summaryrefslogtreecommitdiffstats
path: root/libcli/security/access_check.c
blob: e3dfe3df49c91e38a72e0d216ac0aa3e76cde4ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
/*
   Unix SMB/CIFS implementation.

   Copyright (C) Andrew Tridgell 2004
   Copyright (C) Gerald Carter 2005
   Copyright (C) Volker Lendecke 2007
   Copyright (C) Jeremy Allison 2008
   Copyright (C) Andrew Bartlett 2010

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#include "replace.h"
#include "lib/util/debug.h"
#include "libcli/security/security.h"
#include "librpc/gen_ndr/conditional_ace.h"
#include "libcli/security/conditional_ace.h"

/* Map generic access rights to object specific rights.  This technique is
   used to give meaning to assigning read, write, execute and all access to
   objects.  Each type of object has its own mapping of generic to object
   specific access rights. */

void se_map_generic(uint32_t *access_mask, const struct generic_mapping *mapping)
{
	uint32_t old_mask = *access_mask;

	if (*access_mask & GENERIC_READ_ACCESS) {
		*access_mask &= ~GENERIC_READ_ACCESS;
		*access_mask |= mapping->generic_read;
	}

	if (*access_mask & GENERIC_WRITE_ACCESS) {
		*access_mask &= ~GENERIC_WRITE_ACCESS;
		*access_mask |= mapping->generic_write;
	}

	if (*access_mask & GENERIC_EXECUTE_ACCESS) {
		*access_mask &= ~GENERIC_EXECUTE_ACCESS;
		*access_mask |= mapping->generic_execute;
	}

	if (*access_mask & GENERIC_ALL_ACCESS) {
		*access_mask &= ~GENERIC_ALL_ACCESS;
		*access_mask |= mapping->generic_all;
	}

	if (old_mask != *access_mask) {
		DEBUG(10, ("se_map_generic(): mapped mask 0x%08x to 0x%08x\n",
			   old_mask, *access_mask));
	}
}

/* Map generic access rights to object specific rights for all the ACE's
 * in a security_acl.
 */

void security_acl_map_generic(struct security_acl *sa,
				const struct generic_mapping *mapping)
{
	unsigned int i;

	if (!sa) {
		return;
	}

	for (i = 0; i < sa->num_aces; i++) {
		se_map_generic(&sa->aces[i].access_mask, mapping);
	}
}

/* Map standard access rights to object specific rights.  This technique is
   used to give meaning to assigning read, write, execute and all access to
   objects.  Each type of object has its own mapping of standard to object
   specific access rights. */

void se_map_standard(uint32_t *access_mask, const struct standard_mapping *mapping)
{
	uint32_t old_mask = *access_mask;

	if (*access_mask & SEC_STD_READ_CONTROL) {
		*access_mask &= ~SEC_STD_READ_CONTROL;
		*access_mask |= mapping->std_read;
	}

	if (*access_mask & (SEC_STD_DELETE|SEC_STD_WRITE_DAC|SEC_STD_WRITE_OWNER|SEC_STD_SYNCHRONIZE)) {
		*access_mask &= ~(SEC_STD_DELETE|SEC_STD_WRITE_DAC|SEC_STD_WRITE_OWNER|SEC_STD_SYNCHRONIZE);
		*access_mask |= mapping->std_all;
	}

	if (old_mask != *access_mask) {
		DEBUG(10, ("se_map_standard(): mapped mask 0x%08x to 0x%08x\n",
			   old_mask, *access_mask));
	}
}

enum ace_callback_result {
	ACE_CALLBACK_DENY,
	ACE_CALLBACK_ALLOW,
	ACE_CALLBACK_SKIP,      /* do not apply this ACE */
	ACE_CALLBACK_INVALID    /* we don't want to process the conditional ACE */
};


static enum ace_callback_result check_callback_ace_allow(
	const struct security_ace *ace,
	const struct security_token *token,
	const struct security_descriptor *sd)
{
	bool ok;
	int result;

	switch (token->evaluate_claims) {
	case CLAIMS_EVALUATION_ALWAYS:
		break;

	case CLAIMS_EVALUATION_INVALID_STATE:
		DBG_WARNING("Refusing to evaluate ACL with "
			    "conditional ACE against security "
			    "token with CLAIMS_EVALUATION_INVALID_STATE\n");
		return ACE_CALLBACK_INVALID;
	case CLAIMS_EVALUATION_NEVER:
	default:
		/*
		 * We are asked to pretend we never understood this
		 * ACE type.
		 *
		 * By returning SKIP, this ACE will not adjust any
		 * permission bits making it an effective no-op, which
		 * was the default behaviour up to Samba 4.19.
		 */
		return ACE_CALLBACK_SKIP;
	}

	if (ace->type != SEC_ACE_TYPE_ACCESS_ALLOWED_CALLBACK &&
	    ace->type != SEC_ACE_TYPE_ACCESS_ALLOWED_CALLBACK_OBJECT) {
		/* This indicates a programming error */
		DBG_ERR("bad conditional allow ACE type: %u\n", ace->type);
		return ACE_CALLBACK_INVALID;
	}

	/*
	 * Until we discover otherwise, we assume all callback ACEs
	 * are conditional ACEs.
	 */
	ok = access_check_conditional_ace(ace, token, sd, &result);
	if (!ok) {
		/*
		 * An error in processing the conditional ACE is
		 * treated as UNKNOWN, which amounts to a DENY/SKIP
		 * result.
		 *
		 * This is different from the INVALID result which
		 * means we should not be thinking about conditional
		 * ACES at all, and will abort the whole access check.
		 */
		DBG_WARNING("callback ACE was not a valid conditional ACE\n");
		return ACE_CALLBACK_SKIP;
	}
	if (result == ACE_CONDITION_TRUE) {
		return ACE_CALLBACK_ALLOW;
	}
	/* UNKNOWN means do not allow */
	return ACE_CALLBACK_SKIP;
}


static enum ace_callback_result check_callback_ace_deny(
	const struct security_ace *ace,
	const struct security_token *token,
	const struct security_descriptor *sd)
{
	bool ok;
	int result;

	switch (token->evaluate_claims) {
	case CLAIMS_EVALUATION_ALWAYS:
		break;

	case CLAIMS_EVALUATION_INVALID_STATE:
		DBG_WARNING("Refusing to evaluate ACL with "
			    "conditional ACE against security "
			    "token with CLAIMS_EVALUATION_INVALID_STATE\n");
		return ACE_CALLBACK_INVALID;
	case CLAIMS_EVALUATION_NEVER:
	default:
		/*
		 * We are asked to pretend we never understood this
		 * ACE type.
		 */
		return ACE_CALLBACK_SKIP;
	}

	if (ace->type != SEC_ACE_TYPE_ACCESS_DENIED_CALLBACK &&
	    ace->type != SEC_ACE_TYPE_ACCESS_DENIED_CALLBACK_OBJECT) {
		DBG_ERR("bad conditional deny ACE type: %u\n", ace->type);
		return ACE_CALLBACK_INVALID;
	}

	/*
	 * Until we discover otherwise, we assume all callback ACEs
	 * are conditional ACEs.
	 */
	ok = access_check_conditional_ace(ace, token, sd, &result);
	if (!ok) {
		/*
		 * An error in processing the conditional ACE is
		 * treated as UNKNOWN, which means DENY.
		 */
		DBG_WARNING("callback ACE was not a valid conditional ACE\n");
		return ACE_CALLBACK_DENY;
	}
	if (result != ACE_CONDITION_FALSE) {
		/* UNKNOWN means deny */
		return ACE_CALLBACK_DENY;
	}
	return ACE_CALLBACK_SKIP;
}


/*
  perform a SEC_FLAG_MAXIMUM_ALLOWED access check
*/
static uint32_t access_check_max_allowed(const struct security_descriptor *sd,
					 const struct security_token *token,
					 enum implicit_owner_rights implicit_owner_rights)
{
	uint32_t denied = 0, granted = 0;
	bool am_owner = false;
	bool have_owner_rights_ace = false;
	unsigned i;

	if (sd->dacl == NULL) {
		if (security_token_has_sid(token, sd->owner_sid)) {
			switch (implicit_owner_rights) {
			case IMPLICIT_OWNER_READ_CONTROL_AND_WRITE_DAC_RIGHTS:
				granted |= SEC_STD_WRITE_DAC;
				FALL_THROUGH;
			case IMPLICIT_OWNER_READ_CONTROL_RIGHTS:
				granted |= SEC_STD_READ_CONTROL;
				break;
			}
		}
		return granted;
	}

	if (security_token_has_sid(token, sd->owner_sid)) {
		/*
		 * Check for explicit owner rights: if there are none, we remove
		 * the default owner right SEC_STD_WRITE_DAC|SEC_STD_READ_CONTROL
		 * from remaining_access. Otherwise we just process the
		 * explicitly granted rights when processing the ACEs.
		 */
		am_owner = true;

		for (i=0; i < sd->dacl->num_aces; i++) {
			struct security_ace *ace = &sd->dacl->aces[i];

			if (ace->flags & SEC_ACE_FLAG_INHERIT_ONLY) {
				continue;
			}

			have_owner_rights_ace = dom_sid_equal(
				&ace->trustee, &global_sid_Owner_Rights);
			if (have_owner_rights_ace) {
				break;
			}
		}
	}

	if (am_owner && !have_owner_rights_ace) {
		switch (implicit_owner_rights) {
		case IMPLICIT_OWNER_READ_CONTROL_AND_WRITE_DAC_RIGHTS:
			granted |= SEC_STD_WRITE_DAC;
			FALL_THROUGH;
		case IMPLICIT_OWNER_READ_CONTROL_RIGHTS:
			granted |= SEC_STD_READ_CONTROL;
			break;
		}
	}

	for (i = 0;i<sd->dacl->num_aces; i++) {
		struct security_ace *ace = &sd->dacl->aces[i];
		bool is_owner_rights_ace = false;

		if (ace->flags & SEC_ACE_FLAG_INHERIT_ONLY) {
			continue;
		}

		if (am_owner) {
			is_owner_rights_ace = dom_sid_equal(
				&ace->trustee, &global_sid_Owner_Rights);
		}

		if (!is_owner_rights_ace &&
		    !security_token_has_sid(token, &ace->trustee))
		{
			continue;
		}

		switch (ace->type) {
		case SEC_ACE_TYPE_ACCESS_ALLOWED:
			granted |= ace->access_mask;
			break;
		case SEC_ACE_TYPE_ACCESS_DENIED:
		case SEC_ACE_TYPE_ACCESS_DENIED_OBJECT:
			denied |= ~granted & ace->access_mask;
			break;

		case SEC_ACE_TYPE_ACCESS_ALLOWED_CALLBACK:
		{
			enum ace_callback_result allow =
				check_callback_ace_allow(ace, token, sd);
			if (allow == ACE_CALLBACK_INVALID) {
				return 0;
			}
			if (allow == ACE_CALLBACK_ALLOW) {
				granted |= ace->access_mask;
			}
			break;
		}

		case SEC_ACE_TYPE_ACCESS_DENIED_CALLBACK:
		{
			enum ace_callback_result deny =
				check_callback_ace_deny(ace, token, sd);
			if (deny == ACE_CALLBACK_INVALID) {
				return 0;
			}
			if (deny == ACE_CALLBACK_DENY) {
				denied |= ~granted & ace->access_mask;
			}
			break;
		}

		default:	/* Other ACE types not handled/supported */
			break;
		}
	}

	return granted & ~denied;
}



static NTSTATUS se_access_check_implicit_owner(const struct security_descriptor *sd,
					       const struct security_token *token,
					       uint32_t access_desired,
					       uint32_t *access_granted,
					       enum implicit_owner_rights implicit_owner_rights)
{
	uint32_t i;
	uint32_t bits_remaining;
	uint32_t explicitly_denied_bits = 0;
	bool am_owner = false;
	bool have_owner_rights_ace = false;

	switch (token->evaluate_claims) {
	case CLAIMS_EVALUATION_INVALID_STATE:
		if (token->num_local_claims > 0 ||
		    token->num_user_claims > 0 ||
		    token->num_device_claims > 0 ||
		    token->num_device_sids > 0) {
			DBG_WARNING("Refusing to evaluate token with claims or device SIDs but also "
				    "with CLAIMS_EVALUATION_INVALID_STATE\n");
			return NT_STATUS_INVALID_TOKEN;
		}
		break;
	case CLAIMS_EVALUATION_ALWAYS:
	case CLAIMS_EVALUATION_NEVER:
		break;
	}

	*access_granted = access_desired;
	bits_remaining = access_desired;

	/* handle the maximum allowed flag */
	if (access_desired & SEC_FLAG_MAXIMUM_ALLOWED) {
		uint32_t orig_access_desired = access_desired;

		access_desired |= access_check_max_allowed(sd, token, implicit_owner_rights);
		access_desired &= ~SEC_FLAG_MAXIMUM_ALLOWED;
		*access_granted = access_desired;
		bits_remaining = access_desired;

		DEBUG(10,("se_access_check: MAX desired = 0x%x, granted = 0x%x, remaining = 0x%x\n",
			orig_access_desired,
			*access_granted,
			bits_remaining));
	}

	/* a NULL dacl allows access */
	if ((sd->type & SEC_DESC_DACL_PRESENT) && sd->dacl == NULL) {
		*access_granted = access_desired;
		return NT_STATUS_OK;
	}

	if (sd->dacl == NULL) {
		goto done;
	}

	if (security_token_has_sid(token, sd->owner_sid)) {
		/*
		 * Check for explicit owner rights: if there are none, we remove
		 * the default owner right SEC_STD_WRITE_DAC|SEC_STD_READ_CONTROL
		 * from remaining_access. Otherwise we just process the
		 * explicitly granted rights when processing the ACEs.
		 */
		am_owner = true;

		for (i=0; i < sd->dacl->num_aces; i++) {
			struct security_ace *ace = &sd->dacl->aces[i];

			if (ace->flags & SEC_ACE_FLAG_INHERIT_ONLY) {
				continue;
			}

			have_owner_rights_ace = dom_sid_equal(
				&ace->trustee, &global_sid_Owner_Rights);
			if (have_owner_rights_ace) {
				break;
			}
		}
	}
	if (am_owner && !have_owner_rights_ace) {
		switch (implicit_owner_rights) {
		case IMPLICIT_OWNER_READ_CONTROL_AND_WRITE_DAC_RIGHTS:
			bits_remaining &= ~SEC_STD_WRITE_DAC;
			FALL_THROUGH;
		case IMPLICIT_OWNER_READ_CONTROL_RIGHTS:
			bits_remaining &= ~SEC_STD_READ_CONTROL;
			break;
		}
	}

	/* check each ace in turn. */
	for (i=0; bits_remaining && i < sd->dacl->num_aces; i++) {
		struct security_ace *ace = &sd->dacl->aces[i];
		bool is_owner_rights_ace = false;

		if (ace->flags & SEC_ACE_FLAG_INHERIT_ONLY) {
			continue;
		}

		if (am_owner) {
			is_owner_rights_ace = dom_sid_equal(
				&ace->trustee, &global_sid_Owner_Rights);
		}

		if (!is_owner_rights_ace &&
		    !security_token_has_sid(token, &ace->trustee))
		{
			continue;
		}

		switch (ace->type) {
		case SEC_ACE_TYPE_ACCESS_ALLOWED:
			bits_remaining &= ~ace->access_mask;
			break;
		case SEC_ACE_TYPE_ACCESS_DENIED:
		case SEC_ACE_TYPE_ACCESS_DENIED_OBJECT:
			explicitly_denied_bits |= (bits_remaining & ace->access_mask);
			break;

		case SEC_ACE_TYPE_ACCESS_ALLOWED_CALLBACK:
		{
			enum ace_callback_result allow =
				check_callback_ace_allow(ace, token, sd);
			if (allow == ACE_CALLBACK_INVALID) {
				return NT_STATUS_INVALID_ACE_CONDITION;
			}
			if (allow == ACE_CALLBACK_ALLOW) {
				bits_remaining &= ~ace->access_mask;
			}
			break;
		}

		case SEC_ACE_TYPE_ACCESS_DENIED_CALLBACK:
		case SEC_ACE_TYPE_ACCESS_DENIED_CALLBACK_OBJECT:
		{
			enum ace_callback_result deny =
				check_callback_ace_deny(ace, token, sd);
			if (deny == ACE_CALLBACK_INVALID) {
				return NT_STATUS_INVALID_ACE_CONDITION;
			}
			if (deny == ACE_CALLBACK_DENY) {
				explicitly_denied_bits |= (bits_remaining & ace->access_mask);
			}
			break;
		}

		default:	/* Other ACE types not handled/supported */
			break;
		}
	}

	/* Explicitly denied bits always override */
	bits_remaining |= explicitly_denied_bits;

	/*
	 * We check privileges here because they override even DENY entries.
	 */

	/* Does the user have the privilege to gain SEC_PRIV_SECURITY? */
	if (bits_remaining & SEC_FLAG_SYSTEM_SECURITY) {
		if (security_token_has_privilege(token, SEC_PRIV_SECURITY)) {
			bits_remaining &= ~SEC_FLAG_SYSTEM_SECURITY;
		} else {
			return NT_STATUS_PRIVILEGE_NOT_HELD;
		}
	}

	if ((bits_remaining & SEC_STD_WRITE_OWNER) &&
	     security_token_has_privilege(token, SEC_PRIV_TAKE_OWNERSHIP)) {
		bits_remaining &= ~(SEC_STD_WRITE_OWNER);
	}

done:
	if (bits_remaining != 0) {
		*access_granted = bits_remaining;
		return NT_STATUS_ACCESS_DENIED;
	}

	return NT_STATUS_OK;
}

/*
  The main entry point for access checking. If returning ACCESS_DENIED
  this function returns the denied bits in the uint32_t pointed
  to by the access_granted pointer.
*/
NTSTATUS se_access_check(const struct security_descriptor *sd,
			 const struct security_token *token,
			 uint32_t access_desired,
			 uint32_t *access_granted)
{
	return se_access_check_implicit_owner(sd,
					      token,
					      access_desired,
					      access_granted,
					      IMPLICIT_OWNER_READ_CONTROL_AND_WRITE_DAC_RIGHTS);
}

/*
  The main entry point for access checking FOR THE FILE SERVER ONLY !
  If returning ACCESS_DENIED this function returns the denied bits in
  the uint32_t pointed to by the access_granted pointer.
*/
NTSTATUS se_file_access_check(const struct security_descriptor *sd,
			  const struct security_token *token,
			  bool priv_open_requested,
			  uint32_t access_desired,
			  uint32_t *access_granted)
{
	uint32_t bits_remaining;
	NTSTATUS status;

	if (!priv_open_requested) {
		/* Fall back to generic se_access_check(). */
		return se_access_check_implicit_owner(sd,
						      token,
						      access_desired,
						      access_granted,
						      IMPLICIT_OWNER_READ_CONTROL_AND_WRITE_DAC_RIGHTS);
	}

	/*
	 * We need to handle the maximum allowed flag
	 * outside of se_access_check(), as we need to
	 * add in the access allowed by the privileges
	 * as well.
	 */

	if (access_desired & SEC_FLAG_MAXIMUM_ALLOWED) {
		uint32_t orig_access_desired = access_desired;

		access_desired |= access_check_max_allowed(sd, token, true);
		access_desired &= ~SEC_FLAG_MAXIMUM_ALLOWED;

		if (security_token_has_privilege(token, SEC_PRIV_BACKUP)) {
			access_desired |= SEC_RIGHTS_PRIV_BACKUP;
		}

		if (security_token_has_privilege(token, SEC_PRIV_RESTORE)) {
			access_desired |= SEC_RIGHTS_PRIV_RESTORE;
		}

		DEBUG(10,("se_file_access_check: MAX desired = 0x%x "
			"mapped to 0x%x\n",
			orig_access_desired,
			access_desired));
	}

	status = se_access_check_implicit_owner(sd,
						token,
						access_desired,
						access_granted,
						IMPLICIT_OWNER_READ_CONTROL_AND_WRITE_DAC_RIGHTS);

	if (!NT_STATUS_EQUAL(status, NT_STATUS_ACCESS_DENIED)) {
		return status;
	}

	bits_remaining = *access_granted;

	/* Check if we should override with privileges. */
	if ((bits_remaining & SEC_RIGHTS_PRIV_BACKUP) &&
	    security_token_has_privilege(token, SEC_PRIV_BACKUP)) {
		bits_remaining &= ~(SEC_RIGHTS_PRIV_BACKUP);
	}
	if ((bits_remaining & SEC_RIGHTS_PRIV_RESTORE) &&
	    security_token_has_privilege(token, SEC_PRIV_RESTORE)) {
		bits_remaining &= ~(SEC_RIGHTS_PRIV_RESTORE);
	}
	if (bits_remaining != 0) {
		*access_granted = bits_remaining;
		return NT_STATUS_ACCESS_DENIED;
	}

	return NT_STATUS_OK;
}

static const struct GUID *get_ace_object_type(const struct security_ace *ace)
{
	if (ace->object.object.flags & SEC_ACE_OBJECT_TYPE_PRESENT) {
		return &ace->object.object.type.type;
	}

	return NULL;
}

/**
 * Evaluates access rights specified in a object-specific ACE for an AD object.
 * This logic corresponds to MS-ADTS 5.1.3.3.3 Checking Object-Specific Access.
 * @param[in] ace - the ACE being processed
 * @param[in/out] tree - remaining_access gets updated for the tree
 * @param[out] grant_access - set to true if the ACE grants sufficient access
 *                            rights to the object/attribute
 * @returns NT_STATUS_OK, unless access was denied
 */
static NTSTATUS check_object_specific_access(const struct security_ace *ace,
					     struct object_tree *tree,
					     bool *grant_access)
{
	struct object_tree *node = NULL;
	const struct GUID *type = NULL;

	*grant_access = false;

	/* if no tree was supplied, we can't do object-specific access checks */
	if (!tree) {
		return NT_STATUS_OK;
	}

	/* Get the ObjectType GUID this ACE applies to */
	type = get_ace_object_type(ace);

	/*
	 * If the ACE doesn't have a type, then apply it to the whole tree, i.e.
	 * treat 'OA' ACEs as 'A' and 'OD' as 'D'
	 */
	if (!type) {
		node = tree;
	} else {

		/* skip it if the ACE's ObjectType GUID is not in the tree */
		node = get_object_tree_by_GUID(tree, type);
		if (!node) {
			return NT_STATUS_OK;
		}
	}

	if (ace->type == SEC_ACE_TYPE_ACCESS_ALLOWED_OBJECT ||
	    ace->type == SEC_ACE_TYPE_ACCESS_ALLOWED_CALLBACK_OBJECT) {
		/* apply the access rights to this node, and any children */
		object_tree_modify_access(node, ace->access_mask);

		/*
		 * Currently all nodes in the tree request the same access mask,
		 * so we can use any node to check if processing this ACE now
		 * means the requested access has been granted
		 */
		if (node->remaining_access == 0) {
			*grant_access = true;
			return NT_STATUS_OK;
		}

		/*
		 * As per 5.1.3.3.4 Checking Control Access Right-Based Access,
		 * if the CONTROL_ACCESS right is present, then we can grant
		 * access and stop any further access checks
		 */
		if (ace->access_mask & SEC_ADS_CONTROL_ACCESS) {
			*grant_access = true;
			return NT_STATUS_OK;
		}
	} else {

		/* this ACE denies access to the requested object/attribute */
		if (node->remaining_access & ace->access_mask){
			return NT_STATUS_ACCESS_DENIED;
		}
	}
	return NT_STATUS_OK;
}


NTSTATUS sec_access_check_ds_implicit_owner(const struct security_descriptor *sd,
					    const struct security_token *token,
					    uint32_t access_desired,
					    uint32_t *access_granted,
					    struct object_tree *tree,
					    const struct dom_sid *replace_sid,
					    enum implicit_owner_rights implicit_owner_rights)
{
	uint32_t i;
	uint32_t bits_remaining;

	*access_granted = access_desired;
	bits_remaining = access_desired;

	/* handle the maximum allowed flag */
	if (access_desired & SEC_FLAG_MAXIMUM_ALLOWED) {
		access_desired |= access_check_max_allowed(sd, token, implicit_owner_rights);
		access_desired &= ~SEC_FLAG_MAXIMUM_ALLOWED;
		*access_granted = access_desired;
		bits_remaining = access_desired;
	}

	if (access_desired & SEC_FLAG_SYSTEM_SECURITY) {
		if (security_token_has_privilege(token, SEC_PRIV_SECURITY)) {
			bits_remaining &= ~SEC_FLAG_SYSTEM_SECURITY;
		} else {
			return NT_STATUS_PRIVILEGE_NOT_HELD;
		}
	}

	/* the owner always gets SEC_STD_WRITE_DAC and SEC_STD_READ_CONTROL */
	if ((bits_remaining & (SEC_STD_WRITE_DAC|SEC_STD_READ_CONTROL)) &&
	    security_token_has_sid(token, sd->owner_sid)) {
		switch (implicit_owner_rights) {
		case IMPLICIT_OWNER_READ_CONTROL_AND_WRITE_DAC_RIGHTS:
			bits_remaining &= ~SEC_STD_WRITE_DAC;
			FALL_THROUGH;
		case IMPLICIT_OWNER_READ_CONTROL_RIGHTS:
			bits_remaining &= ~SEC_STD_READ_CONTROL;
			break;
		}
	}

	/* SEC_PRIV_TAKE_OWNERSHIP grants SEC_STD_WRITE_OWNER */
	if ((bits_remaining & (SEC_STD_WRITE_OWNER)) &&
	    security_token_has_privilege(token, SEC_PRIV_TAKE_OWNERSHIP)) {
		bits_remaining &= ~(SEC_STD_WRITE_OWNER);
	}

	/* a NULL dacl allows access */
	if ((sd->type & SEC_DESC_DACL_PRESENT) && sd->dacl == NULL) {
		*access_granted = access_desired;
		return NT_STATUS_OK;
	}

	if (sd->dacl == NULL) {
		goto done;
	}

	/* check each ace in turn. */
	for (i=0; bits_remaining && i < sd->dacl->num_aces; i++) {
		const struct dom_sid *trustee;
		const struct security_ace *ace = &sd->dacl->aces[i];
		NTSTATUS status;
		bool grant_access = false;

		if (ace->flags & SEC_ACE_FLAG_INHERIT_ONLY) {
			continue;
		}

		if (dom_sid_equal(&ace->trustee, &global_sid_Self) && replace_sid) {
			trustee = replace_sid;
		} else {
			trustee = &ace->trustee;
		}

		if (!security_token_has_sid(token, trustee)) {
			continue;
		}

		switch (ace->type) {
		case SEC_ACE_TYPE_ACCESS_ALLOWED:
			if (tree) {
				object_tree_modify_access(tree, ace->access_mask);
			}

			bits_remaining &= ~ace->access_mask;
			break;
		case SEC_ACE_TYPE_ACCESS_DENIED:
			if (bits_remaining & ace->access_mask) {
				return NT_STATUS_ACCESS_DENIED;
			}
			break;
		case SEC_ACE_TYPE_ACCESS_ALLOWED_CALLBACK:
		{
			enum ace_callback_result allow =
				check_callback_ace_allow(ace, token, sd);
			if (allow == ACE_CALLBACK_INVALID) {
				return NT_STATUS_INVALID_ACE_CONDITION;
			}
			if (allow == ACE_CALLBACK_ALLOW) {
				bits_remaining &= ~ace->access_mask;
			}
			break;
		}

		case SEC_ACE_TYPE_ACCESS_DENIED_CALLBACK:
		{
			enum ace_callback_result deny =
				check_callback_ace_deny(ace, token, sd);
			if (deny == ACE_CALLBACK_INVALID) {
				return NT_STATUS_INVALID_ACE_CONDITION;
			}
			if (deny == ACE_CALLBACK_DENY) {
				if (bits_remaining & ace->access_mask) {
					return NT_STATUS_ACCESS_DENIED;
				}
			}
			break;
		}

		case SEC_ACE_TYPE_ACCESS_DENIED_OBJECT:
		case SEC_ACE_TYPE_ACCESS_ALLOWED_OBJECT:
			status = check_object_specific_access(ace, tree,
							      &grant_access);

			if (!NT_STATUS_IS_OK(status)) {
				return status;
			}

			if (grant_access) {
				return NT_STATUS_OK;
			}
			break;
		case SEC_ACE_TYPE_ACCESS_ALLOWED_CALLBACK_OBJECT:
		{
			/*
			 * if the callback says ALLOW, we treat this as a
			 * SEC_ACE_TYPE_ACCESS_ALLOWED_OBJECT.
			 *
			 * Otherwise we act as if this ACE does not exist.
			 */
			enum ace_callback_result allow =
				check_callback_ace_allow(ace, token, sd);
			if (allow == ACE_CALLBACK_INVALID) {
				return NT_STATUS_INVALID_ACE_CONDITION;
			}
			if (allow != ACE_CALLBACK_ALLOW) {
				break;
			}

			status = check_object_specific_access(ace, tree,
							      &grant_access);

			if (!NT_STATUS_IS_OK(status)) {
				return status;
			}

			if (grant_access) {
				return NT_STATUS_OK;
			}
			break;
		}
		case SEC_ACE_TYPE_ACCESS_DENIED_CALLBACK_OBJECT:
		{
			/*
			 * ACCESS_DENIED_OBJECT ACEs can't grant access --
			 * they either don't match the object and slide
			 * harmlessly past or they return
			 * NT_STATUS_ACCESS_DENIED.
			 *
			 * ACCESS_DENIED_CALLBACK_OBJECT ACEs add another way
			 * of not applying, and another way of failing.
			 */
			enum ace_callback_result deny =
				check_callback_ace_deny(ace, token, sd);
			if (deny == ACE_CALLBACK_INVALID) {
				return NT_STATUS_INVALID_ACE_CONDITION;
			}
			if (deny != ACE_CALLBACK_DENY) {
				break;
			}
			status = check_object_specific_access(ace, tree,
							      &grant_access);

			if (!NT_STATUS_IS_OK(status)) {
				return status;
			}
			break;
		}
		default:	/* Other ACE types not handled/supported */
			break;
		}
	}

done:
	if (bits_remaining != 0) {
		return NT_STATUS_ACCESS_DENIED;
	}

	return NT_STATUS_OK;
}

/**
 * @brief Perform directoryservice (DS) related access checks for a given user
 *
 * Perform DS access checks for the user represented by its security_token, on
 * the provided security descriptor. If an tree associating GUID and access
 * required is provided then object access (OA) are checked as well. *
 * @param[in]   sd             The security descriptor against which the required
 *                             access are requested
 *
 * @param[in]   token          The security_token associated with the user to
 *                             test
 *
 * @param[in]   access_desired A bitfield of rights that must be granted for the
 *                             given user in the specified SD.
 *
 * If one
 * of the entry in the tree grants all the requested rights for the given GUID
 * FIXME
 * tree can be null if not null it's the
 * Lots of code duplication, it will be united in just one
 * function eventually */

NTSTATUS sec_access_check_ds(const struct security_descriptor *sd,
			     const struct security_token *token,
			     uint32_t access_desired,
			     uint32_t *access_granted,
			     struct object_tree *tree,
			     struct dom_sid *replace_sid)
{
	return sec_access_check_ds_implicit_owner(sd,
						  token,
						  access_desired,
						  access_granted,
						  tree,
						  replace_sid,
						  IMPLICIT_OWNER_READ_CONTROL_RIGHTS);
}