ret;
len = tdb_mutex_size(tdb);
if (len == 0) {
return 0;
}
ret = munmap(tdb->mutexes, len);
if (ret == -1) {
return -1;
}
tdb->mutexes = NULL;
return 0;
}
static bool tdb_mutex_locking_cached;
static bool tdb_mutex_locking_supported(void)
{
pthread_mutexattr_t ma;
pthread_mutex_t m;
int ret;
static bool initialized;
if (initialized) {
return tdb_mutex_locking_cached;
}
initialized = true;
ret = pthread_mutexattr_init(&ma);
if (ret != 0) {
return false;
}
ret = pthread_mutexattr_settype(&ma, PTHREAD_MUTEX_ERRORCHECK);
if (ret != 0) {
goto cleanup_ma;
}
ret = pthread_mutexattr_setpshared(&ma, PTHREAD_PROCESS_SHARED);
if (ret != 0) {
goto cleanup_ma;
}
ret = pthread_mutexattr_setrobust(&ma, PTHREAD_MUTEX_ROBUST);
if (ret != 0) {
goto cleanup_ma;
}
ret = pthread_mutex_init(&m, &ma);
if (ret != 0) {
goto cleanup_ma;
}
ret = pthread_mutex_lock(&m);
if (ret != 0) {
goto cleanup_m;
}
/*
* This makes sure we have real mutexes
* from a threading library instead of just
* stubs from libc.
*/
ret = pthread_mutex_lock(&m);
if (ret != EDEADLK) {
goto cleanup_lock;
}
ret = pthread_mutex_unlock(&m);
if (ret != 0) {
goto cleanup_m;
}
tdb_mutex_locking_cached = true;
goto cleanup_m;
cleanup_lock:
pthread_mutex_unlock(&m);
cleanup_m:
pthread_mutex_destroy(&m);
cleanup_ma:
pthread_mutexattr_destroy(&ma);
return tdb_mutex_locking_cached;
}
static void (*tdb_robust_mutext_old_handler)(int) = SIG_ERR;
static pid_t tdb_robust_mutex_pid = -1;
static bool tdb_robust_mutex_setup_sigchild(void (*handler)(int),
void (**p_old_handler)(int))
{
#ifdef HAVE_SIGACTION
struct sigaction act;
struct sigaction oldact;
memset(&act, '\0', sizeof(act));
act.sa_handler = handler;
#ifdef SA_RESTART
act.sa_flags = SA_RESTART;
#endif
sigemptyset(&act.sa_mask);
sigaddset(&act.sa_mask, SIGCHLD);
sigaction(SIGCHLD, &act, &oldact);
if (p_old_handler) {
*p_old_handler = oldact.sa_handler;
}
return true;
#else /* !HAVE_SIGACTION */
return false;
#endif
}
static void tdb_robust_mutex_handler(int sig)
{
pid_t child_pid = tdb_robust_mutex_pid;
if (child_pid != -1) {
pid_t pid;
pid = waitpid(child_pid, NULL, WNOHANG);
if (pid == -1) {
switch (errno) {
case ECHILD:
tdb_robust_mutex_pid = -1;
return;
default:
return;
}
}
if (pid == child_pid) {
tdb_robust_mutex_pid = -1;
return;
}
}
if (tdb_robust_mutext_old_handler == SIG_DFL) {
return;
}
if (tdb_robust_mutext_old_handler == SIG_IGN) {
return;
}
if (tdb_robust_mutext_old_handler == SIG_ERR) {
return;
}
tdb_robust_mutext_old_handler(sig);
}
static void tdb_robust_mutex_wait_for_child(pid_t *child_pid)
{
int options = WNOHANG;
if (*child_pid == -1) {
return;
}
while (tdb_robust_mutex_pid > 0) {
pid_t pid;
/*
* First we try with WNOHANG, as the process might not exist
* anymore. Once we've sent SIGKILL we block waiting for the
* exit.
*/
pid = waitpid(*child_pid, NULL, options);
if (pid == -1) {
if (errno == EINTR) {
continue;
} else if (errno == ECHILD) {
break;
} else {
abort();
}
}
if (pid == *child_pid) {
break;
}
kill(*child_pid, SIGKILL);
options = 0;
}
tdb_robust_mutex_pid = -1;
*child_pid = -1;
}
_PUBLIC_ bool tdb_runtime_check_for_robust_mutexes(void)
{
void *ptr = NULL;
pthread_mutex_t *m = NULL;
pthread_mutexattr_t ma;
int ret = 1;
int pipe_down[2] = { -1, -1 };
int pipe_up[2] = { -1, -1 };
ssize_t nread;
char c = 0;
bool ok;
static bool initialized;
pid_t saved_child_pid = -1;
bool cleanup_ma = false;
if (initialized) {
return tdb_mutex_locking_cached;
}
initialized = true;
ok = tdb_mutex_locking_supported();
if (!ok) {
return false;
}
tdb_mutex_locking_cached = false;
ptr = mmap(NULL, sizeof(pthread_mutex_t), PROT_READ|PROT_WRITE,
MAP_SHARED|MAP_ANON, -1 /* fd */, 0);
if (ptr == MAP_FAILED) {
return false;
}
ret = pipe(pipe_down);
if (ret != 0) {
goto cleanup;
}
ret = pipe(pipe_up);
if (ret != 0) {
goto cleanup;
}
ret = pthread_mutexattr_init(&ma);
if (ret != 0) {
goto cleanup;
}
cleanup_ma = true;
ret = pthread_mutexattr_settype(&ma, PTHREAD_MUTEX_ERRORCHECK);
if (ret != 0) {
goto cleanup;
}
ret = pthread_mutexattr_setpshared(&ma, PTHREAD_PROCESS_SHARED);
if (ret != 0) {
goto cleanup;
}
ret = pthread_mutexattr_setrobust(&ma, PTHREAD_MUTEX_ROBUST);
if (ret != 0) {
goto cleanup;
}
ret = pthread_mutex_init(ptr, &ma);
if (ret != 0) {
goto cleanup;
}
m = (pthread_mutex_t *)ptr;
if (tdb_robust_mutex_setup_sigchild(tdb_robust_mutex_handler,
&tdb_robust_mutext_old_handler) == false) {
goto cleanup;
}
tdb_robust_mutex_pid = fork();
saved_child_pid = tdb_robust_mutex_pid;
if (tdb_robust_mutex_pid == 0) {
size_t nwritten;
close(pipe_down[1]);
close(pipe_up[0]);
ret = pthread_mutex_lock(m);
nwritten = write(pipe_up[1], &ret, sizeof(ret));
if (nwritten != sizeof(ret)) {
_exit(1);
}
if (ret != 0) {
_exit(1);
}
nread = read(pipe_down[0], &c, 1);
if (nread != 1) {
_exit(1);
}
/* leave locked */
_exit(0);
}
if (tdb_robust_mutex_pid == -1) {
goto cleanup;
}
close(pipe_down[0]);
pipe_down[0] = -1;
close(pipe_up[1]);
pipe_up[1] = -1;
nread = read(pipe_up[0], &ret, sizeof(ret));
if (nread != sizeof(ret)) {
goto cleanup;
}
ret = pthread_mutex_trylock(m);
if (ret != EBUSY) {
if (ret == 0) {
pthread_mutex_unlock(m);
}
goto cleanup;
}
if (write(pipe_down[1], &c, 1) != 1) {
goto cleanup;
}
nread = read(pipe_up[0], &c, 1);
if (nread != 0) {
goto cleanup;
}
tdb_robust_mutex_wait_for_child(&saved_child_pid);
ret = pthread_mutex_trylock(m);
if (ret != EOWNERDEAD) {
if (ret == 0) {
pthread_mutex_unlock(m);
}
goto cleanup;
}
ret = pthread_mutex_consistent(m);
if (ret != 0) {
goto cleanup;
}
ret = pthread_mutex_trylock(m);
if (ret != EDEADLK && ret != EBUSY) {
pthread_mutex_unlock(m);
goto cleanup;
}
ret = pthread_mutex_unlock(m);
if (ret != 0) {
goto cleanup;
}
tdb_mutex_locking_cached = true;
cleanup:
/*
* Note that we don't reset the signal handler we just reset
* tdb_robust_mutex_pid to -1. This is ok as this code path is only
* called once per process.
*
* Leaving our signal handler avoids races with other threads potentially
* setting up their SIGCHLD handlers.
*
* The worst thing that can happen is that the other newer signal
* handler will get the SIGCHLD signal for our child and/or reap the
* child with a wait() function. tdb_robust_mutex_wait_for_child()
* handles the case where waitpid returns ECHILD.
*/
tdb_robust_mutex_wait_for_child(&saved_child_pid);
if (m != NULL) {
pthread_mutex_destroy(m);
}
if (cleanup_ma) {
pthread_mutexattr_destroy(&ma);
}
if (pipe_down[0] != -1) {
close(pipe_down[0]);
}
if (pipe_down[1] != -1) {
close(pipe_down[1]);
}
if (pipe_up[0] != -1) {
close(pipe_up[0]);
}
if (pipe_up[1] != -1) {
close(pipe_up[1]);
}
if (ptr != NULL) {
munmap(ptr, sizeof(pthread_mutex_t));
}
return tdb_mutex_locking_cached;
}
#else
size_t tdb_mutex_size(struct tdb_context *tdb)
{
return 0;
}
bool tdb_have_mutexes(struct tdb_context *tdb)
{
return false;
}
int tdb_mutex_allrecord_lock(struct tdb_context *tdb, int ltype,
enum tdb_lock_flags flags)
{
tdb->ecode = TDB_ERR_LOCK;
return -1;
}
int tdb_mutex_allrecord_unlock(struct tdb_context *tdb)
{
return -1;
}
int tdb_mutex_allrecord_upgrade(struct tdb_context *tdb)
{
tdb->ecode = TDB_ERR_LOCK;
return -1;
}
void tdb_mutex_allrecord_downgrade(struct tdb_context *tdb)
{
return;
}
int tdb_mutex_mmap(struct tdb_context *tdb)
{
errno = ENOSYS;
return -1;
}
int tdb_mutex_munmap(struct tdb_context *tdb)
{
errno = ENOSYS;
return -1;
}
int tdb_mutex_init(struct tdb_context *tdb)
{
errno = ENOSYS;
return -1;
}
_PUBLIC_ bool tdb_runtime_check_for_robust_mutexes(void)
{
return false;
}
#endif
|