/* * atacmds.cpp * * Home page of code is: https://www.smartmontools.org * * Copyright (C) 2002-11 Bruce Allen * Copyright (C) 2008-21 Christian Franke * Copyright (C) 1999-2000 Michael Cornwell * Copyright (C) 2000 Andre Hedrick * * SPDX-License-Identifier: GPL-2.0-or-later */ #include "config.h" #define __STDC_FORMAT_MACROS 1 // enable PRI* for C++ #include #include #include #include #include #include #include "atacmds.h" #include "knowndrives.h" // get_default_attr_defs() #include "utility.h" #include "dev_ata_cmd_set.h" // for parsed_ata_device const char * atacmds_cpp_cvsid = "$Id: atacmds.cpp 5456 2023-02-14 18:26:21Z chrfranke $" ATACMDS_H_CVSID; // Print ATA debug messages? unsigned char ata_debugmode = 0; // Suppress serial number? // (also used in scsiprint.cpp) bool dont_print_serial_number = false; #define SMART_CYL_LOW 0x4F #define SMART_CYL_HI 0xC2 // SMART RETURN STATUS yields SMART_CYL_HI,SMART_CYL_LOW to indicate drive // is healthy and SRET_STATUS_HI_EXCEEDED,SRET_STATUS_MID_EXCEEDED to // indicate that a threshold exceeded condition has been detected. // Those values (byte pairs) are placed in ATA register "LBA 23:8". #define SRET_STATUS_HI_EXCEEDED 0x2C #define SRET_STATUS_MID_EXCEEDED 0xF4 // Get ID and increase flag of current pending or offline // uncorrectable attribute. unsigned char get_unc_attr_id(bool offline, const ata_vendor_attr_defs & defs, bool & increase) { unsigned char id = (!offline ? 197 : 198); const ata_vendor_attr_defs::entry & def = defs[id]; if (def.flags & ATTRFLAG_INCREASING) increase = true; // '-v 19[78],increasing' option else if (def.name.empty() || (id == 198 && def.name == "Offline_Scan_UNC_SectCt")) increase = false; // no or '-v 198,offlinescanuncsectorct' option else id = 0; // other '-v 19[78],...' option return id; } #if 0 // TODO: never used // This are the meanings of the Self-test failure checkpoint byte. // This is in the self-test log at offset 4 bytes into the self-test // descriptor and in the SMART READ DATA structure at byte offset // 371. These codes are not well documented. The meanings returned by // this routine are used (at least) by Maxtor and IBM. Returns NULL if // not recognized. Currently the maximum length is 15 bytes. const char *SelfTestFailureCodeName(unsigned char which){ switch (which) { case 0: return "Write_Test"; case 1: return "Servo_Basic"; case 2: return "Servo_Random"; case 3: return "G-list_Scan"; case 4: return "Handling_Damage"; case 5: return "Read_Scan"; default: return NULL; } } #endif // Table of raw print format names struct format_name_entry { const char * name; ata_attr_raw_format format; }; const format_name_entry format_names[] = { {"raw8" , RAWFMT_RAW8}, {"raw16" , RAWFMT_RAW16}, {"raw48" , RAWFMT_RAW48}, {"hex48" , RAWFMT_HEX48}, {"raw56" , RAWFMT_RAW56}, {"hex56" , RAWFMT_HEX56}, {"raw64" , RAWFMT_RAW64}, {"hex64" , RAWFMT_HEX64}, {"raw16(raw16)" , RAWFMT_RAW16_OPT_RAW16}, {"raw16(avg16)" , RAWFMT_RAW16_OPT_AVG16}, {"raw24(raw8)" , RAWFMT_RAW24_OPT_RAW8}, {"raw24/raw24" , RAWFMT_RAW24_DIV_RAW24}, {"raw24/raw32" , RAWFMT_RAW24_DIV_RAW32}, {"sec2hour" , RAWFMT_SEC2HOUR}, {"min2hour" , RAWFMT_MIN2HOUR}, {"halfmin2hour" , RAWFMT_HALFMIN2HOUR}, {"msec24hour32" , RAWFMT_MSEC24_HOUR32}, {"tempminmax" , RAWFMT_TEMPMINMAX}, {"temp10x" , RAWFMT_TEMP10X}, }; const unsigned num_format_names = sizeof(format_names)/sizeof(format_names[0]); // Table to map old to new '-v' option arguments const char * const map_old_vendor_opts[][2] = { { "9,halfminutes" , "9,halfmin2hour,Power_On_Half_Minutes"}, { "9,minutes" , "9,min2hour,Power_On_Minutes"}, { "9,seconds" , "9,sec2hour,Power_On_Seconds"}, { "9,temp" , "9,tempminmax,Temperature_Celsius"}, {"192,emergencyretractcyclect" , "192,raw48,Emerg_Retract_Cycle_Ct"}, {"193,loadunload" , "193,raw24/raw24"}, {"194,10xCelsius" , "194,temp10x,Temperature_Celsius_x10"}, {"194,unknown" , "194,raw48,Unknown_Attribute"}, {"197,increasing" , "197,raw48+,Total_Pending_Sectors"}, // '+' sets flag {"198,offlinescanuncsectorct" , "198,raw48,Offline_Scan_UNC_SectCt"}, // see also get_unc_attr_id() above {"198,increasing" , "198,raw48+,Total_Offl_Uncorrectabl"}, // '+' sets flag {"200,writeerrorcount" , "200,raw48,Write_Error_Count"}, {"201,detectedtacount" , "201,raw48,Detected_TA_Count"}, {"220,temp" , "220,tempminmax,Temperature_Celsius"}, }; const unsigned num_old_vendor_opts = sizeof(map_old_vendor_opts)/sizeof(map_old_vendor_opts[0]); // Parse vendor attribute display def (-v option). // Return false on error. bool parse_attribute_def(const char * opt, ata_vendor_attr_defs & defs, ata_vendor_def_prior priority) { // Map old -> new options unsigned i; for (i = 0; i < num_old_vendor_opts; i++) { if (!strcmp(opt, map_old_vendor_opts[i][0])) { opt = map_old_vendor_opts[i][1]; break; } } // Parse option int len = strlen(opt); int id = 0, n1 = -1, n2 = -1; char fmtname[32+1], attrname[32+1], hddssd[3+1]; attrname[0] = hddssd[0] = 0; if (opt[0] == 'N') { // "N,format[,name]" if (!( sscanf(opt, "N,%32[^,]%n,%32[^,]%n", fmtname, &n1, attrname, &n2) >= 1 && (n1 == len || n2 == len))) return false; } else { // "id,format[+][,name[,HDD|SSD]]" int n3 = -1; if (!( sscanf(opt, "%d,%32[^,]%n,%32[^,]%n,%3[DHS]%n", &id, fmtname, &n1, attrname, &n2, hddssd, &n3) >= 2 && 1 <= id && id <= 255 && ( n1 == len || n2 == len // ",HDD|SSD" for DEFAULT settings only || (n3 == len && priority == PRIOR_DEFAULT)))) return false; } unsigned flags = 0; // For "-v 19[78],increasing" above if (fmtname[strlen(fmtname)-1] == '+') { fmtname[strlen(fmtname)-1] = 0; flags = ATTRFLAG_INCREASING; } // Split "format[:byteorder]" char byteorder[8+1] = ""; if (strchr(fmtname, ':')) { if (priority == PRIOR_DEFAULT) // TODO: Allow Byteorder in DEFAULT entry return false; n1 = n2 = -1; if (!( sscanf(fmtname, "%*[^:]%n:%8[012345rvwz]%n", &n1, byteorder, &n2) >= 1 && n2 == (int)strlen(fmtname))) return false; fmtname[n1] = 0; if (strchr(byteorder, 'v')) flags |= (ATTRFLAG_NO_NORMVAL|ATTRFLAG_NO_WORSTVAL); if (strchr(byteorder, 'w')) flags |= ATTRFLAG_NO_WORSTVAL; } // Find format name for (i = 0; ; i++) { if (i >= num_format_names) return false; // Not found if (!strcmp(fmtname, format_names[i].name)) break; } ata_attr_raw_format format = format_names[i].format; // 64-bit formats use the normalized and worst value bytes. if (!*byteorder && (format == RAWFMT_RAW64 || format == RAWFMT_HEX64)) flags |= (ATTRFLAG_NO_NORMVAL|ATTRFLAG_NO_WORSTVAL); // ",HDD|SSD" suffix for DEFAULT settings if (hddssd[0]) { if (!strcmp(hddssd, "HDD")) flags |= ATTRFLAG_HDD_ONLY; else if (!strcmp(hddssd, "SSD")) flags |= ATTRFLAG_SSD_ONLY; else return false; } if (!id) { // "N,format" -> set format for all entries for (i = 0; i < MAX_ATTRIBUTE_NUM; i++) { if (defs[i].priority >= priority) continue; if (attrname[0]) defs[i].name = attrname; defs[i].priority = priority; defs[i].raw_format = format; defs[i].flags = flags; snprintf(defs[i].byteorder, sizeof(defs[i].byteorder), "%s", byteorder); } } else if (defs[id].priority <= priority) { // "id,format[,name]" if (attrname[0]) defs[id].name = attrname; defs[id].raw_format = format; defs[id].priority = priority; defs[id].flags = flags; snprintf(defs[id].byteorder, sizeof(defs[id].byteorder), "%s", byteorder); } return true; } // Return a multiline string containing a list of valid arguments for // parse_attribute_def(). The strings are preceded by tabs and followed // (except for the last) by newlines. std::string create_vendor_attribute_arg_list() { std::string s; unsigned i; for (i = 0; i < num_format_names; i++) s += strprintf("%s\tN,%s[:012345rvwz][,ATTR_NAME]", (i>0 ? "\n" : ""), format_names[i].name); for (i = 0; i < num_old_vendor_opts; i++) s += strprintf("\n\t%s", map_old_vendor_opts[i][0]); return s; } // Parse firmwarebug def (-F option). // Return false on error. bool parse_firmwarebug_def(const char * opt, firmwarebug_defs & firmwarebugs) { if (!strcmp(opt, "none")) firmwarebugs.set(BUG_NONE); else if (!strcmp(opt, "nologdir")) firmwarebugs.set(BUG_NOLOGDIR); else if (!strcmp(opt, "samsung")) firmwarebugs.set(BUG_SAMSUNG); else if (!strcmp(opt, "samsung2")) firmwarebugs.set(BUG_SAMSUNG2); else if (!strcmp(opt, "samsung3")) firmwarebugs.set(BUG_SAMSUNG3); else if (!strcmp(opt, "xerrorlba")) firmwarebugs.set(BUG_XERRORLBA); else return false; return true; } // Return a string of valid argument words for parse_firmwarebug_def() const char * get_valid_firmwarebug_args() { return "none, nologdir, samsung, samsung2, samsung3, xerrorlba"; } // swap two bytes. Point to low address void swap2(char *location){ char tmp=*location; *location=*(location+1); *(location+1)=tmp; return; } // swap four bytes. Point to low address void swap4(char *location){ char tmp=*location; *location=*(location+3); *(location+3)=tmp; swap2(location+1); return; } // swap eight bytes. Points to low address void swap8(char *location){ char tmp=*location; *location=*(location+7); *(location+7)=tmp; tmp=*(location+1); *(location+1)=*(location+6); *(location+6)=tmp; swap4(location+2); return; } // When using the overloaded swapx() function with member of packed ATA structs, // it is required to pass a possibly unaligned pointer as argument. // Clang++ 4.0 prints -Waddress-of-packed-member warning in this case. // The SWAPV() macro below is a replacement which prevents the use of such pointers. template static T get_swapx_val(T x) { swapx(&x); return x; } #define SWAPV(x) ((x) = get_swapx_val(x)) // Invalidate serial number and WWN and adjust checksum in IDENTIFY data static void invalidate_serno(ata_identify_device * id) { unsigned char sum = 0; unsigned i; for (i = 0; i < sizeof(id->serial_no); i++) { sum += id->serial_no[i]; sum -= id->serial_no[i] = 'X'; } unsigned char * b = (unsigned char *)id; for (i = 2*108; i < 2*112; i++) { // words108-111: WWN sum += b[i]; sum -= b[i] = 0x00; } if (isbigendian()) SWAPV(id->words088_255[255-88]); if ((id->words088_255[255-88] & 0x00ff) == 0x00a5) id->words088_255[255-88] += sum << 8; if (isbigendian()) SWAPV(id->words088_255[255-88]); } static const char * const commandstrings[]={ "SMART ENABLE", "SMART DISABLE", "SMART AUTOMATIC ATTRIBUTE SAVE", "SMART IMMEDIATE OFFLINE", "SMART AUTO OFFLINE", "SMART STATUS", "SMART STATUS CHECK", "SMART READ ATTRIBUTE VALUES", "SMART READ ATTRIBUTE THRESHOLDS", "SMART READ LOG", "IDENTIFY DEVICE", "IDENTIFY PACKET DEVICE", "CHECK POWER MODE", "SMART WRITE LOG", "WARNING (UNDEFINED COMMAND -- CONTACT DEVELOPERS AT " PACKAGE_BUGREPORT ")\n" }; static const char * preg(const ata_register & r, char (& buf)[8]) { if (!r.is_set()) //return "n/a "; return "...."; snprintf(buf, sizeof(buf), "0x%02x", r.val()); return buf; } static void print_regs(const char * prefix, const ata_in_regs & r, const char * suffix = "\n") { char bufs[7][8]; pout("%s FR=%s, SC=%s, LL=%s, LM=%s, LH=%s, DEV=%s, CMD=%s%s", prefix, preg(r.features, bufs[0]), preg(r.sector_count, bufs[1]), preg(r.lba_low, bufs[2]), preg(r.lba_mid, bufs[3]), preg(r.lba_high, bufs[4]), preg(r.device, bufs[5]), preg(r.command, bufs[6]), suffix); } static void print_regs(const char * prefix, const ata_out_regs & r, const char * suffix = "\n") { char bufs[7][8]; pout("%sERR=%s, SC=%s, LL=%s, LM=%s, LH=%s, DEV=%s, STS=%s%s", prefix, preg(r.error, bufs[0]), preg(r.sector_count, bufs[1]), preg(r.lba_low, bufs[2]), preg(r.lba_mid, bufs[3]), preg(r.lba_high, bufs[4]), preg(r.device, bufs[5]), preg(r.status, bufs[6]), suffix); } static void prettyprint(const unsigned char *p, const char *name){ pout("\n===== [%s] DATA START (BASE-16) =====\n", name); for (int i=0; i<512; i+=16, p+=16) #define P(n) (' ' <= p[n] && p[n] <= '~' ? (int)p[n] : '.') // print complete line to avoid slow tty output and extra lines in syslog. pout("%03d-%03d: %02x %02x %02x %02x %02x %02x %02x %02x " "%02x %02x %02x %02x %02x %02x %02x %02x" " |%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c|" "%c", i, i+16-1, p[ 0], p[ 1], p[ 2], p[ 3], p[ 4], p[ 5], p[ 6], p[ 7], p[ 8], p[ 9], p[10], p[11], p[12], p[13], p[14], p[15], P( 0), P( 1), P( 2), P( 3), P( 4), P( 5), P( 6), P( 7), P( 8), P( 9), P(10), P(11), P(12), P(13), P(14), P(15), '\n'); #undef P pout("===== [%s] DATA END (512 Bytes) =====\n\n", name); } // This function provides the pretty-print reporting for SMART // commands: it implements the various -r "reporting" options for ATA // ioctls. int smartcommandhandler(ata_device * device, smart_command_set command, int select, char *data){ // TODO: Rework old stuff below // This conditional is true for commands that return data int getsdata=(command==PIDENTIFY || command==IDENTIFY || command==READ_LOG || command==READ_THRESHOLDS || command==READ_VALUES || command==CHECK_POWER_MODE); int sendsdata=(command==WRITE_LOG); // If reporting is enabled, say what the command will be before it's executed if (ata_debugmode) { // conditional is true for commands that use parameters int usesparam=(command==READ_LOG || command==AUTO_OFFLINE || command==AUTOSAVE || command==IMMEDIATE_OFFLINE || command==WRITE_LOG); pout("\nREPORT-IOCTL: Device=%s Command=%s", device->get_dev_name(), commandstrings[command]); if (usesparam) pout(" InputParameter=%d\n", select); else pout("\n"); } if ((getsdata || sendsdata) && !data){ pout("REPORT-IOCTL: Unable to execute command %s : data destination address is NULL\n", commandstrings[command]); return -1; } // The reporting is cleaner, and we will find coding bugs faster, if // the commands that failed clearly return empty (zeroed) data // structures if (getsdata) { if (command==CHECK_POWER_MODE) data[0]=0; else memset(data, '\0', 512); } // if requested, pretty-print the input data structure if (ata_debugmode > 1 && sendsdata) //pout("REPORT-IOCTL: Device=%s Command=%s\n", device->get_dev_name(), commandstrings[command]); prettyprint((unsigned char *)data, commandstrings[command]); // now execute the command int retval = -1; { ata_cmd_in in; // Set common register values switch (command) { default: // SMART commands in.in_regs.command = ATA_SMART_CMD; in.in_regs.lba_high = SMART_CYL_HI; in.in_regs.lba_mid = SMART_CYL_LOW; break; case IDENTIFY: case PIDENTIFY: case CHECK_POWER_MODE: // Non SMART commands break; } // Set specific values switch (command) { case IDENTIFY: in.in_regs.command = ATA_IDENTIFY_DEVICE; in.set_data_in(data, 1); break; case PIDENTIFY: in.in_regs.command = ATA_IDENTIFY_PACKET_DEVICE; in.set_data_in(data, 1); break; case CHECK_POWER_MODE: in.in_regs.command = ATA_CHECK_POWER_MODE; in.out_needed.sector_count = true; // Powermode returned here break; case READ_VALUES: in.in_regs.features = ATA_SMART_READ_VALUES; in.set_data_in(data, 1); break; case READ_THRESHOLDS: in.in_regs.features = ATA_SMART_READ_THRESHOLDS; in.in_regs.lba_low = 1; // TODO: CORRECT ??? in.set_data_in(data, 1); break; case READ_LOG: in.in_regs.features = ATA_SMART_READ_LOG_SECTOR; in.in_regs.lba_low = select; in.set_data_in(data, 1); break; case WRITE_LOG: in.in_regs.features = ATA_SMART_WRITE_LOG_SECTOR; in.in_regs.lba_low = select; in.set_data_out(data, 1); break; case ENABLE: in.in_regs.features = ATA_SMART_ENABLE; in.in_regs.lba_low = 1; // TODO: CORRECT ??? break; case DISABLE: in.in_regs.features = ATA_SMART_DISABLE; in.in_regs.lba_low = 1; // TODO: CORRECT ??? break; case STATUS_CHECK: in.out_needed.lba_high = in.out_needed.lba_mid = true; // Status returned here /* FALLTHRU */ case STATUS: in.in_regs.features = ATA_SMART_STATUS; break; case AUTO_OFFLINE: in.in_regs.features = ATA_SMART_AUTO_OFFLINE; in.in_regs.sector_count = select; // Caution: Non-DATA command! break; case AUTOSAVE: in.in_regs.features = ATA_SMART_AUTOSAVE; in.in_regs.sector_count = select; // Caution: Non-DATA command! break; case IMMEDIATE_OFFLINE: in.in_regs.features = ATA_SMART_IMMEDIATE_OFFLINE; in.in_regs.lba_low = select; break; default: pout("Unrecognized command %d in smartcommandhandler()\n" "Please contact " PACKAGE_BUGREPORT "\n", command); device->set_err(ENOSYS); return -1; } if (ata_debugmode) print_regs(" Input: ", in.in_regs, (in.direction==ata_cmd_in::data_in ? " IN\n": in.direction==ata_cmd_in::data_out ? " OUT\n":"\n")); ata_cmd_out out; auto start_usec = (ata_debugmode ? get_timer_usec() : -1); bool ok = device->ata_pass_through(in, out); if (start_usec >= 0) { auto duration_usec = get_timer_usec() - start_usec; if (duration_usec > 0) pout(" [Duration: %.6fs]\n", duration_usec / 1000000.0); } if (ata_debugmode && out.out_regs.is_set()) print_regs(" Output: ", out.out_regs); if (ok) switch (command) { default: retval = 0; break; case CHECK_POWER_MODE: if (out.out_regs.sector_count.is_set()) { data[0] = out.out_regs.sector_count; retval = 0; } else { pout("CHECK POWER MODE: incomplete response, ATA output registers missing\n"); device->set_err(ENOSYS); retval = -1; } break; case STATUS_CHECK: // Cyl low and Cyl high unchanged means "Good SMART status" if ((out.out_regs.lba_high == SMART_CYL_HI) && (out.out_regs.lba_mid == SMART_CYL_LOW)) retval = 0; // These values mean "Bad SMART status" else if ((out.out_regs.lba_high == SRET_STATUS_HI_EXCEEDED) && (out.out_regs.lba_mid == SRET_STATUS_MID_EXCEEDED)) retval = 1; else if (out.out_regs.lba_mid == SMART_CYL_LOW) { retval = 0; if (ata_debugmode) pout("SMART STATUS RETURN: half healthy response sequence, " "probable SAT/USB truncation\n"); } else if (out.out_regs.lba_mid == SRET_STATUS_MID_EXCEEDED) { retval = 1; if (ata_debugmode) pout("SMART STATUS RETURN: half unhealthy response sequence, " "probable SAT/USB truncation\n"); } else if (!out.out_regs.is_set()) { device->set_err(ENOSYS, "Incomplete response, ATA output registers missing"); retval = -1; } else { // We haven't gotten output that makes sense; print out some debugging info pout("SMART Status command failed\n"); pout("Please get assistance from %s\n", PACKAGE_URL); pout("Register values returned from SMART Status command are:\n"); print_regs(" ", out.out_regs); device->set_err(ENOSYS, "Invalid ATA output register values"); retval = -1; } break; } } // If requested, invalidate serial number before any printing is done if ((command == IDENTIFY || command == PIDENTIFY) && !retval && dont_print_serial_number) invalidate_serno( reinterpret_cast(data) ); // If reporting is enabled, say what output was produced by the command if (ata_debugmode) { if (retval && device->get_errno()) pout("REPORT-IOCTL: Device=%s Command=%s returned %d errno=%d [%s]\n", device->get_dev_name(), commandstrings[command], retval, device->get_errno(), device->get_errmsg()); else pout("REPORT-IOCTL: Device=%s Command=%s returned %d\n", device->get_dev_name(), commandstrings[command], retval); // if requested, pretty-print the output data structure if (ata_debugmode > 1 && getsdata) { if (command==CHECK_POWER_MODE) pout("Sector Count Register (BASE-16): %02x\n", (unsigned char)(*data)); else prettyprint((unsigned char *)data, commandstrings[command]); } } return retval; } // Get capacity and sector sizes from IDENTIFY data void ata_get_size_info(const ata_identify_device * id, ata_size_info & sizes) { sizes.sectors = sizes.capacity = 0; sizes.log_sector_size = sizes.phy_sector_size = 0; sizes.log_sector_offset = 0; // Return if no LBA support if (!(id->words047_079[49-47] & 0x0200)) return; // Determine 28-bit LBA capacity unsigned lba28 = (unsigned)id->words047_079[61-47] << 16 | (unsigned)id->words047_079[60-47] ; // Determine 48-bit LBA capacity if supported uint64_t lba48 = 0; if ((id->command_set_2 & 0xc400) == 0x4400) lba48 = (uint64_t)id->words088_255[103-88] << 48 | (uint64_t)id->words088_255[102-88] << 32 | (uint64_t)id->words088_255[101-88] << 16 | (uint64_t)id->words088_255[100-88] ; // Return if capacity unknown (ATAPI CD/DVD) if (!(lba28 || lba48)) return; // Determine sector sizes sizes.log_sector_size = sizes.phy_sector_size = 512; unsigned short word106 = id->words088_255[106-88]; if ((word106 & 0xc000) == 0x4000) { // Long Logical/Physical Sectors (LLS/LPS) ? if (word106 & 0x1000) // Logical sector size is specified in 16-bit words sizes.log_sector_size = sizes.phy_sector_size = ((id->words088_255[118-88] << 16) | id->words088_255[117-88]) << 1; if (word106 & 0x2000) // Physical sector size is multiple of logical sector size sizes.phy_sector_size <<= (word106 & 0x0f); unsigned short word209 = id->words088_255[209-88]; if ((word209 & 0xc000) == 0x4000) sizes.log_sector_offset = (word209 & 0x3fff) * sizes.log_sector_size; } // Some early 4KiB LLS disks (Samsung N3U-3) return bogus lba28 value if (lba48 >= lba28 || (lba48 && sizes.log_sector_size > 512)) sizes.sectors = lba48; else sizes.sectors = lba28; sizes.capacity = sizes.sectors * sizes.log_sector_size; } // This function computes the checksum of a single disk sector (512 // bytes). Returns zero if checksum is OK, nonzero if the checksum is // incorrect. The size (512) is correct for all SMART structures. unsigned char checksum(const void * data) { unsigned char sum = 0; for (int i = 0; i < 512; i++) sum += ((const unsigned char *)data)[i]; return sum; } // Copies n bytes (or n-1 if n is odd) from in to out, but swaps adjacents // bytes. static void swapbytes(char * out, const char * in, size_t n) { for (size_t i = 0; i < n; i += 2) { out[i] = in[i+1]; out[i+1] = in[i]; } } // Copies in to out, but removes leading and trailing whitespace. static void trim(char * out, const char * in) { // Find the first non-space character (maybe none). int first = -1; int i; for (i = 0; in[i]; i++) if (!isspace((int)in[i])) { first = i; break; } if (first == -1) { // There are no non-space characters. out[0] = '\0'; return; } // Find the last non-space character. for (i = strlen(in)-1; i >= first && isspace((int)in[i]); i--) ; int last = i; strncpy(out, in+first, last-first+1); out[last-first+1] = '\0'; } // Convenience function for formatting strings from ata_identify_device void ata_format_id_string(char * out, const unsigned char * in, int n) { char tmp[65]; n = n > 64 ? 64 : n; swapbytes(tmp, (const char *)in, n); tmp[n] = '\0'; trim(out, tmp); } // returns -1 if command fails or the device is in Sleep mode, else // value of Sector Count register. Sector Count result values: // 00h device is in Standby mode. // 80h device is in Idle mode. // FFh device is in Active mode or Idle mode. int ataCheckPowerMode(ata_device * device) { unsigned char result; if ((smartcommandhandler(device, CHECK_POWER_MODE, 0, (char *)&result))) return -1; return (int)result; } // Issue a no-data ATA command with optional sector count register value bool ata_nodata_command(ata_device * device, unsigned char command, int sector_count /* = -1 */) { ata_cmd_in in; in.in_regs.command = command; if (sector_count >= 0) in.in_regs.sector_count = sector_count; return device->ata_pass_through(in); } // Issue SET FEATURES command with optional sector count register value bool ata_set_features(ata_device * device, unsigned char features, int sector_count /* = -1 */) { ata_cmd_in in; in.in_regs.command = ATA_SET_FEATURES; in.in_regs.features = features; if (sector_count >= 0) in.in_regs.sector_count = sector_count; return device->ata_pass_through(in); } // Reads current Device Identity info (512 bytes) into buf. Returns 0 // if all OK. Returns -1 if no ATA Device identity can be // established. Returns >0 if Device is ATA Packet Device (not SMART // capable). The value of the integer helps identify the type of // Packet device, which is useful so that the user can connect the // formal device number with whatever object is inside their computer. int ata_read_identity(ata_device * device, ata_identify_device * buf, bool fix_swapped_id, unsigned char * raw_buf /* = 0 */) { // See if device responds either to IDENTIFY DEVICE or IDENTIFY // PACKET DEVICE bool packet = false; if ((smartcommandhandler(device, IDENTIFY, 0, (char *)buf))){ smart_device::error_info err = device->get_err(); if (smartcommandhandler(device, PIDENTIFY, 0, (char *)buf)){ device->set_err(err); return -1; } packet = true; } if (fix_swapped_id) { // Swap ID strings unsigned i; for (i = 0; i < sizeof(buf->serial_no)-1; i += 2) swap2((char *)(buf->serial_no+i)); for (i = 0; i < sizeof(buf->fw_rev)-1; i += 2) swap2((char *)(buf->fw_rev+i)); for (i = 0; i < sizeof(buf->model)-1; i += 2) swap2((char *)(buf->model+i)); } // If requested, save raw data before endianness adjustments if (raw_buf) memcpy(raw_buf, buf, sizeof(*buf)); // If there is a checksum there, validate it unsigned char * rawbyte = (unsigned char *)buf; if (rawbyte[512-2] == 0xa5 && checksum(rawbyte)) checksumwarning("Drive Identity Structure"); // if machine is big-endian, swap byte order as needed if (isbigendian()){ // swap various capability words that are needed unsigned i; for (i=0; i<33; i++) swap2((char *)(buf->words047_079+i)); for (i=80; i<=87; i++) swap2((char *)(rawbyte+2*i)); for (i=0; i<168; i++) swap2((char *)(buf->words088_255+i)); } // AT Attachment 8 - ATA/ATAPI Command Set (ATA8-ACS) // T13/1699-D Revision 6a (Final Draft), September 6, 2008. // Sections 7.16.7 and 7.17.6: // // Word 0 of IDENTIFY DEVICE data: // Bit 15 = 0 : ATA device // // Word 0 of IDENTIFY PACKET DEVICE data: // Bits 15:14 = 10b : ATAPI device // Bits 15:14 = 11b : Reserved // Bits 12:8 : Device type (SPC-4, e.g 0x05 = CD/DVD) // CF+ and CompactFlash Specification Revision 4.0, May 24, 2006. // Section 6.2.1.6: // // Word 0 of IDENTIFY DEVICE data: // 848Ah = Signature for CompactFlash Storage Card // 044Ah = Alternate value turns on ATA device while preserving all retired bits // 0040h = Alternate value turns on ATA device while zeroing all retired bits // Assume ATA if IDENTIFY DEVICE returns CompactFlash Signature if (!packet && rawbyte[1] == 0x84 && rawbyte[0] == 0x8a) return 0; // If this is a PACKET DEVICE, return device type if (rawbyte[1] & 0x80) return 1+(rawbyte[1] & 0x1f); // Not a PACKET DEVICE return 0; } // Get World Wide Name (WWN) fields. // Return NAA field or -1 if WWN is unsupported. // Table 34 of T13/1699-D Revision 6a (ATA8-ACS), September 6, 2008. // (WWN was introduced in ATA/ATAPI-7 and is mandatory since ATA8-ACS Revision 3b) int ata_get_wwn(const ata_identify_device * id, unsigned & oui, uint64_t & unique_id) { // Don't use word 84 to be compatible with some older ATA-7 disks unsigned short word087 = id->csf_default; if ((word087 & 0xc100) != 0x4100) return -1; // word not valid or WWN support bit 8 not set unsigned short word108 = id->words088_255[108-88]; unsigned short word109 = id->words088_255[109-88]; unsigned short word110 = id->words088_255[110-88]; unsigned short word111 = id->words088_255[111-88]; oui = ((word108 & 0x0fff) << 12) | (word109 >> 4); unique_id = ((uint64_t)(word109 & 0xf) << 32) | (unsigned)((word110 << 16) | word111); return (word108 >> 12); } // Get nominal media rotation rate. // Returns: 0 = not reported, 1 = SSD, >1 = HDD rpm, < 0 = -(Unknown value) int ata_get_rotation_rate(const ata_identify_device * id) { // Table 37 of T13/1699-D (ATA8-ACS) Revision 6a, September 6, 2008 // Table A.31 of T13/2161-D (ACS-3) Revision 3b, August 25, 2012 unsigned short word217 = id->words088_255[217-88]; if (word217 == 0x0000 || word217 == 0xffff) return 0; else if (word217 == 0x0001) return 1; else if (word217 > 0x0400) return word217; else return -(int)word217; } // returns 1 if SMART supported, 0 if SMART unsupported, -1 if can't tell int ataSmartSupport(const ata_identify_device * drive) { unsigned short word82=drive->command_set_1; unsigned short word83=drive->command_set_2; // check if words 82/83 contain valid info if ((word83>>14) == 0x01) // return value of SMART support bit return word82 & 0x0001; // since we can're rely on word 82, we don't know if SMART supported return -1; } // returns 1 if SMART enabled, 0 if SMART disabled, -1 if can't tell int ataIsSmartEnabled(const ata_identify_device * drive) { unsigned short word85=drive->cfs_enable_1; unsigned short word87=drive->csf_default; // check if words 85/86/87 contain valid info if ((word87>>14) == 0x01) // return value of SMART enabled bit return word85 & 0x0001; // Since we can't rely word85, we don't know if SMART is enabled. return -1; } // Reads SMART attributes into *data int ataReadSmartValues(ata_device * device, struct ata_smart_values *data){ if (smartcommandhandler(device, READ_VALUES, 0, (char *)data)){ return -1; } // compute checksum if (checksum(data)) checksumwarning("SMART Attribute Data Structure"); // swap endian order if needed if (isbigendian()){ int i; swap2((char *)&(data->revnumber)); swap2((char *)&(data->total_time_to_complete_off_line)); swap2((char *)&(data->smart_capability)); SWAPV(data->extend_test_completion_time_w); for (i=0; ivendor_attributes+i; swap2((char *)&(x->flags)); } } return 0; } // This corrects some quantities that are byte reversed in the SMART // SELF TEST LOG static void fixsamsungselftestlog(ata_smart_selftestlog * data) { // bytes 508/509 (numbered from 0) swapped (swap of self-test index // with one byte of reserved. swap2((char *)&(data->mostrecenttest)); // LBA low register (here called 'selftestnumber", containing // information about the TYPE of the self-test) is byte swapped with // Self-test execution status byte. These are bytes N, N+1 in the // entries. for (int i = 0; i < 21; i++) swap2((char *)&(data->selftest_struct[i].selftestnumber)); return; } // Reads the Self Test Log (log #6) int ataReadSelfTestLog (ata_device * device, ata_smart_selftestlog * data, firmwarebug_defs firmwarebugs) { // get data from device if (smartcommandhandler(device, READ_LOG, 0x06, (char *)data)){ return -1; } // compute its checksum, and issue a warning if needed if (checksum(data)) checksumwarning("SMART Self-Test Log Structure"); // fix firmware bugs in self-test log if (firmwarebugs.is_set(BUG_SAMSUNG)) fixsamsungselftestlog(data); // swap endian order if needed if (isbigendian()){ int i; swap2((char*)&(data->revnumber)); for (i=0; i<21; i++){ struct ata_smart_selftestlog_struct *x=data->selftest_struct+i; swap2((char *)&(x->timestamp)); swap4((char *)&(x->lbafirstfailure)); } } return 0; } // Print checksum warning for multi sector log static void check_multi_sector_sum(const void * data, unsigned nsectors, const char * msg) { unsigned errs = 0; for (unsigned i = 0; i < nsectors; i++) { if (checksum((const unsigned char *)data + i*512)) errs++; } if (errs > 0) { if (nsectors == 1) checksumwarning(msg); else checksumwarning(strprintf("%s (%u/%u)", msg, errs, nsectors).c_str()); } } // Read SMART Extended Self-test Log bool ataReadExtSelfTestLog(ata_device * device, ata_smart_extselftestlog * log, unsigned nsectors) { if (!ataReadLogExt(device, 0x07, 0x00, 0, log, nsectors)) return false; check_multi_sector_sum(log, nsectors, "SMART Extended Self-test Log Structure"); if (isbigendian()) { for (unsigned i = 0; i < nsectors; i++) { SWAPV(log[i].log_desc_index); for (unsigned j = 0; j < 19; j++) SWAPV(log[i].log_descs[j].timestamp); } } return true; } // Write GP Log page(s) bool ataWriteLogExt(ata_device * device, unsigned char logaddr, unsigned page, void * data, unsigned nsectors) { ata_cmd_in in; in.in_regs.command = ATA_WRITE_LOG_EXT; in.set_data_out(data, nsectors); in.in_regs.lba_low = logaddr; in.in_regs.lba_mid_16 = page; in.set_data_out(data, nsectors); ata_cmd_out out; if (!device->ata_pass_through(in, out)) { // TODO: Debug output if (nsectors <= 1) { pout("ATA_WRITE_LOG_EXT (addr=0x%02x, page=%u, n=%u) failed: %s\n", logaddr, page, nsectors, device->get_errmsg()); return false; } // Recurse to retry with single sectors, // multi-sector reads may not be supported by ioctl. for (unsigned i = 0; i < nsectors; i++) { if (!ataWriteLogExt(device, logaddr, page + i, (char *)data + 512*i, 1)) return false; } } return true; } // Read GP Log page(s) bool ataReadLogExt(ata_device * device, unsigned char logaddr, unsigned char features, unsigned page, void * data, unsigned nsectors) { ata_cmd_in in; in.in_regs.command = ATA_READ_LOG_EXT; in.in_regs.features = features; // log specific in.set_data_in_48bit(data, nsectors); in.in_regs.lba_low = logaddr; in.in_regs.lba_mid_16 = page; if (!device->ata_pass_through(in)) { // TODO: Debug output if (nsectors <= 1) { pout("ATA_READ_LOG_EXT (addr=0x%02x:0x%02x, page=%u, n=%u) failed: %s\n", logaddr, features, page, nsectors, device->get_errmsg()); return false; } // Recurse to retry with single sectors, // multi-sector reads may not be supported by ioctl. for (unsigned i = 0; i < nsectors; i++) { if (!ataReadLogExt(device, logaddr, features, page + i, (char *)data + 512*i, 1)) return false; } } return true; } // Read SMART Log page(s) bool ataReadSmartLog(ata_device * device, unsigned char logaddr, void * data, unsigned nsectors) { ata_cmd_in in; in.in_regs.command = ATA_SMART_CMD; in.in_regs.features = ATA_SMART_READ_LOG_SECTOR; in.set_data_in(data, nsectors); in.in_regs.lba_high = SMART_CYL_HI; in.in_regs.lba_mid = SMART_CYL_LOW; in.in_regs.lba_low = logaddr; if (!device->ata_pass_through(in)) { // TODO: Debug output pout("ATA_SMART_READ_LOG failed: %s\n", device->get_errmsg()); return false; } return true; } // Reads the SMART or GPL Log Directory (log #0) int ataReadLogDirectory(ata_device * device, ata_smart_log_directory * data, bool gpl) { if (!gpl) { // SMART Log directory if (smartcommandhandler(device, READ_LOG, 0x00, (char *)data)) return -1; } else { // GP Log directory if (!ataReadLogExt(device, 0x00, 0x00, 0, data, 1)) return -1; } // swap endian order if needed if (isbigendian()) SWAPV(data->logversion); return 0; } // Reads the selective self-test log (log #9) int ataReadSelectiveSelfTestLog(ata_device * device, struct ata_selective_self_test_log *data){ // get data from device if (smartcommandhandler(device, READ_LOG, 0x09, (char *)data)){ return -1; } // compute its checksum, and issue a warning if needed if (checksum(data)) checksumwarning("SMART Selective Self-Test Log Structure"); // swap endian order if needed if (isbigendian()){ int i; swap2((char *)&(data->logversion)); for (i=0;i<5;i++){ swap8((char *)&(data->span[i].start)); swap8((char *)&(data->span[i].end)); } swap8((char *)&(data->currentlba)); swap2((char *)&(data->currentspan)); swap2((char *)&(data->flags)); swap2((char *)&(data->pendingtime)); } return 0; } // Writes the selective self-test log (log #9) int ataWriteSelectiveSelfTestLog(ata_device * device, ata_selective_selftest_args & args, const ata_smart_values * sv, uint64_t num_sectors, const ata_selective_selftest_args * prev_args) { // Disk size must be known if (!num_sectors) { pout("Disk size is unknown, unable to check selective self-test spans\n"); return -1; } // Read log struct ata_selective_self_test_log sstlog, *data=&sstlog; unsigned char *ptr=(unsigned char *)data; if (ataReadSelectiveSelfTestLog(device, data)) { pout("SMART Read Selective Self-test Log failed: %s\n", device->get_errmsg()); pout("Since Read failed, will not attempt to WRITE Selective Self-test Log\n"); return -1; } // Set log version data->logversion = 1; // Host is NOT allowed to write selective self-test log if a selective // self-test is in progress. if (0currentspan && data->currentspan<6 && ((sv->self_test_exec_status)>>4)==15) { pout("SMART Selective or other Self-test in progress\n"); return -4; } // Set start/end values based on old spans for special -t select,... options int i; for (i = 0; i < args.num_spans; i++) { int mode = args.span[i].mode; uint64_t start = args.span[i].start; uint64_t end = args.span[i].end; if (mode == SEL_CONT) {// redo or next depending on last test status switch (sv->self_test_exec_status >> 4) { case 1: case 2: // Aborted/Interrupted by host pout("Continue Selective Self-Test: Redo last span\n"); mode = SEL_REDO; break; default: // All others pout("Continue Selective Self-Test: Start next span\n"); mode = SEL_NEXT; break; } } if ( (mode == SEL_REDO || mode == SEL_NEXT) && prev_args && i < prev_args->num_spans && !data->span[i].start && !data->span[i].end) { // Some drives do not preserve the selective self-test log across // power-cyles. If old span on drive is cleared use span provided // by caller. This is used by smartd (first span only). data->span[i].start = prev_args->span[i].start; data->span[i].end = prev_args->span[i].end; } switch (mode) { case SEL_RANGE: // -t select,START-END break; case SEL_REDO: // -t select,redo... => Redo current start = data->span[i].start; if (end > 0) { // -t select,redo+SIZE end--; end += start; // [oldstart, oldstart+SIZE) } else // -t select,redo end = data->span[i].end; // [oldstart, oldend] break; case SEL_NEXT: // -t select,next... => Do next if (data->span[i].end == 0) { start = end = 0; break; // skip empty spans } start = data->span[i].end + 1; if (start >= num_sectors) start = 0; // wrap around if (end > 0) { // -t select,next+SIZE end--; end += start; // (oldend, oldend+SIZE] } else { // -t select,next uint64_t oldsize = data->span[i].end - data->span[i].start + 1; end = start + oldsize - 1; // (oldend, oldend+oldsize] if (end >= num_sectors) { // Adjust size to allow round-robin testing without future size decrease uint64_t spans = (num_sectors + oldsize-1) / oldsize; uint64_t newsize = (num_sectors + spans-1) / spans; uint64_t newstart = num_sectors - newsize, newend = num_sectors - 1; pout("Span %d changed from %" PRIu64 "-%" PRIu64 " (%" PRIu64 " sectors)\n", i, start, end, oldsize); pout(" to %" PRIu64 "-%" PRIu64 " (%" PRIu64 " sectors) (%" PRIu64 " spans)\n", newstart, newend, newsize, spans); start = newstart; end = newend; } } break; default: pout("ataWriteSelectiveSelfTestLog: Invalid mode %d\n", mode); return -1; } // Range check if (start < num_sectors && num_sectors <= end) { if (end != ~(uint64_t)0) // -t select,N-max pout("Size of self-test span %d decreased according to disk size\n", i); end = num_sectors - 1; } if (!(start <= end && end < num_sectors)) { pout("Invalid selective self-test span %d: %" PRIu64 "-%" PRIu64 " (%" PRIu64 " sectors)\n", i, start, end, num_sectors); return -1; } // Return the actual mode and range to caller. args.span[i].mode = mode; args.span[i].start = start; args.span[i].end = end; } // Clear spans for (i=0; i<5; i++) memset(data->span+i, 0, sizeof(struct test_span)); // Set spans for testing for (i = 0; i < args.num_spans; i++){ data->span[i].start = args.span[i].start; data->span[i].end = args.span[i].end; } // host must initialize to zero before initiating selective self-test data->currentlba=0; data->currentspan=0; // Perform off-line scan after selective test? if (args.scan_after_select == 1) // NO data->flags &= ~SELECTIVE_FLAG_DOSCAN; else if (args.scan_after_select == 2) // YES data->flags |= SELECTIVE_FLAG_DOSCAN; // Must clear active and pending flags before writing data->flags &= ~(SELECTIVE_FLAG_ACTIVE); data->flags &= ~(SELECTIVE_FLAG_PENDING); // modify pending time? if (args.pending_time) data->pendingtime = (unsigned short)(args.pending_time-1); // Set checksum to zero, then compute checksum data->checksum=0; unsigned char cksum=0; for (i=0; i<512; i++) cksum+=ptr[i]; cksum=~cksum; cksum+=1; data->checksum=cksum; // swap endian order if needed if (isbigendian()){ swap2((char *)&(data->logversion)); for (int b = 0; b < 5; b++) { swap8((char *)&(data->span[b].start)); swap8((char *)&(data->span[b].end)); } swap8((char *)&(data->currentlba)); swap2((char *)&(data->currentspan)); swap2((char *)&(data->flags)); swap2((char *)&(data->pendingtime)); } // write new selective self-test log if (smartcommandhandler(device, WRITE_LOG, 0x09, (char *)data)){ pout("Write Selective Self-test Log failed: %s\n", device->get_errmsg()); return -3; } return 0; } // This corrects some quantities that are byte reversed in the SMART // ATA ERROR LOG. static void fixsamsungerrorlog(ata_smart_errorlog * data) { // FIXED IN SAMSUNG -25 FIRMWARE??? // Device error count in bytes 452-3 swap2((char *)&(data->ata_error_count)); // FIXED IN SAMSUNG -22a FIRMWARE // step through 5 error log data structures for (int i = 0; i < 5; i++){ // step through 5 command data structures for (int j = 0; j < 5; j++) // Command data structure 4-byte millisec timestamp. These are // bytes (N+8, N+9, N+10, N+11). swap4((char *)&(data->errorlog_struct[i].commands[j].timestamp)); // Error data structure two-byte hour life timestamp. These are // bytes (N+28, N+29). swap2((char *)&(data->errorlog_struct[i].error_struct.timestamp)); } return; } // NEEDED ONLY FOR SAMSUNG -22 (some) -23 AND -24?? FIRMWARE static void fixsamsungerrorlog2(ata_smart_errorlog * data) { // Device error count in bytes 452-3 swap2((char *)&(data->ata_error_count)); return; } // Reads the Summary SMART Error Log (log #1). The Comprehensive SMART // Error Log is #2, and the Extended Comprehensive SMART Error log is // #3 int ataReadErrorLog (ata_device * device, ata_smart_errorlog *data, firmwarebug_defs firmwarebugs) { // get data from device if (smartcommandhandler(device, READ_LOG, 0x01, (char *)data)){ return -1; } // compute its checksum, and issue a warning if needed if (checksum(data)) checksumwarning("SMART ATA Error Log Structure"); // Some disks have the byte order reversed in some SMART Summary // Error log entries if (firmwarebugs.is_set(BUG_SAMSUNG)) fixsamsungerrorlog(data); else if (firmwarebugs.is_set(BUG_SAMSUNG2)) fixsamsungerrorlog2(data); // swap endian order if needed if (isbigendian()){ int i,j; // Device error count in bytes 452-3 swap2((char *)&(data->ata_error_count)); // step through 5 error log data structures for (i=0; i<5; i++){ // step through 5 command data structures for (j=0; j<5; j++) // Command data structure 4-byte millisec timestamp swap4((char *)&(data->errorlog_struct[i].commands[j].timestamp)); // Error data structure life timestamp swap2((char *)&(data->errorlog_struct[i].error_struct.timestamp)); } } return 0; } // Fix LBA byte ordering of Extended Comprehensive Error Log // if little endian instead of ATA register ordering is provided template static inline void fix_exterrlog_lba_cmd(T & cmd) { T org = cmd; cmd.lba_mid_register_hi = org.lba_high_register; cmd.lba_low_register_hi = org.lba_mid_register_hi; cmd.lba_high_register = org.lba_mid_register; cmd.lba_mid_register = org.lba_low_register_hi; } static void fix_exterrlog_lba(ata_smart_exterrlog * log, unsigned nsectors) { for (unsigned i = 0; i < nsectors; i++) { for (int ei = 0; ei < 4; ei++) { ata_smart_exterrlog_error_log & entry = log[i].error_logs[ei]; fix_exterrlog_lba_cmd(entry.error); for (int ci = 0; ci < 5; ci++) fix_exterrlog_lba_cmd(entry.commands[ci]); } } } // Read Extended Comprehensive Error Log bool ataReadExtErrorLog(ata_device * device, ata_smart_exterrlog * log, unsigned page, unsigned nsectors, firmwarebug_defs firmwarebugs) { if (!ataReadLogExt(device, 0x03, 0x00, page, log, nsectors)) return false; check_multi_sector_sum(log, nsectors, "SMART Extended Comprehensive Error Log Structure"); if (isbigendian()) { SWAPV(log->device_error_count); SWAPV(log->error_log_index); for (unsigned i = 0; i < nsectors; i++) { for (unsigned j = 0; j < 4; j++) { for (unsigned k = 0; k < 5; k++) SWAPV(log[i].error_logs[j].commands[k].timestamp); SWAPV(log[i].error_logs[j].error.timestamp); } } } if (firmwarebugs.is_set(BUG_XERRORLBA)) fix_exterrlog_lba(log, nsectors); return true; } int ataReadSmartThresholds (ata_device * device, struct ata_smart_thresholds_pvt *data){ // get data from device if (smartcommandhandler(device, READ_THRESHOLDS, 0, (char *)data)){ return -1; } // compute its checksum, and issue a warning if needed if (checksum(data)) checksumwarning("SMART Attribute Thresholds Structure"); // swap endian order if needed if (isbigendian()) swap2((char *)&(data->revnumber)); return 0; } int ataEnableSmart (ata_device * device ){ if (smartcommandhandler(device, ENABLE, 0, NULL)){ return -1; } return 0; } int ataDisableSmart (ata_device * device ){ if (smartcommandhandler(device, DISABLE, 0, NULL)){ return -1; } return 0; } int ataEnableAutoSave(ata_device * device){ if (smartcommandhandler(device, AUTOSAVE, 241, NULL)){ return -1; } return 0; } int ataDisableAutoSave(ata_device * device){ if (smartcommandhandler(device, AUTOSAVE, 0, NULL)){ return -1; } return 0; } // In *ALL* ATA standards the Enable/Disable AutoOffline command is // marked "OBSOLETE". It is defined in SFF-8035i Revision 2, and most // vendors still support it for backwards compatibility. IBM documents // it for some drives. int ataEnableAutoOffline (ata_device * device){ /* timer hard coded to 4 hours */ if (smartcommandhandler(device, AUTO_OFFLINE, 248, NULL)){ return -1; } return 0; } // Another Obsolete Command. See comments directly above, associated // with the corresponding Enable command. int ataDisableAutoOffline (ata_device * device){ if (smartcommandhandler(device, AUTO_OFFLINE, 0, NULL)){ return -1; } return 0; } // If SMART is enabled, supported, and working, then this call is // guaranteed to return 1, else zero. Note that it should return 1 // regardless of whether the disk's SMART status is 'healthy' or // 'failing'. int ataDoesSmartWork(ata_device * device){ int retval=smartcommandhandler(device, STATUS, 0, NULL); if (-1 == retval) return 0; return 1; } // This function uses a different interface (DRIVE_TASK) than the // other commands in this file. int ataSmartStatus2(ata_device * device){ return smartcommandhandler(device, STATUS_CHECK, 0, NULL); } // This is the way to execute ALL tests: offline, short self-test, // extended self test, with and without captive mode, etc. // TODO: Move to ataprint.cpp ? int ataSmartTest(ata_device * device, int testtype, bool force, const ata_selective_selftest_args & selargs, const ata_smart_values * sv, uint64_t num_sectors) { char cmdmsg[128]; const char *type, *captive; int cap, retval, select=0; // Boolean, if set, says test is captive cap=testtype & CAPTIVE_MASK; // Set up strings that describe the type of test if (cap) captive="captive"; else captive="off-line"; if (testtype==OFFLINE_FULL_SCAN) type="off-line"; else if (testtype==SHORT_SELF_TEST || testtype==SHORT_CAPTIVE_SELF_TEST) type="Short self-test"; else if (testtype==EXTEND_SELF_TEST || testtype==EXTEND_CAPTIVE_SELF_TEST) type="Extended self-test"; else if (testtype==CONVEYANCE_SELF_TEST || testtype==CONVEYANCE_CAPTIVE_SELF_TEST) type="Conveyance self-test"; else if ((select=(testtype==SELECTIVE_SELF_TEST || testtype==SELECTIVE_CAPTIVE_SELF_TEST))) type="Selective self-test"; else type = 0; // Check whether another test is already running if (type && (sv->self_test_exec_status >> 4) == 0xf) { if (!force) { pout("Can't start self-test without aborting current test (%d0%% remaining),\n" "%srun 'smartctl -X' to abort test.\n", sv->self_test_exec_status & 0x0f, (!select ? "add '-t force' option to override, or " : "")); return -1; } } else force = false; // If doing a selective self-test, first use WRITE_LOG to write the // selective self-test log. ata_selective_selftest_args selargs_io = selargs; // filled with info about actual spans if (select && (retval = ataWriteSelectiveSelfTestLog(device, selargs_io, sv, num_sectors))) { if (retval==-4) pout("Can't start selective self-test without aborting current test: use '-X' option to smartctl.\n"); return retval; } // Print ouf message that we are sending the command to test if (testtype==ABORT_SELF_TEST) snprintf(cmdmsg, sizeof(cmdmsg), "Abort SMART off-line mode self-test routine"); else if (!type) snprintf(cmdmsg, sizeof(cmdmsg), "SMART EXECUTE OFF-LINE IMMEDIATE subcommand 0x%02x", testtype); else snprintf(cmdmsg, sizeof(cmdmsg), "Execute SMART %s routine immediately in %s mode", type, captive); pout("Sending command: \"%s\".\n",cmdmsg); if (select) { int i; pout("SPAN STARTING_LBA ENDING_LBA\n"); for (i = 0; i < selargs_io.num_spans; i++) pout(" %d %20" PRId64 " %20" PRId64 "\n", i, selargs_io.span[i].start, selargs_io.span[i].end); } // Now send the command to test if (smartcommandhandler(device, IMMEDIATE_OFFLINE, testtype, NULL)) { if (!(cap && device->get_errno() == EIO)) { pout("Command \"%s\" failed: %s\n", cmdmsg, device->get_errmsg()); return -1; } } // Since the command succeeded, tell user if (testtype==ABORT_SELF_TEST) pout("Self-testing aborted!\n"); else { pout("Drive command \"%s\" successful.\n", cmdmsg); if (type) pout("Testing has begun%s.\n", (force ? " (previous test aborted)" : "")); } return 0; } /* Test Time Functions */ int TestTime(const ata_smart_values *data, int testtype) { switch (testtype){ case OFFLINE_FULL_SCAN: return (int) data->total_time_to_complete_off_line; case SHORT_SELF_TEST: case SHORT_CAPTIVE_SELF_TEST: return (int) data->short_test_completion_time; case EXTEND_SELF_TEST: case EXTEND_CAPTIVE_SELF_TEST: if (data->extend_test_completion_time_b == 0xff && data->extend_test_completion_time_w != 0x0000 && data->extend_test_completion_time_w != 0xffff) return data->extend_test_completion_time_w; // ATA-8 else return data->extend_test_completion_time_b; case CONVEYANCE_SELF_TEST: case CONVEYANCE_CAPTIVE_SELF_TEST: return (int) data->conveyance_test_completion_time; default: return 0; } } // This function tells you both about the ATA error log and the // self-test error log capability (introduced in ATA-5). The bit is // poorly documented in the ATA/ATAPI standard. Starting with ATA-6, // SMART error logging is also indicated in bit 0 of DEVICE IDENTIFY // word 84 and 87. Top two bits must match the pattern 01. BEFORE // ATA-6 these top two bits still had to match the pattern 01, but the // remaining bits were reserved (==0). bool isSmartErrorLogCapable(const ata_smart_values * data, const ata_identify_device * identity) { unsigned short word84=identity->command_set_extension; unsigned short word87=identity->csf_default; int isata6=identity->major_rev_num & (0x01<<6); int isata7=identity->major_rev_num & (0x01<<7); if ((isata6 || isata7) && (word84>>14) == 0x01 && (word84 & 0x01)) return true; if ((isata6 || isata7) && (word87>>14) == 0x01 && (word87 & 0x01)) return true; // otherwise we'll use the poorly documented capability bit return !!(data->errorlog_capability & 0x01); } // See previous function. If the error log exists then the self-test // log should (must?) also exist. bool isSmartTestLogCapable(const ata_smart_values * data, const ata_identify_device *identity) { unsigned short word84=identity->command_set_extension; unsigned short word87=identity->csf_default; int isata6=identity->major_rev_num & (0x01<<6); int isata7=identity->major_rev_num & (0x01<<7); if ((isata6 || isata7) && (word84>>14) == 0x01 && (word84 & 0x02)) return true; if ((isata6 || isata7) && (word87>>14) == 0x01 && (word87 & 0x02)) return true; // otherwise we'll use the poorly documented capability bit return !!(data->errorlog_capability & 0x01); } bool isGeneralPurposeLoggingCapable(const ata_identify_device *identity) { unsigned short word84=identity->command_set_extension; unsigned short word87=identity->csf_default; // If bit 14 of word 84 is set to one and bit 15 of word 84 is // cleared to zero, the contents of word 84 contains valid support // information. If not, support information is not valid in this // word. if ((word84>>14) == 0x01) // If bit 5 of word 84 is set to one, the device supports the // General Purpose Logging feature set. return !!(word84 & (0x01 << 5)); // If bit 14 of word 87 is set to one and bit 15 of word 87 is // cleared to zero, the contents of words (87:85) contain valid // information. If not, information is not valid in these words. if ((word87>>14) == 0x01) // If bit 5 of word 87 is set to one, the device supports // the General Purpose Logging feature set. return !!(word87 & (0x01 << 5)); // not capable return false; } // Get attribute state ata_attr_state ata_get_attr_state(const ata_smart_attribute & attr, int attridx, const ata_smart_threshold_entry * thresholds, const ata_vendor_attr_defs & defs, unsigned char * threshval /* = 0 */) { if (!attr.id) return ATTRSTATE_NON_EXISTING; // Normalized values (current,worst,threshold) not valid // if specified by '-v' option. // (Some SSD disks uses these bytes to store raw value). if (defs[attr.id].flags & ATTRFLAG_NO_NORMVAL) return ATTRSTATE_NO_NORMVAL; // Normally threshold is at same index as attribute int i = attridx; if (thresholds[i].id != attr.id) { // Find threshold id in table for (i = 0; thresholds[i].id != attr.id; ) { if (++i >= NUMBER_ATA_SMART_ATTRIBUTES) // Threshold id missing or thresholds cannot be read return ATTRSTATE_NO_THRESHOLD; } } unsigned char threshold = thresholds[i].threshold; // Return threshold if requested if (threshval) *threshval = threshold; // Don't report a failed attribute if its threshold is 0. // ATA-3 (X3T13/2008D Revision 7b) declares 0x00 as the "always passing" // threshold (Later ATA versions declare all thresholds as "obsolete"). // In practice, threshold value 0 is often used for usage attributes. if (!threshold) return ATTRSTATE_OK; // Failed now if current value is below threshold if (attr.current <= threshold) return ATTRSTATE_FAILED_NOW; // Failed in the past if worst value is below threshold if (!(defs[attr.id].flags & ATTRFLAG_NO_WORSTVAL) && attr.worst <= threshold) return ATTRSTATE_FAILED_PAST; return ATTRSTATE_OK; } // Get attribute raw value. uint64_t ata_get_attr_raw_value(const ata_smart_attribute & attr, const ata_vendor_attr_defs & defs) { const ata_vendor_attr_defs::entry & def = defs[attr.id]; // TODO: Allow Byteorder in DEFAULT entry // Use default byteorder if not specified const char * byteorder = def.byteorder; if (!*byteorder) { switch (def.raw_format) { case RAWFMT_RAW64: case RAWFMT_HEX64: byteorder = "543210wv"; break; case RAWFMT_RAW56: case RAWFMT_HEX56: case RAWFMT_RAW24_DIV_RAW32: case RAWFMT_MSEC24_HOUR32: byteorder = "r543210"; break; default: byteorder = "543210"; break; } } // Build 64-bit value from selected bytes uint64_t rawvalue = 0; for (int i = 0; byteorder[i]; i++) { unsigned char b; switch (byteorder[i]) { case '0': b = attr.raw[0]; break; case '1': b = attr.raw[1]; break; case '2': b = attr.raw[2]; break; case '3': b = attr.raw[3]; break; case '4': b = attr.raw[4]; break; case '5': b = attr.raw[5]; break; case 'r': b = attr.reserv; break; case 'v': b = attr.current; break; case 'w': b = attr.worst; break; default : b = 0; break; } rawvalue <<= 8; rawvalue |= b; } return rawvalue; } // Helper functions for RAWFMT_TEMPMINMAX static inline int check_temp_word(unsigned word) { if (word <= 0x7f) return 0x11; // >= 0, signed byte or word if (word <= 0xff) return 0x01; // < 0, signed byte if (0xff80 <= word) return 0x10; // < 0, signed word return 0x00; } static bool check_temp_range(int t, unsigned char ut1, unsigned char ut2, int & lo, int & hi) { int t1 = (signed char)ut1, t2 = (signed char)ut2; if (t1 > t2) { int tx = t1; t1 = t2; t2 = tx; } if ( -60 <= t1 && t1 <= t && t <= t2 && t2 <= 120 && !(t1 == -1 && t2 <= 0) ) { lo = t1; hi = t2; return true; } return false; } // Format attribute raw value. std::string ata_format_attr_raw_value(const ata_smart_attribute & attr, const ata_vendor_attr_defs & defs) { // Get 48 bit or 64 bit raw value uint64_t rawvalue = ata_get_attr_raw_value(attr, defs); // Split into bytes and words unsigned char raw[6]; raw[0] = (unsigned char) rawvalue; raw[1] = (unsigned char)(rawvalue >> 8); raw[2] = (unsigned char)(rawvalue >> 16); raw[3] = (unsigned char)(rawvalue >> 24); raw[4] = (unsigned char)(rawvalue >> 32); raw[5] = (unsigned char)(rawvalue >> 40); unsigned word[3]; word[0] = raw[0] | (raw[1] << 8); word[1] = raw[2] | (raw[3] << 8); word[2] = raw[4] | (raw[5] << 8); // Get print format ata_attr_raw_format format = defs[attr.id].raw_format; if (format == RAWFMT_DEFAULT) { // Get format from DEFAULT entry format = get_default_attr_defs()[attr.id].raw_format; if (format == RAWFMT_DEFAULT) // Unknown Attribute format = RAWFMT_RAW48; } // Print std::string s; switch (format) { case RAWFMT_RAW8: s = strprintf("%d %d %d %d %d %d", raw[5], raw[4], raw[3], raw[2], raw[1], raw[0]); break; case RAWFMT_RAW16: s = strprintf("%u %u %u", word[2], word[1], word[0]); break; case RAWFMT_RAW48: case RAWFMT_RAW56: case RAWFMT_RAW64: s = strprintf("%" PRIu64, rawvalue); break; case RAWFMT_HEX48: s = strprintf("0x%012" PRIx64, rawvalue); break; case RAWFMT_HEX56: s = strprintf("0x%014" PRIx64, rawvalue); break; case RAWFMT_HEX64: s = strprintf("0x%016" PRIx64, rawvalue); break; case RAWFMT_RAW16_OPT_RAW16: s = strprintf("%u", word[0]); if (word[1] || word[2]) s += strprintf(" (%u %u)", word[2], word[1]); break; case RAWFMT_RAW16_OPT_AVG16: s = strprintf("%u", word[0]); if (word[1]) s += strprintf(" (Average %u)", word[1]); break; case RAWFMT_RAW24_OPT_RAW8: s = strprintf("%u", (unsigned)(rawvalue & 0x00ffffffULL)); if (raw[3] || raw[4] || raw[5]) s += strprintf(" (%d %d %d)", raw[5], raw[4], raw[3]); break; case RAWFMT_RAW24_DIV_RAW24: s = strprintf("%u/%u", (unsigned)(rawvalue >> 24), (unsigned)(rawvalue & 0x00ffffffULL)); break; case RAWFMT_RAW24_DIV_RAW32: s = strprintf("%u/%u", (unsigned)(rawvalue >> 32), (unsigned)(rawvalue & 0xffffffffULL)); break; case RAWFMT_MIN2HOUR: { // minutes int64_t temp = word[0]+(word[1]<<16); int64_t tmp1 = temp/60; int64_t tmp2 = temp%60; s = strprintf("%" PRIu64 "h+%02" PRIu64 "m", tmp1, tmp2); if (word[2]) s += strprintf(" (%u)", word[2]); } break; case RAWFMT_SEC2HOUR: { // seconds int64_t hours = rawvalue/3600; int64_t minutes = (rawvalue-3600*hours)/60; int64_t seconds = rawvalue%60; s = strprintf("%" PRIu64 "h+%02" PRIu64 "m+%02" PRIu64 "s", hours, minutes, seconds); } break; case RAWFMT_HALFMIN2HOUR: { // 30-second counter int64_t hours = rawvalue/120; int64_t minutes = (rawvalue-120*hours)/2; s += strprintf("%" PRIu64 "h+%02" PRIu64 "m", hours, minutes); } break; case RAWFMT_MSEC24_HOUR32: { // hours + milliseconds unsigned hours = (unsigned)(rawvalue & 0xffffffffULL); unsigned milliseconds = (unsigned)(rawvalue >> 32); unsigned seconds = milliseconds / 1000; s = strprintf("%uh+%02um+%02u.%03us", hours, seconds / 60, seconds % 60, milliseconds % 1000); } break; case RAWFMT_TEMPMINMAX: // Temperature { // Search for possible min/max values // [5][4][3][2][1][0] raw[] // [ 2 ] [ 1 ] [ 0 ] word[] // xx HH xx LL xx TT (Hitachi/HGST) // xx LL xx HH xx TT (Kingston SSDs) // 00 00 HH LL xx TT (Maxtor, Samsung, Seagate, Toshiba) // 00 00 00 HH LL TT (WDC) // CC CC HH LL xx TT (WDC, CCCC=over temperature count) // (xx = 00/ff, possibly sign extension of lower byte) int t = (signed char)raw[0]; int lo = 0, hi = 0; int tformat; int ctw0 = check_temp_word(word[0]); if (!word[2]) { if (!word[1] && ctw0) // 00 00 00 00 xx TT tformat = 0; else if (ctw0 && check_temp_range(t, raw[2], raw[3], lo, hi)) // 00 00 HL LH xx TT tformat = 1; else if (!raw[3] && check_temp_range(t, raw[1], raw[2], lo, hi)) // 00 00 00 HL LH TT tformat = 2; else tformat = -1; } else if (ctw0) { if ( (ctw0 & check_temp_word(word[1]) & check_temp_word(word[2])) != 0x00 && check_temp_range(t, raw[2], raw[4], lo, hi) ) // xx HL xx LH xx TT tformat = 3; else if ( word[2] < 0x7fff && check_temp_range(t, raw[2], raw[3], lo, hi) && hi >= 40 ) // CC CC HL LH xx TT tformat = 4; else tformat = -2; } else tformat = -3; switch (tformat) { case 0: s = strprintf("%d", t); break; case 1: case 2: case 3: s = strprintf("%d (Min/Max %d/%d)", t, lo, hi); break; case 4: s = strprintf("%d (Min/Max %d/%d #%d)", t, lo, hi, word[2]); break; default: s = strprintf("%d (%d %d %d %d %d)", raw[0], raw[5], raw[4], raw[3], raw[2], raw[1]); break; } } break; case RAWFMT_TEMP10X: // ten times temperature in Celsius s = strprintf("%d.%d", word[0]/10, word[0]%10); break; default: s = "?"; // Should not happen break; } return s; } // Get attribute name std::string ata_get_smart_attr_name(unsigned char id, const ata_vendor_attr_defs & defs, int rpm /* = 0 */) { if (!defs[id].name.empty()) return defs[id].name; else { const ata_vendor_attr_defs::entry & def = get_default_attr_defs()[id]; if (def.name.empty()) return "Unknown_Attribute"; else if ((def.flags & ATTRFLAG_HDD_ONLY) && rpm == 1) return "Unknown_SSD_Attribute"; else if ((def.flags & ATTRFLAG_SSD_ONLY) && rpm > 1) return "Unknown_HDD_Attribute"; else return def.name; } } // Find attribute index for attribute id, -1 if not found. int ata_find_attr_index(unsigned char id, const ata_smart_values & smartval) { if (!id) return -1; for (int i = 0; i < NUMBER_ATA_SMART_ATTRIBUTES; i++) { if (smartval.vendor_attributes[i].id == id) return i; } return -1; } // Return Temperature Attribute raw value selected according to possible // non-default interpretations. If the Attribute does not exist, return 0 unsigned char ata_return_temperature_value(const ata_smart_values * data, const ata_vendor_attr_defs & defs) { for (int i = 0; i < 4; i++) { static const unsigned char ids[4] = {194, 190, 9, 220}; unsigned char id = ids[i]; const ata_attr_raw_format format = defs[id].raw_format; if (!( ((id == 194 || id == 190) && format == RAWFMT_DEFAULT) || format == RAWFMT_TEMPMINMAX || format == RAWFMT_TEMP10X)) continue; int idx = ata_find_attr_index(id, *data); if (idx < 0) continue; uint64_t raw = ata_get_attr_raw_value(data->vendor_attributes[idx], defs); unsigned temp; // ignore possible min/max values in high words if (format == RAWFMT_TEMP10X) // -v N,temp10x temp = ((unsigned short)raw + 5) / 10; else temp = (unsigned char)raw; if (!(0 < temp && temp < 128)) continue; return temp; } // No valid attribute found return 0; } // Read SCT Status int ataReadSCTStatus(ata_device * device, ata_sct_status_response * sts) { // read SCT status via SMART log 0xe0 memset(sts, 0, sizeof(*sts)); if (smartcommandhandler(device, READ_LOG, 0xe0, (char *)sts)){ pout("Read SCT Status failed: %s\n", device->get_errmsg()); return -1; } // swap endian order if needed if (isbigendian()){ SWAPV(sts->format_version); SWAPV(sts->sct_version); SWAPV(sts->sct_spec); SWAPV(sts->ext_status_code); SWAPV(sts->action_code); SWAPV(sts->function_code); SWAPV(sts->over_limit_count); SWAPV(sts->under_limit_count); SWAPV(sts->smart_status); SWAPV(sts->min_erc_time); } // Check format version if (!(sts->format_version == 2 || sts->format_version == 3)) { pout("Unknown SCT Status format version %u, should be 2 or 3.\n", sts->format_version); return -1; } return 0; } // Read SCT Temperature History Table int ataReadSCTTempHist(ata_device * device, ata_sct_temperature_history_table * tmh, ata_sct_status_response * sts) { // Initial SCT status must be provided by caller // Do nothing if other SCT command is executing if (sts->ext_status_code == 0xffff) { pout("Another SCT command is executing, abort Read Data Table\n" "(SCT ext_status_code 0x%04x, action_code=%u, function_code=%u)\n", sts->ext_status_code, sts->action_code, sts->function_code); return -1; } ata_sct_data_table_command cmd; memset(&cmd, 0, sizeof(cmd)); // CAUTION: DO NOT CHANGE THIS VALUE (SOME ACTION CODES MAY ERASE DISK) cmd.action_code = 5; // Data table command cmd.function_code = 1; // Read table cmd.table_id = 2; // Temperature History Table // swap endian order if needed if (isbigendian()) { SWAPV(cmd.action_code); SWAPV(cmd.function_code); SWAPV(cmd.table_id); } // write command via SMART log page 0xe0 if (smartcommandhandler(device, WRITE_LOG, 0xe0, (char *)&cmd)){ pout("Write SCT Data Table failed: %s\n", device->get_errmsg()); return -1; } // read SCT data via SMART log page 0xe1 memset(tmh, 0, sizeof(*tmh)); if (smartcommandhandler(device, READ_LOG, 0xe1, (char *)tmh)){ pout("Read SCT Data Table failed: %s\n", device->get_errmsg()); return -1; } // re-read and check SCT status if (ataReadSCTStatus(device, sts)) return -1; if (!(sts->ext_status_code == 0 && sts->action_code == 5 && sts->function_code == 1)) { pout("Unexpected SCT status 0x%04x (action_code=%u, function_code=%u)\n", sts->ext_status_code, sts->action_code, sts->function_code); return -1; } // swap endian order if needed if (isbigendian()){ SWAPV(tmh->format_version); SWAPV(tmh->sampling_period); SWAPV(tmh->interval); SWAPV(tmh->cb_index); SWAPV(tmh->cb_size); } return 0; } // Common function for Get/Set SCT Feature Control: // Write Cache, Write Cache Reordering, etc. static int ataGetSetSCTFeatureControl(ata_device * device, unsigned short feature_code, unsigned short state, bool persistent, bool set) { // Check initial status ata_sct_status_response sts; if (ataReadSCTStatus(device, &sts)) return -1; // Do nothing if other SCT command is executing if (sts.ext_status_code == 0xffff) { pout("Another SCT command is executing, abort Feature Control\n" "(SCT ext_status_code 0x%04x, action_code=%u, function_code=%u)\n", sts.ext_status_code, sts.action_code, sts.function_code); return -1; } ata_sct_feature_control_command cmd; memset(&cmd, 0, sizeof(cmd)); // CAUTION: DO NOT CHANGE THIS VALUE (SOME ACTION CODES MAY ERASE DISK) cmd.action_code = 4; // Feature Control command cmd.function_code = (set ? 1 : 2); // 1=Set, 2=Get cmd.feature_code = feature_code; cmd.state = state; cmd.option_flags = (persistent ? 0x01 : 0x00); // swap endian order if needed if (isbigendian()) { SWAPV(cmd.action_code); SWAPV(cmd.function_code); SWAPV(cmd.feature_code); SWAPV(cmd.state); SWAPV(cmd.option_flags); } // write command via SMART log page 0xe0 // TODO: Debug output ata_cmd_in in; in.in_regs.command = ATA_SMART_CMD; in.in_regs.lba_high = SMART_CYL_HI; in.in_regs.lba_mid = SMART_CYL_LOW; in.in_regs.features = ATA_SMART_WRITE_LOG_SECTOR; in.in_regs.lba_low = 0xe0; in.set_data_out(&cmd, 1); if (!set) // Time limit returned in ATA registers in.out_needed.sector_count = in.out_needed.lba_low = true; ata_cmd_out out; if (!device->ata_pass_through(in, out)) { pout("Write SCT (%cet) Feature Control Command failed: %s\n", (!set ? 'G' : 'S'), device->get_errmsg()); return -1; } state = out.out_regs.sector_count | (out.out_regs.lba_low << 8); // re-read and check SCT status if (ataReadSCTStatus(device, &sts)) return -1; if (!(sts.ext_status_code == 0 && sts.action_code == 4 && sts.function_code == (set ? 1 : 2))) { pout("Unexpected SCT status 0x%04x (action_code=%u, function_code=%u)\n", sts.ext_status_code, sts.action_code, sts.function_code); return -1; } return state; } // Get/Set Write Cache Reordering int ataGetSetSCTWriteCacheReordering(ata_device * device, bool enable, bool persistent, bool set) { return ataGetSetSCTFeatureControl(device, 2 /* Enable/Disable Write Cache Reordering */, (enable ? 1 : 2), persistent, set); } // Get/Set Write Cache (force enable, force disable, int ataGetSetSCTWriteCache(ata_device * device, unsigned short state, bool persistent, bool set) { return ataGetSetSCTFeatureControl(device, 1 /* Enable/Disable Write Cache */, state, persistent, set); } // Set SCT Temperature Logging Interval int ataSetSCTTempInterval(ata_device * device, unsigned interval, bool persistent) { // Check initial status ata_sct_status_response sts; if (ataReadSCTStatus(device, &sts)) return -1; // Do nothing if other SCT command is executing if (sts.ext_status_code == 0xffff) { pout("Another SCT command is executing, abort Feature Control\n" "(SCT ext_status_code 0x%04x, action_code=%u, function_code=%u)\n", sts.ext_status_code, sts.action_code, sts.function_code); return -1; } ata_sct_feature_control_command cmd; memset(&cmd, 0, sizeof(cmd)); // CAUTION: DO NOT CHANGE THIS VALUE (SOME ACTION CODES MAY ERASE DISK) cmd.action_code = 4; // Feature Control command cmd.function_code = 1; // Set state cmd.feature_code = 3; // Temperature logging interval cmd.state = interval; cmd.option_flags = (persistent ? 0x01 : 0x00); // swap endian order if needed if (isbigendian()) { SWAPV(cmd.action_code); SWAPV(cmd.function_code); SWAPV(cmd.feature_code); SWAPV(cmd.state); SWAPV(cmd.option_flags); } // write command via SMART log page 0xe0 if (smartcommandhandler(device, WRITE_LOG, 0xe0, (char *)&cmd)){ pout("Write SCT Feature Control Command failed: %s\n", device->get_errmsg()); return -1; } // re-read and check SCT status if (ataReadSCTStatus(device, &sts)) return -1; if (!(sts.ext_status_code == 0 && sts.action_code == 4 && sts.function_code == 1)) { pout("Unexpected SCT status 0x%04x (action_code=%u, function_code=%u)\n", sts.ext_status_code, sts.action_code, sts.function_code); return -1; } return 0; } // Get/Set SCT Error Recovery Control static int ataGetSetSCTErrorRecoveryControltime(ata_device * device, unsigned type, bool set, unsigned short & time_limit, bool power_on, bool mfg_default) { // Check initial status ata_sct_status_response sts; if (ataReadSCTStatus(device, &sts)) return -1; // Do nothing if other SCT command is executing if (sts.ext_status_code == 0xffff) { pout("Another SCT command is executing, abort Error Recovery Control\n" "(SCT ext_status_code 0x%04x, action_code=%u, function_code=%u)\n", sts.ext_status_code, sts.action_code, sts.function_code); return -1; } ata_sct_error_recovery_control_command cmd; memset(&cmd, 0, sizeof(cmd)); // CAUTION: DO NOT CHANGE THIS VALUE (SOME ACTION CODES MAY ERASE DISK) cmd.action_code = 3; // Error Recovery Control command // 1=Set timer, 2=Get timer, 3=Set Power-on timer, 4=Get Power-on timer, 5=Restore mfg default if (mfg_default) { cmd.function_code = 5; } else if (power_on) { cmd.function_code = (set ? 3 : 4); } else { cmd.function_code = (set ? 1 : 2); } unsigned short saved_function_code = cmd.function_code; cmd.selection_code = type; // 1=Read timer, 2=Write timer if (set) cmd.time_limit = time_limit; // swap endian order if needed if (isbigendian()) { SWAPV(cmd.action_code); SWAPV(cmd.function_code); SWAPV(cmd.selection_code); SWAPV(cmd.time_limit); } // write command via SMART log page 0xe0 // TODO: Debug output ata_cmd_in in; in.in_regs.command = ATA_SMART_CMD; in.in_regs.lba_high = SMART_CYL_HI; in.in_regs.lba_mid = SMART_CYL_LOW; in.in_regs.features = ATA_SMART_WRITE_LOG_SECTOR; in.in_regs.lba_low = 0xe0; in.set_data_out(&cmd, 1); if (!set) // Time limit returned in ATA registers in.out_needed.sector_count = in.out_needed.lba_low = true; ata_cmd_out out; if (!device->ata_pass_through(in, out)) { pout("Write SCT (%cet) Error Recovery Control Command failed: %s\n", (!set ? 'G' : 'S'), device->get_errmsg()); return -1; } // re-read and check SCT status if (ataReadSCTStatus(device, &sts)) return -1; if (!(sts.ext_status_code == 0 && sts.action_code == 3 && sts.function_code == saved_function_code)) { pout("Unexpected SCT status 0x%04x (action_code=%u, function_code=%u)\n", sts.ext_status_code, sts.action_code, sts.function_code); return -1; } if (!set) { // Check whether registers are properly returned by ioctl() if (!(out.out_regs.sector_count.is_set() && out.out_regs.lba_low.is_set())) { // TODO: Output register support should be checked within each ata_pass_through() // implementation before command is issued. pout("SMART WRITE LOG does not return COUNT and LBA_LOW register\n"); return -1; } if ( out.out_regs.sector_count == in.in_regs.sector_count && out.out_regs.lba_low == in.in_regs.lba_low ) { // 0xe001 (5734.5s) - this is most likely a broken ATA pass-through implementation pout("SMART WRITE LOG returns COUNT and LBA_LOW register unchanged\n"); return -1; } // Return value to caller time_limit = out.out_regs.sector_count | (out.out_regs.lba_low << 8); } return 0; } // Get SCT Error Recovery Control int ataGetSCTErrorRecoveryControltime(ata_device * device, unsigned type, unsigned short & time_limit, bool power_on) { return ataGetSetSCTErrorRecoveryControltime(device, type, false/*get*/, time_limit, power_on, false); } // Set SCT Error Recovery Control int ataSetSCTErrorRecoveryControltime(ata_device * device, unsigned type, unsigned short time_limit, bool power_on, bool mfg_default) { return ataGetSetSCTErrorRecoveryControltime(device, type, true/*set*/, time_limit, power_on, mfg_default); } ///////////////////////////////////////////////////////////////////////////// // Pseudo-device to parse "smartctl -r ataioctl,2 ..." output and simulate // an ATA device with same behaviour namespace { class parsed_ata_device : public /*implements*/ ata_device_with_command_set { public: parsed_ata_device(smart_interface * intf, const char * dev_name); virtual ~parsed_ata_device(); virtual bool is_open() const; virtual bool open(); virtual bool close(); virtual bool ata_identify_is_cached() const; protected: virtual int ata_command_interface(smart_command_set command, int select, char * data); private: // Table of parsed commands, return value, data struct parsed_ata_command { smart_command_set command; int select; int retval, errval; char * data; }; enum { max_num_commands = 32 }; parsed_ata_command m_command_table[max_num_commands]; int m_num_commands; int m_next_replay_command; bool m_replay_out_of_sync; bool m_ata_identify_is_cached; }; static const char * nextline(const char * s, int & lineno) { for (s += strcspn(s, "\r\n"); *s == '\r' || *s == '\n'; s++) { if (*s == '\r' && s[1] == '\n') s++; lineno++; } return s; } static int name2command(const char * s) { for (int i = 0; i < (int)(sizeof(commandstrings)/sizeof(commandstrings[0])); i++) { if (!strcmp(s, commandstrings[i])) return i; } return -1; } static bool matchcpy(char * dest, size_t size, const char * src, const regular_expression::match_range & srcmatch) { if (srcmatch.rm_so < 0) return false; size_t n = srcmatch.rm_eo - srcmatch.rm_so; if (n >= size) n = size-1; memcpy(dest, src + srcmatch.rm_so, n); dest[n] = 0; return true; } static inline int matchtoi(const char * src, const regular_expression::match_range & srcmatch, int defval) { if (srcmatch.rm_so < 0) return defval; return atoi(src + srcmatch.rm_so); } parsed_ata_device::parsed_ata_device(smart_interface * intf, const char * dev_name) : smart_device(intf, dev_name, "ata", ""), m_num_commands(0), m_next_replay_command(0), m_replay_out_of_sync(false), m_ata_identify_is_cached(false) { memset(m_command_table, 0, sizeof(m_command_table)); } parsed_ata_device::~parsed_ata_device() { parsed_ata_device::close(); } bool parsed_ata_device::is_open() const { return (m_num_commands > 0); } // Parse stdin and build command table bool parsed_ata_device::open() { const char * pathname = get_dev_name(); if (strcmp(pathname, "-")) return set_err(EINVAL); pathname = ""; // Fill buffer char buffer[64*1024]; int size = 0; while (size < (int)sizeof(buffer)) { int nr = fread(buffer, 1, sizeof(buffer), stdin); if (nr <= 0) break; size += nr; } if (size <= 0) return set_err(ENOENT, "%s: Unexpected EOF", pathname); if (size >= (int)sizeof(buffer)) return set_err(EIO, "%s: Buffer overflow", pathname); buffer[size] = 0; // Regex to match output from "-r ataioctl,2" static const char pattern[] = "^" "(" // (1 "REPORT-IOCTL: DeviceF?D?=[^ ]+ Command=([A-Z ]*[A-Z])" // (2) "(" // (3 "( InputParameter=([0-9]+))?" // (4 (5)) "|" "( returned (-?[0-9]+)( errno=([0-9]+)[^\r\n]*)?)" // (6 (7) (8 (9))) ")" // ) "[\r\n]" // EOL match necessary to match optional parts above "|" "===== \\[([A-Z ]*[A-Z])\\] DATA START " // (10) "|" " *(En|Dis)abled status cached by OS, " // (11) ")"; // ) // Compile regex const regular_expression regex(pattern); // Parse buffer const char * errmsg = 0; int i = -1, state = 0, lineno = 1; for (const char * line = buffer; *line; line = nextline(line, lineno)) { // Match line if (!(line[0] == 'R' || line[0] == '=' || line[0] == ' ')) continue; const int nmatch = 1+11; regular_expression::match_range match[nmatch]; if (!regex.execute(line, nmatch, match)) continue; char cmdname[40]; if (matchcpy(cmdname, sizeof(cmdname), line, match[2])) { // "REPORT-IOCTL:... Command=%s ..." int nc = name2command(cmdname); if (nc < 0) { errmsg = "Unknown ATA command name"; break; } if (match[7].rm_so < 0) { // "returned %d" // Start of command if (!(state == 0 || state == 2)) { errmsg = "Missing REPORT-IOCTL result"; break; } if (++i >= max_num_commands) { errmsg = "Too many ATA commands"; break; } m_command_table[i].command = (smart_command_set)nc; m_command_table[i].select = matchtoi(line, match[5], 0); // "InputParameter=%d" state = 1; } else { // End of command if (!(state == 1 && (int)m_command_table[i].command == nc)) { errmsg = "Missing REPORT-IOCTL start"; break; } m_command_table[i].retval = matchtoi(line, match[7], -1); // "returned %d" m_command_table[i].errval = matchtoi(line, match[9], 0); // "errno=%d" state = 2; } } else if (matchcpy(cmdname, sizeof(cmdname), line, match[10])) { // "===== [%s] DATA START " // Start of sector hexdump int nc = name2command(cmdname); if (!(state == (nc == WRITE_LOG ? 1 : 2) && (int)m_command_table[i].command == nc)) { errmsg = "Unexpected DATA START"; break; } line = nextline(line, lineno); char * data = (char *)malloc(512); unsigned j; for (j = 0; j < 32; j++) { unsigned b[16]; unsigned u1, u2; int n1 = -1; if (!(sscanf(line, "%3u-%3u: " "%2x %2x %2x %2x %2x %2x %2x %2x " "%2x %2x %2x %2x %2x %2x %2x %2x%n", &u1, &u2, b+ 0, b+ 1, b+ 2, b+ 3, b+ 4, b+ 5, b+ 6, b+ 7, b+ 8, b+ 9, b+10, b+11, b+12, b+13, b+14, b+15, &n1) == 18 && n1 >= 56 && u1 == j*16 && u2 == j*16+15)) break; for (unsigned k = 0; k < 16; k++) data[j*16+k] = b[k]; line = nextline(line, lineno); } if (j < 32) { free(data); errmsg = "Incomplete sector hex dump"; break; } m_command_table[i].data = data; if (nc != WRITE_LOG) state = 0; } else if (match[11].rm_so > 0) { // "(En|Dis)abled status cached by OS" m_ata_identify_is_cached = true; } } if (!(state == 0 || state == 2)) errmsg = "Missing REPORT-IOCTL result"; if (!errmsg && i < 0) errmsg = "No information found"; m_num_commands = i+1; m_next_replay_command = 0; m_replay_out_of_sync = false; if (errmsg) { close(); return set_err(EIO, "%s(%d): Syntax error: %s", pathname, lineno, errmsg); } return true; } // Report warnings and free command table bool parsed_ata_device::close() { if (m_replay_out_of_sync) pout("REPLAY-IOCTL: Warning: commands replayed out of sync\n"); else if (m_next_replay_command != 0) pout("REPLAY-IOCTL: Warning: %d command(s) not replayed\n", m_num_commands-m_next_replay_command); for (int i = 0; i < m_num_commands; i++) { if (m_command_table[i].data) { free(m_command_table[i].data); m_command_table[i].data = 0; } } m_num_commands = 0; m_next_replay_command = 0; m_replay_out_of_sync = false; return true; } bool parsed_ata_device::ata_identify_is_cached() const { return m_ata_identify_is_cached; } // Simulate ATA command from command table int parsed_ata_device::ata_command_interface(smart_command_set command, int select, char * data) { // Find command, try round-robin if out of sync int i = m_next_replay_command; for (int j = 0; ; j++) { if (j >= m_num_commands) { pout("REPLAY-IOCTL: Warning: Command not found\n"); errno = ENOSYS; return -1; } if (m_command_table[i].command == command && m_command_table[i].select == select) break; if (!m_replay_out_of_sync) { m_replay_out_of_sync = true; pout("REPLAY-IOCTL: Warning: Command #%d is out of sync\n", i+1); } if (++i >= m_num_commands) i = 0; } m_next_replay_command = i; if (++m_next_replay_command >= m_num_commands) m_next_replay_command = 0; // Return command data switch (command) { case IDENTIFY: case PIDENTIFY: case READ_VALUES: case READ_THRESHOLDS: case READ_LOG: if (m_command_table[i].data) memcpy(data, m_command_table[i].data, 512); break; case WRITE_LOG: if (!(m_command_table[i].data && !memcmp(data, m_command_table[i].data, 512))) pout("REPLAY-IOCTL: Warning: WRITE LOG data does not match\n"); break; case CHECK_POWER_MODE: data[0] = (char)0xff; default: break; } if (m_command_table[i].errval) errno = m_command_table[i].errval; return m_command_table[i].retval; } } // namespace ata_device * get_parsed_ata_device(smart_interface * intf, const char * dev_name) { return new parsed_ata_device(intf, dev_name); }